Species ANALYSIS International Journal for Species ISSN 2319 – 5746 EISSN 2319 – 5754

Total Page:16

File Type:pdf, Size:1020Kb

Species ANALYSIS International Journal for Species ISSN 2319 – 5746 EISSN 2319 – 5754 Species ANALYSIS International Journal for Species ISSN 2319 – 5746 EISSN 2319 – 5754 Diversity and therapeutic potentiality of the family Lamiaceae in Karnataka State, India: An overview Rama Rao V1҉, Shiddamallayya N2, Kavya N3, Kavya B4, Venkateshwarlu G5 1. Research Officer (Botany), Survey of Medicinal Plants Unit, National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India. 2. Assistant Research Officer (Botany), Survey of Medicinal Plants Unit, National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India. 3. Senior Research Fellow (Ayurveda), National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India. 4. Junior Research Fellow (Botany), National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India. 5. Research Officer (Scientist-3) in-charge, National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India. ҉Corresponding author: Survey of Medicinal Plants Unit, National Ayurveda Dietetics Research Institute (CCRAS), Govt. Central Pharmacy Annexe, Ashoka Pillar, Jayangar, Bangalore-560011, India, e-mail: [email protected] Publication History Received: 25 November 2014 Accepted: 11 January 2015 Published: 4 March 2015 Citation Rama Rao V, Shiddamallayya N, Kavya N, Kavya B, Venkateshwarlu G. Diversity and therapeutic potentiality of the family Lamiaceae in Karnataka State, India: An overview. Species, 2015, 13(37), 6-14 ABSTRACT The objective of the present study was to review the potential medicinal plants of Lamiaceae distributed throughout the state of Karnataka, India. Lamiaceae, also called as mint family is one of the largest families including herbs or shrubs often with aroma. They are usually common in Mediterranean countries for the fact that some of them produce a high amount of essential oils that enables them to survive in hot summer seasons. Some of the plants belonging to this family are Anisomeles, Colebrookea, Hyptis, Leucas, Pogostemon, Ocimum, Salvia and so on. These are important for their medicinal properties, perfumery, culinary, vegetable and ornamental purposes and they are a rich source of biologically active compounds including strong aromatic essential oils, tannins, saponins and organic acids. The medicinal plants of the family possess a lot of medicinal uses having sedative, diuretic, tonic, antispasmodic, antifungal, antimicrobial, anti-inflammatory and antiseptic properties. Key words: Lamiaceae, Medicinal properties, Chemical constituents. 6 Rama Rao et al. Page Diversity and therapeutic potentiality of the family Lamiaceae in Karnataka State, India: An overview, Species, 2015, 13(37), 6-14, www.discovery.org.in http://www.discovery.org.in/s.htm © 2015 Discovery Publication. All Rights Reserved 1. INTRODUCTION The Lamiaceae family (or mint family) is one of the largest and most distinctive families of flowering plants, with about 220 genera and almost 4000 species worldwide. This family has an almost cosmopolitan distribution and is one of the major sources of culinary, vegetable and medicinal plants all over the world (Naghibi et al., 2005). The largest genera are Salvia, Scutellaria, Plectranthus, Hyptis, Thymus, etc and the plants are frequently aromatic in all parts and include many widely used culinary herbs, such as basil, mint, rosemary, sage, savory, oregano, lavender, thyme and perilla. Some are shrubs, trees such as teak or rarely vines. Many members of the family are widely cultivated, owing not only to their aromatic qualities but also their ease of cultivation. Besides those grown for their edible leaves, some are grown for decorative foliage such as Coleus and some for food purposes (Raja, 2012). The members of this family are found to inhabit nearly all climatic conditions. Biochemically, they are characterized by the presence of essential oils, which makes many members of this family as wealth of species with medicinal property and have great application in pharmaceutical, cosmetic and perfume industry (Sharma and Bhadange, 2013). The medicinal plants of Lamiaceae have an important value in the socio-cultural, spiritual and medicinal use in rural and tribal lives of the developing countries. They are known to be used by 70% to 80% of global population for their medicinal-therapeutic effects as estimated by WHO (Venkateshappa and Sreenath, 2013). The Indian region is very rich in ethno-botanical heritage of Lamiaceae due to its rich cultural diversity. Rig Veda, the important and earliest available literary work emphasizes on the herbal medicinal knowledge of Lamiaceae members. Later on, Indian herbalists such as Maharshi Charaka