Cambodian Journal of Natural History

Total Page:16

File Type:pdf, Size:1020Kb

Cambodian Journal of Natural History Cambodian Journal of Natural History New orchid records Ethnobotanical knowledge Carbon stocks and dynamics A homage to Pauline Dy Phon National Biodiversity Action Plan Movement of Siamese crocodiles Payments for Ecosystem Services Camera trapping of large mammals June 2017 Vol. 2017 No. 1 Cambodian Journal of Natural History Editors Email: [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Stephen J. Browne, Fauna & Flora International, • Dr Sovanmoly Hul, Muséum National d’Histoire U.K. Naturelle, France. • Dr Martin Fisher, Editor of Oryx – The International • Dr Andy L. Maxwell, World Wide Fund for Nature, Journal of Conservation, U.K. Cambodia. • Dr L. Lee Grismer, La Sierra University, California, • Dr Brad Pett itt , Murdoch University, Australia. USA. • Dr Campbell O. Webb, Harvard University Herbaria, • Dr Knud E. Heller, Nykøbing Falster Zoo, Denmark. USA. Other peer reviewers • Prof. Henrik Balslev, Aarhus University, Denmark. • Dr Le Phat Quoi, Institute for Environment and Natural Resources, Ho Chi Minh National University, Vietnam. • Dr Chou Ly, Virginia Tech, USA. • Dr Benjamin Rawson, World Wide Fund For Nature, • Dr J.W. Duckworth, IUCN SSC Asian Species Action Vietnam. Partnership, UK. • Dr Sasaki Nophea, Asian Institute of Technology, • Jonathan Eames, BirdLife International Cambodia Thailand. Programme. • Dr André Schuiteman, Royal Botanic Gardens, Kew, • Dr Tracy Farrell, Conservation International, Cambodia. UK. • Paul Herbertson, Fauna & Flora International, UK. • Boyd Simpson, Copenhagen Zoo, Malaysia Programme. • Dr Toyama Hironori, Kyushu University, Japan. • Ben Smitheram, Scientifi c Capacity Development Initiative, Cambodia. • Jeremy Holden, Independent, UK. • Dr Somran Suddee, Department of National Parks, • Josh Kempinski, Fauna & Flora International, Vietnam. Wildlife and Plant Conservation, Thailand. • Dr Kikuzawa Kihachiro, Ishikawa Prefectural • Dr Tagane Shuichiro, Kyushu University, Japan. University, Japan. • Dr Toriyama Jumpei, Forestry and Forest Products • Dr Hubert Kurzweil, Singapore Botanic Gardens, Research Institute, Japan. Singapore. • Dr Tran Triet, International Crane Foundation, • Prof. Phan Ke Loc, Hanoi University of Science, Southeast Asia Program. Vietnam. • Dr Jaap Vermeulen, J.K. Art and Science, Netherlands. • Dr Rajindra Puri, University of Kent at Canterbury, • Dr Santi Watt hana, Suranaree University of Tecnology, UK. Thailand. The Cambodian Journal of Natural History (ISSN 2226–969X) is an open access journal published by the Centre for Biodiversity Conservation, Royal University of Phnom Penh. The Centre for Biodiversity Conservation is a non-profi t making unit dedicated to training Cambodian biologists and to the study and conservation of Cambodian biodiversity. Cover image: Mangrove in Peam Krasaop Wildlife Sanctuary, Koh Kong Province (© Jeremy Holden/Global Wildlife Conservation). The carbon stock of peat soils in mangrove forests at the sanctuary is explored by Taing et al. in this issue (pages 55–62). Editorial 1 Editorial — The future of Payments for Ecosystem Services in Cambodia Virginia SIMPSON & Nicholas J. SOUTER* Conservation International, Greater Mekong Program, 4th Floor, Building E1, Phnom Penh Center, Sothearos Boulevard, Tonle Bassac, Phnom Penh, 12000, Cambodia. * Corresponding author. Email [email protected] In 2016 Cambodia’s protected area system increased fi nance is not the only priority that PES could help the signifi cantly in size. The establishment of fi ve new country to address: poverty reduction, species conser- protected areas (Souter et al., 2016) and the declaration of vation and boosting the agricultural sector are amongst an additional 1,427,940 ha of ‘biodiversity conservation the others. The people contributing to the maintenance corridors’ (RGC, 2017) increased Cambodia’s coverage of Cambodia’s forest ecosystems or threatened species of terrestrial protected areas to 42% of its land surface, are often among the nation’s poorest and have limited up from 26% in 2014 (World Bank, 2017). This places income sources. A PES programme could off er a new, Cambodia in the top 4% of nations worldwide in terms continuous source of revenue and provide an alternative of the percentage of land under protection (World Bank, to