Tropical Flora
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
The First Chloroplast Genome Sequence of Boswellia Sacra, a Resin-Producing Plant in Oman
RESEARCH ARTICLE The First Chloroplast Genome Sequence of Boswellia sacra, a Resin-Producing Plant in Oman Abdul Latif Khan1, Ahmed Al-Harrasi1*, Sajjad Asaf2, Chang Eon Park2, Gun-Seok Park2, Abdur Rahim Khan2, In-Jung Lee2, Ahmed Al-Rawahi1, Jae-Ho Shin2* 1 UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman, 2 School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea a1111111111 * [email protected] (AAH); [email protected] (JHS) a1111111111 a1111111111 a1111111111 Abstract a1111111111 Boswellia sacra (Burseraceae), a keystone endemic species, is famous for the production of fragrant oleo-gum resin. However, the genetic make-up especially the genomic informa- tion about chloroplast is still unknown. Here, we described for the first time the chloroplast OPEN ACCESS (cp) genome of B. sacra. The complete cp sequence revealed a circular genome of 160,543 Citation: Khan AL, Al-Harrasi A, Asaf S, Park CE, bp size with 37.61% GC content. The cp genome is a typical quadripartite chloroplast struc- Park G-S, Khan AR, et al. (2017) The First ture with inverted repeats (IRs 26,763 bp) separated by small single copy (SSC; 18,962 bp) Chloroplast Genome Sequence of Boswellia sacra, and large single copy (LSC; 88,055 bp) regions. De novo assembly and annotation showed a Resin-Producing Plant in Oman. PLoS ONE 12 the presence of 114 unique genes with 83 protein-coding regions. The phylogenetic analysis (1): e0169794. doi:10.1371/journal.pone.0169794 revealed that the B. sacra cp genome is closely related to the cp genome of Azadirachta Editor: Xiu-Qing Li, Agriculture and Agri-Food indica and Citrus sinensis, while most of the syntenic differences were found in the non-cod- Canada, CANADA ing regions. -
Chapter 6 ENUMERATION
Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi. -
11Th Flora Malesina Symposium, Brunei Darussalm, 30 June 5 July 2019 1
11TH FLORA MALESINA SYMPOSIUM, BRUNEI DARUSSALM, 30 JUNE 5 JULY 2019 1 Welcome message The Universiti Brunei Darussalam is honoured to host the 11th International Flora Malesiana Symposium. On behalf of the organizing committee it is my pleasure to welcome you to Brunei Darussalam. The Flora Malesiana Symposium is a fantastic opportunity to engage in discussion and sharing information and experience in the field of taxonomy, ecology and conservation. This is the first time that a Flora Malesiana Symposium is organized in Brunei Darissalam and in the entire island of Borneo. At the center of the Malesian archipelago the island of Borneo magnifies the megadiversity of this region with its richness in plant and animal species. Moreover, the symposium will be an opportunity to inspire and engage the young generation of taxonomists, ecologists and conservationists who are attending it. They will be able to interact with senior researchers and get inspired with new ideas and develop further collaboration. In a phase of Biodiversity crisis, it is pivotal the understanding of plant diversity their ecology in order to have a tangible and successful result in the conservation action. I would like to thank the Vice Chancellor of UBD for supporting the symposium. In the last 6 months the organizing committee has worked very hard for making the symposium possible, to them goes my special thanks. I would like to extend my thanks to all the delegates and the keynote speakers who will make this event a memorable symposium. Dr Daniele Cicuzza Chairperson of the 11th International Flora Malesiana Symposium UBD, Brunei Darussalam 11TH FLORA MALESINA SYMPOSIUM, BRUNEI DARUSSALM, 30 JUNE 5 JULY 2019 2 Organizing Committee Adviser Media and publicity Dr. -
Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D. -
Complete Sequence and Comparative Analysis of the Chloroplast Genome of Plinia Trunciflora”