and Sushruta made use of medicinal plants for curing various diseases. But during the past few centuries, there has been a rapid extension of allopathic medicinal treatment in India but still now the use of natural products as medicine, especially plant products are widely used in the societies of various rural tribal people (Arijit and Arpita, 2013). The chemical components of the members have diverse biological roles with therapeutic values and the phytochemicals present in plants are valuable source of food and medicine. They are known to have various biological activities such as antimicrobial, antifungal, antioxidant, etc. The important bioactive components in plants are usually the secondary metabolites such as alkaloids, flavonoids, tannins and other phenolic compounds (Rai et al., 2013). 2. METERIALS & METHODS In the present work, the medicinal plants of Lamiaceae family distributed throughout the state of Karnataka which harbours one of the richest tropical forest areas in India are selected and their botanical names with nomenclature, description with important characteristics, chemical constituents and their general and traditional medicinal uses including therapeutic properties have been explained. 3. RESULTS & DISCUSSION Anisochilus carnosus (L.f.) Wall. ( = Lavandula carnosa L.f.) Anisochilus carnosus (L.f.) Wall is known as karpoorada gida in Kannada. They are erect herbs with 4 – angled stem and rugose leaves. Flowers are purple in strobilate spikes. Chemically the leaves are known to contain essential oil, luteolin and apigenin (Yoganarasimhan, 1996). The whole plant constitutes quinines, alkaloids, sterols, coumarins and proteins (Meenakshi et al., 2012). The drug is known to cure stomachache (Kamble et al., 2008). The leaves can be made into a paste and applied over the lesions in different skin diseases (Ignacimuthu et al., 2006). Anisomeles indica (L.) O. Kuntze. ( = Nepeta indica L.) They are tomentose shrubs with quadrangular stems and bluish flowers in dense whorls forming terminal spikes. It is called Hennu Karithumbe in Kannada. Roots contain stigmasterol and β– amyrin, fridelin, betulinic acid, ovatodiolide, anisomelic acid and anisomelin. Stem contains triterpenes and sterols. Leaves contain essential oil, fatty acids, triterpenes – ovatodiolide and iso – ovatodiolide. Whole plant contains diterpenoids – 4, 7 – oxycyclo anisomelic acid, 4 – methylene – 5 – hydroxy ovatodiolide (I), 4 – methylene – 5 – oxo anisomelic acid. The herb is used as an astringent and carminative. It is used in folk medicine in the treatment of diverse conditions such as inflammatory skin diseases, liver protection, intestinal infections, abdominal pain and immune system deficiencies. Leaves are useful in chronic rheumatism, psoriasis and other chronic skin eruptions (Baranwal et al., 2012). Anisomeles malabarica (L.) R.Br. ( = Nepeta malabarica L.) Aromatic tomentose shrubs with purple flowers. Whole plant yield essential oil, anisomelic acid, ovatodiolide, diterpenes – malabaric acid, anisomelyl acetate, anisomelolide, crisilineol, betulinic acid and β – sitosterol (Yoganarasimhan, 1996). Anisomeles malabarica has been used as a folk medicine to treat amentia, anorexia, fevers, swelling, and rheumatism. The herb is reported to possess anticancer, anti-allergic, anti- anaphylactic, anti-bacterial anti-carcinogenic anti-inflammatory properties (Kavitha et al., 2012). The paste of its stem can be mixed with coconut oil and applied over wounds and it facilitates healing (Ignacimuthu et al., 2006). Basilicum polystachyon (L.) Moench. ( = Moschosma polystachyum L.) It is an erect much branched herbs and flowers are pale pink or lilac in racemes (Yoganarasimhan, 1996). The petroleum ether extract of leaves have shown the presence of phytosterols, alkaloids and carbohydrates, volatile oils in alcoholic extracts and gums and mucilage in water 7 Rama Rao et al. Page Diversity and therapeutic potentiality of the family Lamiaceae in Karnataka State, India: An overview, Species, 2015, 13(37), 6-14, www.discovery.org.in http://www.discovery.org.in/s.htm © 2015 Discovery Publication. All Rights Reserved extracts. The leaves are used in the treatment of epilepsy, palpitation of heart, neuralgia and as a sedative (Madhavan et al., 2013). The alcoholic and aqueous extracts of leaves have shown significant anticonvulsant activity (Madhavan et al., 2009). Colebrookea oppositifolia Sm. ( = Colebrookea ternifolia Roxb.) They are shrubs with white tomentum, leaves elliptic – lanceolate, and flowers white in paniculate spikes. Aerial parts contain flavours (Yoganarasimhan, 1996). The plant also
Recommended publications
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
    Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources.