non-renewable income sources such as unsustainable 2017). However, providing adequate oversight is proving logging or mining. diffi cult, with Cambodia experiencing high rates of both Forest ecosystems provide four major ecosystem forest and biodiversity loss (Souter et al., 2016). services (Pagiola, 2008) to which PES could be applied Financing protected area management is a formi- in Cambodia: greenhouse gas mitigation, hydrological dable task for the already under-resourced Ministry of services, biodiversity conservation, and scenic vistas for Environment (MoE). Current levels of fi nancial support recreation and tourism. PES has previously been used from government and development partners are signifi - or assessed for some of these purposes in Cambodia. cantly below that needed (Souter et al., 2016). There are Reducing Emissions from Deforestation and Forest very few policies or regulations that enable collection of Degradation (REDD+) demonstration sites have been revenues from forests, protected or otherwise, and the assessed in Mondulkiri, Oddar Meanchey, and Preah revenues that are collected are remitt ed to the national Vihear (Cambodia REDD+, 2017) with the aim of gener- treasury, rather than directed back into natural resource ating revenue through reducing greenhouse gas emis- management. Private sector engagement in sustain- sions and sequestering carbon. Carbon credits have been able forest management is also very low. Consequently, sold to protect the Keo Seima Wildlife Sanctuary (Wild- Cambodia relies heavily on support from development life Conservation Society, 2017). The Wildlife Conserva- partners, especially bilateral and multilateral donors tion Society’s Ibis Rice programme, bird nest protection, and large NGOs, to fund protected area management. and ecotourism programme have all improved biodiver- However, as continued investment by donors and NGOs sity conservation (Clements & Milner-Gulland, 2015). is not sustainable (Souter et al., 2016), there is increasing Conservation International’s conservation agreement pressure for Cambodia to devise independent, long term programme in the Central Cardamom Mountains has strategies for funding the management of its natural reduced deforestation (Chervier & Costedoat, 2017). resources. Also, the hydrological services provided by the forest catchment of the Stung Atay hydro-power dam have Payments for ecosystem services (PES) off er a prom- been assessed (Fauna & Flora International, 2014). ising source of revenue which could be directly tied to conservation and management of Cambodia’s protected There is considerable scope to build upon these eff orts areas. PES is a fi nancial model through which people and expand the scope and coverage of PES in Cambodia. who benefi t from an ecosystem service (like water), Providing incentives to improve agricultural produc- provide fi nancial recompense to people whose lands or tivity and add value to Cambodian farms, including activities provide that service (such as forest-dwelling maintaining and increasing forest cover could result in communities). Cambodia’s urgent need for sustainable medium- and long-term gains, including increasing the Cambodian Journal of Natural History 2017 (1) 1–3 © Centre for Biodiversity Conservation, Phnom Penh 2 Editorial production of traditional (timber) and non-traditional hosted by the former Costa Rican Environment Minister, (carbon, fi rewood, water and biodiversity) goods and Carlos Manuel Rodriguez, who shared the Costa Rican services. The growth of Cambodia’s agricultural sector experience with the Cambodian delegation. On receiving (the largest contributor to the national economy) has a report of the trip Prime Minister Hun Sen responded lagged behind that of the industrial and service sectors. with an offi cial order to set Cambodia’s PES develop- This indicates a real potential for PES to improve agricul- ment in motion. ture’s contribution to GDP, which the government hopes Cambodia’s adoption of PES also needs to be to maintain at 7–8% per annum. informed by the experience of neighbouring Vietnam. PES could also help the government reach water secu- The Government of Vietnam implemented a pilot policy rity goals. The Rectangular Strategy for Growth, Employ- framework on Payments for Forest Ecosystem Services ment, Equity and Effi ciency Phase III recognizes the in 2008 which aims to strengthen forest conservation, critical role of freshwater ecosystems for ensuring food improve local livelihoods and generate external revenue security as well as sustaining economic activities such as for nature conservation. The policy focuses on water hydroelectricity production and servicing a burgeoning supply and regulation, soil conservation and landscape tourism sector. Ongoing water provision through incen- conservation for tourism (To et al., 2012). Buyers of tivized forest conservation and restoration will be