Genetics and Molecular Biology Supplementary Material to “Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora” Table S3 - List of 56 plastome sequences of Rosids included in the Bayesian phylogenetic analysis. Accesion Study Taxon Family Order number 1 Aethionema cordifolium Brassicaceae Brassicales NC_009265.1 unpublished 2 Arabidopsis thaliana Brassicaceae Brassicales NC_000932.1 Sato et al. (1999) 3 Barbarea verna Brassicaceae Brassicales NC_009269.1 unpublished 4 Brassica napus Brassicaceae Brassicales NC_016734.1 Hu et al. (2011) 5 Capsella bursa-pastoris Brassicaceae Brassicales NC_009270.1 unpublished 6 Carica papaya Caricaceae Brassicales NC_010323.1 unpublished 7 Crucihimalaya wallichii Brassicaceae Brassicales NC_009271.1 unpublished 8 Draba nemorosa Brassicaceae Brassicales NC_009272.1 unpublished 9 Lepidium virginicum Brassicaceae Brassicales NC_009273.1 unpublished 10 Lobularia maritima Brassicaceae Brassicales NC_009274.1 unpublished 11 Nasturtium officinale Brassicaceae Brassicales NC_009275.1 unpublished 12 Olimarabidopsis pumila Brassicaceae Brassicales NC_009267.1 unpublished 13 Raphanus sativus Brassicaceae Brassicales NC_024469.1 Jeong et al. (2014) 14 California macrophylla Geraniaceae Geraniales JQ031013.1 Weng et al. (2014) 15 Erodium carvifolium Geraniaceae Geraniales NC_015083.1 Blazier et al. (2011) 16 Francoa sonchifolia Melianthaceae Geraniales NC_021101.1 Weng et al. (2014) 17 Geranium palmatum Geraniaceae Geraniales NC_014573.1 Guisinger et al. (2011) 18 Hypseocharis bilobate Geraniaceae Geraniales NC_023260.1 Weng et al. (2014) 19 Melianthus villosus Melianthaceae Geraniales NC_023256.1 Weng et al. (2014) 20 Monsonia speciose Geraniaceae Geraniales NC_014582.1 Guisinger et al. (2011) 21 Pelargonium alternans Geraniaceae Geraniales NC_023261.1 Weng et al. (2014) 22 Viviania marifolia Vivianiaceae Geraniales NC_023259.1 Weng et al. (2014) 23 Hevea brasiliensis Euphorbiaceae Malpighiales NC_015308.1 Tangphatsornruang et al. -
Taxonomy and Conservation Status of Pteridophyte Flora of Sri Lanka R.H.G
Taxonomy and Conservation Status of Pteridophyte Flora of Sri Lanka R.H.G. Ranil and D.K.N.G. Pushpakumara University of Peradeniya Introduction The recorded history of exploration of pteridophytes in Sri Lanka dates back to 1672-1675 when Poul Hermann had collected a few fern specimens which were first described by Linneus (1747) in Flora Zeylanica. The majority of Sri Lankan pteridophytes have been collected in the 19th century during the British period and some of them have been published as catalogues and checklists. However, only Beddome (1863-1883) and Sledge (1950-1954) had conducted systematic studies and contributed significantly to today’s knowledge on taxonomy and diversity of Sri Lankan pteridophytes (Beddome, 1883; Sledge, 1982). Thereafter, Manton (1953) and Manton and Sledge (1954) reported chromosome numbers and some taxonomic issues of selected Sri Lankan Pteridophytes. Recently, Shaffer-Fehre (2006) has edited the volume 15 of the revised handbook to the flora of Ceylon on pteridophyta (Fern and FernAllies). The local involvement of pteridological studies began with Abeywickrama (1956; 1964; 1978), Abeywickrama and Dassanayake (1956); and Abeywickrama and De Fonseka, (1975) with the preparations of checklists of pteridophytes and description of some fern families. Dassanayake (1964), Jayasekara (1996), Jayasekara et al., (1996), Dhanasekera (undated), Fenando (2002), Herat and Rathnayake (2004) and Ranil et al., (2004; 2005; 2006) have also contributed to the present knowledge on Pteridophytes in Sri Lanka. However, only recently, Ranil and co workers initiated a detailed study on biology, ecology and variation of tree ferns (Cyatheaceae) in Kanneliya and Sinharaja MAB reserves combining field and laboratory studies and also taxonomic studies on island-wide Sri Lankan fern flora. -
Baseline Biodiversity Assessment of the Proposed Restoration Site in Suduwelipotha, Weddagala