    [Show full text]
  • Lamiales Newsletter
    LAMIALES NEWSLETTER LAMIALES Issue number 4 February 1996 ISSN 1358-2305 EDITORIAL CONTENTS R.M. Harley & A. Paton Editorial 1 Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK The Lavender Bag 1 Welcome to the fourth Lamiales Universitaria, Coyoacan 04510, Newsletter. As usual, we still Mexico D.F. Mexico. Tel: Lamiaceae research in require articles for inclusion in the +5256224448. Fax: +525616 22 17. Hungary 1 next edition. If you would like to e-mail: [email protected] receive this or future Newsletters and T.P. Ramamoorthy, 412 Heart- Alien Salvia in Ethiopia 3 and are not already on our mailing wood Dr., Austin, TX 78745, USA. list, or wish to contribute an article, They are anxious to hear from any- Pollination ecology of please do not hesitate to contact us. one willing to help organise the con- Labiatae in Mediterranean 4 The editors’ e-mail addresses are: ference or who have ideas for sym- [email protected] or posium content. Studies on the genus Thymus 6 [email protected]. As reported in the last Newsletter the This edition of the Newsletter and Relationships of Subfamily Instituto de Quimica (UNAM, Mexi- the third edition (October 1994) will Pogostemonoideae 8 co City) have agreed to sponsor the shortly be available on the world Controversies over the next Lamiales conference. Due to wide web (http://www.rbgkew.org. Satureja complex 10 the current economic conditions in uk/science/lamiales). Mexico and to allow potential partici- This also gives a summary of what Obituary - Silvia Botta pants to plan ahead, it has been the Lamiales are and some of their de Miconi 11 decided to delay the conference until uses, details of Lamiales research at November 1998.
    [Show full text]
  • Preliminary Phytochemical Screening of 6 Members of Leucas (Lamiaceae)
    Int. J. Pharm. Sci. Rev. Res., 47(1), November - December 2017; Article No. 10, Pages: 60-64 ISSN 0976 – 044X Research Article Preliminary Phytochemical Screening of 6 Members of Leucas (Lamiaceae) Geethika. K1, P. Sunoj Kumar2* 1 Junior Research Fellow, Department of Botany, University of Calicut, Kerala, India. 2 Assistant Professor, Department of Botany, University of Calicut, kerala, India. *Corresponding author’s E-mail: [email protected] Received: 09-09-2017; Revised: 17-10-2017; Accepted: 28-10-2017. ABSTRACT In the present study, six species of Leucas were assessed for phytochemical screening. Aqueous, methanol, ethanol and chloroform extracts of each plant were subjected to qualitative phytochemical screening. Ethanol extract were positive for proteins and amino acids for six species. Methanol extracts were positive for phenols, tannins, flavonoids, carbohydrates and glycosides. The total phenols, flavonoids and tannins, were quantified in the methanolic extracts by standard spectrophotometric methods. Gallic acid was used as standard for the determination of total phenol by Folin-ciocalteu method. Quercetin and tannic acids were used as the standards for flavonoids and tannins respectively. L.eriostoma shows higher concentration of total phenolics whereas L. lavandulifolia shows higher concentration of flavonoids and tannins. The study reveals that the presence or absences of particular phytochemicals are determnined by the polarity of solvents used for extraction. Keywords: Aqueous extract, chloroform extract, ethanol extract, Leucas, methanol extract, phytochemicals, preliminary. INTRODUCTION The family is of outstanding importance in its use in indigenous medicine used by people world over, he traditional system of herbal medicine are particularly in Indian cultures and tradition. Throughout considered as the rich sources of lead compounds the world, hundreds of Lamiaceae species are used as which are eco-friendly and quite safe for human use T medicinal and aromatic plants.5 and has become a topic of global importance.
    [Show full text]
  • Indigenous Uses of Wild and Tended Plant Biodiversity Maintain Ecosystem Services in Agricultural Landscapes of the Terai Plains of Nepal
    Indigenous uses of wild and tended plant biodiversity maintain ecosystem services in agricultural landscapes of the Terai Plains of Nepal Jessica P. R. Thorn ( [email protected] ) University of York https://orcid.org/0000-0003-2108-2554 Thomas F. Thornton University of Oxford School of Geography and Environment Ariella Helfgott University of Oxford Katherine J. Willis University of Oxford Department of Zoology, University of Bergen Department of Biology, Kew Royal Botanical Gardens Research Keywords: agrobiodiversity conservation; ethnopharmacology; ethnobotany; ethnoecology; ethnomedicine; food security; indigenous knowledge; medicinal plants; traditional ecological knowledge Posted Date: April 16th, 2020 DOI: https://doi.org/10.21203/rs.2.18028/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Ethnobiology and Ethnomedicine on June 8th, 2020. See the published version at https://doi.org/10.1186/s13002-020-00382-4. Page 1/36 Abstract Background Despite a rapidly accumulating evidence base quantifying ecosystem services, the role of biodiversity in the maintenance of ecosystem services in shared human-nature environments is still understudied, as is how indigenous and agriculturally dependent communities perceive, use and manage biodiversity. The present study aims to document traditional ethnobotanical knowledge of the ecosystem service benets derived from wild and tended plants in rice- cultivated agroecosystems, compare this to botanical surveys, and analyse the extent to which ecosystem services contribute social-ecological resilience in the Terai Plains of Nepal. Method Sampling was carried out in four landscapes, 22 Village District Committees and 40 wards in the monsoon season.