Recommended publications
  • Fl. China 11: 121–124. 2008. 11. AGLAIA Loureiro, Fl. Cochinch. 1
    Fl. China 11: 121–124. 2008. 11. AGLAIA Loureiro, Fl. Cochinch. 1: 98, 173. 1790, nom. cons., not F. Allamand (1770). 米仔兰属 mi zi lan shu Peng Hua (彭华); Caroline M. Pannell Trees or shrubs, dioecious, young parts usually lepidote or stellately pubescent. Leaves alternate to subopposite, odd-pinnate, 3- foliolate, or rarely simple; leaflet blade margins entire. Flowers in axillary thyrses, small, usually globose. Calyx slightly or deeply 3– 5-lobed. Petals 3–5, short, concave, quincuncial or imbricate in bud, distinct or rarely basally connate and adnate to staminal tube. Stamens as many as or more than petals; staminal tube usually subglobose, obovoid, or cup-shaped with apex incurved, apical margin entire, crenate, or shallowly lobed; anthers 5 or 6(–12), included, slightly exserted, or rarely semiexserted. Disk absent. Ovary 1–3(or 4)-locular, with 1 or 2 ovules per locule; style short or absent; stigma ovoid or shortly cylindric. Fruit with fibrous pericarp, indehiscent with 1 or 2 locules or loculicidally dehiscent with 3 locules; locules without seeds or each containing 1 seed; pericarp often containing latex. Seeds usually surrounded by a colloidal and fleshy aril; endosperm absent. About 120 species: tropical and subtropical Asia, tropical Australia, Pacific islands; eight species in China. Aglaia is the only source of the group of about 50 known representatives of compounds that bear a unique cyclopenta[b]tetrahydrobenzofuran skeleton. These compounds are more commonly called rocaglate or rocaglamide derivatives, or flavaglines, and have been found to have anticancer and pesticidal properties. Since the first representative in this group was only discovered in 1982, this is one of the few recent examples of a completely new class of plant secondary metabolites of biological promise (see B.
    [Show full text]
  • Phytotaxa 2: 46–48 (2009) Review of Pitcher Plants of the Old World
    Phytotaxa 2: 46–48 (2009) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Book review PHYTOTAXA Copyright © 2009 • Magnolia Press ISSN 1179-3163 (online edition) Review of Pitcher Plants of the Old World MAARTEN J.M. CHRISTENHUSZ1 & MICHAEL F. FAY2 1 Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK; email [email protected] 2 Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; email [email protected] By Stewart McPherson, Pitcher Plants of the Old World, edited by Alastair Robinson and Andreas Fleischmann. Redfern Natural History Productions, Poole, U.K. 2009. Two volumes, 1399 pp. ISBN 978-0-9558918-2-3 and 978-0-9558918-3-0. Publishers price £34.99 each volume. Carnivorous plants have fascinated humans since early history, and these plants continue to tickle the imagination of current day writers. Stewart McPherson shares his fascination for carnivorous plants and he has published various earlier works on the subject, including the excellent Pitcher Plants of the Americas (McPherson, 2006) and Glistening Carnivores (McPherson, 2008), where, as in the current two volumes, many carnivorous plants are described and beautifully illustrated with photographs taken by the author during his intensive field work in often challenging countries and stunning localities. These two volumes cover the pitcher plants from Madagascar, tropical Asia and Australia: the genera Nepenthes Linnaeus (1753: 955), Nepenthaceae, and the south-western Australian endemic Cephalotus follicularis Labilladière (1806: 6) of the peculiar monotypic family Cephalotaceae. The first chapters introduce carnivorous plants in general and illustrate their fascinating trapping mechanisms. The author then introduces pitcher plants of the Old World and discusses relationships with other organisms coexisting with pitcher plants rather than being consumed by them.