Baseline Biodiversity Assessment of the Proposed Restoration Site in Suduwelipotha, Weddagala July, 2021 Assessment team Himesh Jayasinghe (Flora Ecologist) , Dineth Dhanushka (Fauna Ecologist) , Suneth Kanishka (Fauna Ecologist) Project Coordinator and report compilation – Vimukthi Weeratunga Introduction Forest habitats play a key role in combatting climate change whilst protecting unique biodiversity. Therefore, maintaining a healthy forest cover in small tropical countries like Sri Lanka is the best option to combat climate change and maintain a healthy level of biodiversity. The Sri Lankan low-land wet zone rainforests are a clear illustration of the biome shared with India which has been entwined since the land separation of the ancient super continent ‘Gondwanaland’ that occurred around 120 million years ago. The consequent land drift of Gondwanaland to Eurasia that occurred approximately 80 million years ago is responsible for the evolution of singularly distinctive characteristics of rainforests that are indigenous to Sri Lanka. This is evident in the presently identified flowering plant species roughly recorded at around 3,000, which are only highlights of a continuously growing list as a result of persistent botanical explorations. Around 850 (28%) of these identified plant species are endemic to Sri Lanka among which 92% is concentrated in the lowland rain forest habitats. This covers approximately 125,000 hectares of land which is 2% of the South-Western region of Sri Lanka where the population concentration is high. This proposed project is to re-forest 20 hectares of land in the wet zone of the country to re-establish a patch of habitat that could harbor unique species of flora and fauna that cannot be found anywhere else in the island. -
A Floristic Survey of a Unique Lowland Rain Forest in Moraella in the Knuckles Valley, Sri Lanka
Cey. J. Sci. (Bio. Sci.) 40 (1): 33-51, 2011 A FLORISTIC SURVEY OF A UNIQUE LOWLAND RAIN FOREST IN MORAELLA IN THE KNUCKLES VALLEY, SRI LANKA W. W. M. A. B. Medawatte1,2*, E. M. B. Ekanayake1, K. U. Tennakoon3, C.V.S Gunatilleke1 and I. A. U. N. Gunatilleke1 1Department of Botany, University of Peradeniya, Peradeniya, Sri Lanka 2Postgraduate Institute of Science, University of Peradeniya, Peradeniya 3Department of Biology, University of Brunei, Gadong BE 1410, Brunei Darussalam Accepted 01 June 2011 ABSTRACT The luxuriant natural forests of the western lower slope of the Knuckles range have been heavily deforested since the mid-19th century for conversion to coffee and tea plantations. Consequently, only scant floristic and ecological signatures of the original vegetation are , . Recently, an isolated forest fragment at 500-700 m amsl, not recorded previously, in Moraella Kukul Oya (stream) in the s r of Knuckles range. A vegetation survey recorded a total of 204 flowering plant species in 70 families Eighty-nine (44%) species are endemic to Sri Lanka, while 39 (20%) are nationally threatened. Among the 148 tree, treelet and shrub species identified, 4 ( 0%) have been recorded floral of the Knuckles forest reserve, while 115 (78%) are common to the lowland rain forests of south-western Sri Lanka The existence of (river), suggests that of lowland rain forest formation. These forest fragments likely mark the north-eastern-most limits of distribution of lowland rain forests in Sri Lanka and warrant urgent conservation as biodiversity refugia. They may be the last vestiges of an almost disappearing lowland rain forest type in the Knuckles range. -
Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific
Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific Craig Costion School of Earth and Environmental Sciences Department of Ecology and Evolutionary Biology University of Adelaide Adelaide, SA 5005 Thesis by publication submitted for the degree of Doctor of Philosophy in Ecology and Evolutionary Biology July 2011 ABSTRACT This thesis advances plant biodiversity knowledge in three separate bioregions, Micronesia, the Queensland Wet Tropics, and South Australia. A systematic treatment of the endemic flora of Micronesia is presented for the first time thus advancing alpha taxonomy for the Micronesia-Polynesia biodiversity hotspot region. The recognized species boundaries are used in combination with all known botanical collections as a basis for assessing the degree of threat for the endemic plants of the Palau archipelago located at the western most edge of Micronesia’s Caroline Islands. A preliminary assessment is conducted utilizing the IUCN red list Criteria