    [Show full text]
  • Species ANALYSIS International Journal for Species ISSN 2319 – 5746 EISSN 2319 – 5754
    Species ANALYSIS International Journal for Species ISSN 2319 – 5746 EISSN 2319 – 5754 Diversity and therapeutic potentiality of the family Lamiaceae in Karnataka State, India: An overview Rama Rao V1҉, Shiddamallayya N2, Kavya N3, Kavya B4, Venkateshwarlu G5 1. Research Officer (Botany), Survey of Medicinal Plants Unit, National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India. 2. Assistant Research Officer (Botany), Survey of Medicinal Plants Unit, National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India. 3. Senior Research Fellow (Ayurveda), National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India. 4. Junior Research Fellow (Botany), National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India. 5. Research Officer (Scientist-3) in-charge, National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India. ҉Corresponding author: Survey of Medicinal Plants Unit, National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India, e-mail: [email protected] Publication History Received: 25 November 2014 Accepted: 11 January 2015 Published: 4 March 2015 Citation Rama Rao V, Shiddamallayya N, Kavya N, Kavya B, Venkateshwarlu G. Diversity and therapeutic potentiality of the family Lamiaceae in Karnataka State, India: An overview. Species, 2015, 13(37), 6-14 ABSTRACT The objective of the present study was to review the potential medicinal plants of Lamiaceae distributed throughout the state of Karnataka, India. Lamiaceae, also called as mint family is one of the largest families including herbs or shrubs often with aroma.
    [Show full text]
  • Assessment of the Diversity of Medico-Magic Knowledge on Four Herbaceous Species in Benin
    Hindawi e Scientific World Journal Volume 2021, Article ID 6650704, 11 pages https://doi.org/10.1155/2021/6650704 Research Article Assessment of the Diversity of Medico-Magic Knowledge on Four Herbaceous Species in Benin Hubert Olivier Dossou-Yovo ,1 Valentin Kindomihou ,1 Fifanou Gbe`lidji Vodouhe` ,2 and Brice Sinsin 1 1Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, Benin 2Laboratory of Economic and Social Dynamics Analysis (LARDES), Faculty of Agronomy, University of Parakou, BP 123 Parakou, Benin Correspondence should be addressed to Hubert Olivier Dossou-Yovo; [email protected] Received 23 November 2020; Accepted 7 May 2021; Published 31 May 2021 Academic Editor: Karoly Nemeth Copyright © 2021 Hubert Olivier Dossou-Yovo et al. +is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Ethnobotanical knowledge on four herbaceous species, Acmella uliginosa (Sw.) Cass., Momordica charantia L., Phyllanthus amarus Schumach. & +onn., and Scoparia dulcis L., in Benin was investigated. Methods. Herbal medicine traders in six different markets were interviewed using a semi-structured questionnaire. +e linear regression test was performed to check for the influence of respondent’s age on ethnobotanical uses they hold. Relative frequency citation, fidelity level, use value, and Rahman similarity index were calculated to assess the diversity of medico-magic knowledge. +e Informant Consensus Factor is not applicable in this study since we are dealing neither with the diversity of medicinal plants used by a community of people nor with a great number of plant species used for medicinal purposes, nor the diversity of plant species used in the treatment of a specific or group of ailments.
    [Show full text]
  • Lamiales Newsletter
    LAMIALES NEWSLETTER LAMIALES Issue number 4 February 1996 ISSN 1358-2305 EDITORIAL CONTENTS R.M. Harley & A. Paton Editorial 1 Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK The Lavender Bag 1 Welcome to the fourth Lamiales Universitaria, Coyoacan 04510, Newsletter. As usual, we still Mexico D.F. Mexico. Tel: Lamiaceae research in require articles for inclusion in the +5256224448. Fax: +525616 22 17. Hungary 1 next edition. If you would like to e-mail: [email protected] receive this or future Newsletters and T.P. Ramamoorthy, 412 Heart- Alien Salvia in Ethiopia 3 and are not already on our mailing wood Dr., Austin, TX 78745, USA. list, or wish to contribute an article, They are anxious to hear from any- Pollination ecology of please do not hesitate to contact us. one willing to help organise the con- Labiatae in Mediterranean 4 The editors’ e-mail addresses are: ference or who have ideas for sym- [email protected] or posium content. Studies on the genus Thymus 6 [email protected]. As reported in the last Newsletter the This edition of the Newsletter and Relationships of Subfamily Instituto de Quimica (UNAM, Mexi- the third edition (October 1994) will Pogostemonoideae 8 co City) have agreed to sponsor the shortly be available on the world Controversies over the next Lamiales conference. Due to wide web (http://www.rbgkew.org. Satureja complex 10 the current economic conditions in uk/science/lamiales). Mexico and to allow potential partici- This also gives a summary of what Obituary - Silvia Botta pants to plan ahead, it has been the Lamiales are and some of their de Miconi 11 decided to delay the conference until uses, details of Lamiales research at November 1998.
    [Show full text]
  • Projecting Forest Tree Distributions and Adaptation to Climate Change in Northern Thailand
    Journal of Ecology and Natural Environment Vol. 1(3), pp. 055-063, June, 2009 Available online at http://www.academicjournals.org/JENE © 2009 Academic Journals Full Length Research Paper Projecting forest tree distributions and adaptation to climate change in northern Thailand Yongyut Trisurat1* Rob Alkemade2 and Eric Arets2 1Faculty of Forestry, Kasetsart University Bangkok 10900, Thailand 2The Netherlands Environmental Assessment Agency P.O. Box 303, 3720 AH Bilthoven, Netherlands. Accepted 18 May, 2009 Climate change is a global threat to biodiversity because it has the potential to cause significant impacts on the distribution of species and the composition of habitats. The objective of this research is to evaluate the consequence of climate change in distribution of forest tree species, both deciduous and evergreen species. We extracted the HadCM3 A2 climate change scenario (regionally-oriented economic development) for the year 2050 in northern Thailand. A machine learning algorithm based on maximum entropy theory (MAXENT) was employed to generate ecological niche models of forest plants. Six evergreen species and 16 deciduous species were selected using the criteria developed by the Asia Pacific Forest Genetic Resources Programme (APFORGEN) for genetic resources conservation and management. Species occurrences were obtained from the Department of National Park, Wildlife and Plant Conservation. The accuracy of each ecological niche model was assessed using the area under curve of a receiver operating characteristic (ROC) curve. The results show that the total extent of occurrence of all selected plant species is not substantially different between current and predicted climate change conditions. However, their spatial configuration and turnover rate are high, especially evergreen tree species.