followed by a new proposed alternative methodology that enables a degree of threat to be established utilizing existing data. Historical records and archaeological evidence are reviewed to establish the minimum extent of deforestation on the islands of Palau since the arrival of humans. This enabled a quantification of population declines of the majority of plants endemic to the archipelago. In the state of South Australia, the importance of establishing concepts of endemism is emphasized even further. A thorough scientific assessment is presented on the state’s proposed biological corridor reserve network. The report highlights the exclusion from the reserve system of one of the state’s most important hotspots of plant endemism that is highly threatened from habitat fragmentation and promotes the use of biodiversity indices to guide conservation priorities in setting up reserve networks. -
Andaman & Nicobar Islands, India
RESEARCH Vol. 21, Issue 68, 2020 RESEARCH ARTICLE ISSN 2319–5746 EISSN 2319–5754 Species Floristic Diversity and Analysis of South Andaman Islands (South Andaman District), Andaman & Nicobar Islands, India Mudavath Chennakesavulu Naik1, Lal Ji Singh1, Ganeshaiah KN2 1Botanical Survey of India, Andaman & Nicobar Regional Centre, Port Blair-744102, Andaman & Nicobar Islands, India 2Dept of Forestry and Environmental Sciences, School of Ecology and Conservation, G.K.V.K, UASB, Bangalore-560065, India Corresponding author: Botanical Survey of India, Andaman & Nicobar Regional Centre, Port Blair-744102, Andaman & Nicobar Islands, India Email: [email protected] Article History Received: 01 October 2020 Accepted: 17 November 2020 Published: November 2020 Citation Mudavath Chennakesavulu Naik, Lal Ji Singh, Ganeshaiah KN. Floristic Diversity and Analysis of South Andaman Islands (South Andaman District), Andaman & Nicobar Islands, India. Species, 2020, 21(68), 343-409 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital version in recycled paper. ABSTRACT After 7 years of intensive explorations during 2013-2020 in South Andaman Islands, we recorded a total of 1376 wild and naturalized vascular plant taxa representing 1364 species belonging to 701 genera and 153 families, of which 95% of the taxa are based on primary collections. Of the 319 endemic species of Andaman and Nicobar Islands, 111 species are located in South Andaman Islands and 35 of them strict endemics to this region. 343 Page Key words: Vascular Plant Diversity, Floristic Analysis, Endemcity. © 2020 Discovery Publication. All Rights Reserved. www.discoveryjournals.org OPEN ACCESS RESEARCH ARTICLE 1. -
Cambodian Journal of Natural History
Cambodian Journal of Natural History New orchid records Ethnobotanical knowledge Carbon stocks and dynamics A homage to Pauline Dy Phon National Biodiversity Action Plan Movement of Siamese crocodiles Payments for Ecosystem Services Camera trapping of large mammals June 2017 Vol. 2017 No. 1 Cambodian Journal of Natural History Editors Email: [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Stephen J. Browne, Fauna & Flora International, • Dr Sovanmoly Hul, Muséum National d’Histoire U.K. Naturelle, France. • Dr Martin Fisher, Editor of Oryx – The International • Dr Andy L. Maxwell, World Wide Fund for Nature, Journal of Conservation, U.K. Cambodia. • Dr L. Lee Grismer, La Sierra University, California, • Dr Brad Pett itt , Murdoch University, Australia. USA. • Dr Campbell O. Webb, Harvard University Herbaria, • Dr Knud E. Heller, Nykøbing Falster Zoo, Denmark. USA. Other peer reviewers • Prof. Henrik Balslev, Aarhus University, Denmark. • Dr Le Phat Quoi, Institute for Environment and Natural Resources, Ho Chi Minh National University, Vietnam. • Dr Chou Ly, Virginia Tech, USA. • Dr Benjamin Rawson, World Wide Fund For Nature, • Dr J.W. Duckworth, IUCN SSC Asian Species Action Vietnam. Partnership, UK. • Dr Sasaki Nophea, Asian Institute of Technology, • Jonathan Eames, BirdLife International Cambodia Thailand. Programme. • Dr André Schuiteman, Royal Botanic Gardens, Kew, • Dr Tracy Farrell, Conservation International, Cambodia. UK. • Paul Herbertson, Fauna & Flora International, UK.