    [Show full text]
  • Deciduousness in a Seasonal Tropical Forest in Western Thailand: Interannual and Intraspecific Variation in Timing, Duration and Environmental Cues
    Oecologia (2008) 155:571–582 DOI 10.1007/s00442-007-0938-1 ECOSYSTEM ECOLOGY - ORIGINAL PAPER Deciduousness in a seasonal tropical forest in western Thailand: interannual and intraspecific variation in timing, duration and environmental cues Laura J. Williams Æ Sarayudh Bunyavejchewin Æ Patrick J. Baker Received: 20 February 2007 / Accepted: 3 December 2007 / Published online: 10 January 2008 Ó Springer-Verlag 2007 Abstract Seasonal tropical forests exhibit a great diver- the timing of leaf flushing varied among species, most sity of leaf exchange patterns. Within these forests variation (*70%) flushed during the dry season. Leaf flushing was in the timing and intensity of leaf exchange may occur associated with changes in photoperiod in some species and within and among individual trees and species, as well as the timing of rainfall in other species. However, more than a from year to year. Understanding what generates this third of species showed no clear association with either diversity of phenological behaviour requires a mechanistic photoperiod or rainfall, despite the considerable length and model that incorporates rate-limiting physiological condi- depth of the dataset. Further progress in resolving the tions, environmental cues, and their interactions. In this underlying internal and external mechanisms controlling study we examined long-term patterns of leaf flushing for a leaf exchange will require targeting these species for large proportion of the hundreds of tree species that co- detailed physiological and microclimatic studies. occur in a seasonal tropical forest community in western Thailand. We used the data to examine community-wide Keywords Dry season flushing Á Huai Kha Khaeng Á variation in deciduousness and tested competing hypotheses Southeast Asia Á Tropical tree phenology regarding the timing and triggers of leaf flushing in seasonal tropical forests.
    [Show full text]
  • Effects of Stand Characteristics on Tree Species Richness in and Around a Conservation Area of Northeast Bangladesh
    bioRxiv preprint doi: https://doi.org/10.1101/044008; this version posted March 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Effects of stand characteristics on tree species richness in and around a conservation area of northeast Bangladesh Muha Abdullah Al PAVEL1,2, orcid: 0000-0001-6528-3855; e-mail: [email protected] Sharif A. MUKUL3,4,5,*, orcid: 0000-0001-6955-2469; e-mail: [email protected]; [email protected] Mohammad Belal UDDIN2, orcid: 0000-0001-9516-3651; e-mail: [email protected] Kazuhiro HARADA6, orcid: 0000-0002-0020-6186; e-mail: [email protected] Mohammed A. S. ARFIN KHAN1, orcid: 0000-0001-6275-7023; e-mail: [email protected] 1Department of Forestry and Environment Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh 2Department of Land, Environment, Agriculture and Forestry (TeSAF), School of Agriculture and Veterinary Medicine, University of Padova, Viale dell'Università, 16, 35020 Legnaro, Italy 3Tropical Forestry Group, School of Agriculture and Food Sciences, The University of Queensland, Brisbane QLD 4072, Australia 4School of Geography, Planning and Environmental Management, The University of Queensland, Brisbane, QLD 4072, Australia 5Centre for Research on Land-use Sustainability, Maijdi, Noakhali 3800, Bangladesh 6Dept. of Biosphere Resources Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan Abstract: We investigated the effect of tree cover, forest patch and disturbances on tree species richness in a highly diverse conservation area of northeast Bangladesh.
    [Show full text]
  • Taxanomic Composition and Conservation Status of Plants in Imbak Canyon, Sabah, Malaysia
    Journal of Tropical Biology and Conservation 16: 79–100, 2019 ISSN 1823-3902 E-ISSN 2550-1909 Short Notes Taxanomic Composition and Conservation Status of Plants in Imbak Canyon, Sabah, Malaysia Elizabeth Pesiu1*, Reuben Nilus2, John Sugau2, Mohd. Aminur Faiz Suis2, Petrus Butin2, Postar Miun2, Lawrence Tingkoi2, Jabanus Miun2, Markus Gubilil2, Hardy Mangkawasa3, Richard Majapun2, Mohd Tajuddin Abdullah1,4 1Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu 2Forest Research Centre, Sabah Forestry Department, Sandakan, Sabah, Malaysia 3 Maliau Basin Conservation Area, Yayasan Sabah 4Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu *Corresponding authors: [email protected] Abstract A study of plant diversity and their conservation status was conducted in Batu Timbang, Imbak Canyon Conservation Area (ICCA), Sabah. The study aimed to document plant diversity and to identify interesting, endemic, rare and threatened plant species which were considered high conservation value species. A total of 413 species from 82 families were recorded from the study area of which 93 taxa were endemic to Borneo, including 10 endemic to Sabah. These high conservation value species are key conservation targets for any forested area such as ICCA. Proper knowledge of plant diversity and their conservation status is vital for the formulation of a forest management plan for the Batu Timbang area. Keywords: Vascular plant, floral diversity, endemic, endangered, Borneo Introduction The earth as it is today has a lot of important yet beneficial natural resources such as tropical forests. Tropical forests are one of the world’s richest ecosystems, providing a wide range of important natural resources comprising vital biotic and abiotic components (Darus, 1982).
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Namwase Hadijja, (B
    MAKERERE UNIVERSITY Anti-bacterial activity of Corchorus olitorius L. and Acmella caulirhiza Del. on Streptococcus mutans, a cariogenic bacteria in dental caries Namwase Hadijja, (B. Pharm.) Reg no: 2015/HD07/1469U A dissertation submitted to the Directorate of Research and Graduate Training in partial fulfillment of the requirements for the award of the degree of Master of Science in Pharmacology of Makerere University September 2017 i DEDICATION I dedicate this work to my son Katabira Ukasha. ii ACKNOWLEDGEMENTS My sincere appreciation and gratitude is expressed to Dr. Bbosa Godfrey of Pharmacology and Therapeutics Department and Dr. Najjuka Florence of Microbiology Department at Makerere University for their many hours of counsel, guidance, advice, support, endless encouragement and instruction throughout the course of this research. Their shared wisdom and insight concerning education and life are greatly appreciated. I would like to thank Dr. Francis Ocheng for providing me with the American Type Culture Collection strain of Streptococcus mutans. I would also like to thank and appreciate Dr. Buwembo William of Anatomy Department, Makerere University for the advice and insight provided during the preparation of the experiments. I also wish to acknowledge and thank the efforts of various technical persons with whom I have had the privilege to work with. Mr. Odia Gordon and Mr. Lubega Aloysius of Pharmacology and Therapeutics Department who were very helpful during the preparation of the different extracts. Mr. Musisi Nathan, Ms. Akello Melody and Mr. Kasilye James from the Department of Microbiology, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University whose assistance has been very instrumental and made the performance of the antibacterial assays very understandable.
    [Show full text]
  • Progress on Southeast Asia's Flora Projects
    Gardens' Bulletin Singapore 71 (2): 267–319. 2019 267 doi: 10.26492/gbs71(2).2019-02 Progress on Southeast Asia’s Flora projects D.J. Middleton1, K. Armstrong2, Y. Baba3, H. Balslev4, K. Chayamarit5, R.C.K. Chung6, B.J. Conn7, E.S. Fernando8, K. Fujikawa9, R. Kiew6, H.T. Luu10, Mu Mu Aung11, M.F. Newman12, S. Tagane13, N. Tanaka14, D.C. Thomas1, T.B. Tran15, T.M.A. Utteridge16, P.C. van Welzen17, D. Widyatmoko18, T. Yahara14 & K.M. Wong1 1Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569 Singapore [email protected] 2New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York, 10458, USA 3Auckland War Memorial Museum Tāmaki Paenga Hira, Private Bag 92018, Auckland 1142, New Zealand 4Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University Building 1540, Ny Munkegade 114, Aarhus C DK 8000, Denmark 5The Forest Herbarium, National Park, Wildlife and Plant Conservation Department, 61 Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand 6Herbarium, Forest Research Institute Malaysia, Kepong, Selangor 52109, Malaysia 7School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia 8Department of Forest Biological Sciences, College of Forestry & Natural Resources, University of the Philippines - Los Baños, College, 4031 Laguna, Philippines 9Kochi Prefectural Makino Botanical Garden, 4200-6 Godaisan, Kochi, 7818125, Japan 10Southern Institute of Ecology, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam 11Forest
    [Show full text]