    [Show full text]
  • Leonotis Nepetifolia (Lion's Ear)
    Australia/New Zealand Weed Risk Assessment adapted for Florida. Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 2008. Predicting Invasive Plants in Florida using the Australian Weed Risk Assessment. Invasive Plant Science and Management 1: 178-195. Leonotis nepetifolia (lion's ear) Question number Question Answer Score 1.01 Is the species highly domesticated? n 0 1.02 Has the species become naturalised where grown? 1.03 Does the species have weedy races? 2.01 Species suited to Florida's USDA climate zones (0-low; 1-intermediate; 2-high) 2 2.02 Quality of climate match data (0-low; 1-intermediate; 2-high) 2 2.03 Broad climate suitability (environmental versatility) 2.04 Native or naturalized in habitats with periodic inundation 2.05 Does the species have a history of repeated introductions outside its natural y range? 3.01 Naturalized beyond native range y 0 3.02 Garden/amenity/disturbance weed y 0 3.03 Weed of agriculture y 0 3.04 Environmental weed n 0 3.05 Congeneric weed y 0 4.01 Produces spines, thorns or burrs n 0 4.02 Allelopathic n 0 4.03 Parasitic n 0 4.04 Unpalatable to grazing animals 4.05 Toxic to animals n 0 4.06 Host for recognised pests and pathogens 4.07 Causes allergies or is otherwise toxic to humans n 0 4.08 Creates a fire hazard in natural ecosystems n 0 4.09 Is a shade tolerant plant at some stage of its life cycle y 1 4.1 Grows on infertile soils (oligotrophic, limerock, or excessively draining soils) y 1 4.11 Climbing or smothering growth habit n 0 4.12 Forms
    [Show full text]
  • Survey of Birds on Namuli Mountain (Mozambique), November 2007, with Notes on Vegetation and Mammals
    Survey of birds on Namuli Mountain (Mozambique), November 2007, with notes on vegetation and mammals Françoise Dowsett-Lemaire A report prepared for the Darwin Initiative, the Royal Botanic Gardens, Kew BirdLife International, Instituto de Investigação Agrária de Moçambique and Mount Mulanje Conservation Trust. Dowsett-Lemaire Misc. Report 60 (2008) Dowsett-Lemaire Misc. Rep. 60 (2008) -1- Birds of Namuli Mtn, Mozambique Survey of birds on Namuli Mountain (Mozambique), November 2007, with notes on vegetation and mammals Françoise Dowsett-Lemaire Summary Ornithological surveys were carried out on Namuli Mountain (peak 2419 m) from 14-27 November 2007. Most fo rest on Namuli is found above 1600 or 1700 m, to c. 1900 m (with scrubby forest to 2000 m or a little higher), with the largest block of Manho Forest (at least 1000 ha) spreading over the south-western slopes of the Muretha Plateau. Mid-altitude forest on the south-eastern slopes has been greatly reduced in recent decades by fires and clearance for agriculture. Other habitats include montane grassland (rather wet and peaty), small areas of montane shrubland, rocky outcrops and large granitic domes. The woody vegetation of the various forest types is described in some detail: the dominant emergents of Afromontane forest at 1600-1850 m are Faurea wentzeliana (new for Mozambique, at its sou thern limit of range) and Cryptocarya liebertiana , followed by Olea capensis . Albizia adianthifolia, Newtonia buchananii and Parinari excelsa are dominant in mid-altitude forest (1200-1450 m). Some notes on mammals observed are also included. The main base camp (15-24 November) was on Muretha Plateau at the altitude of 1860 m, in a mosaic of grass - land and small forest patches.
    [Show full text]
  • Molecular Characterization of Patchouli (Pogostemon Spp) Germplasm
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositório Institucional da Universidade Federal de Sergipe Molecular characterization of patchouli (Pogostemon spp) germplasm S.S. Sandes1, M.I. Zucchi2, J.B. Pinheiro3, M.M. Bajay3, C.E.A. Batista3, F.A. Brito1, M.F. Arrigoni-Blank1, S.V. Alvares-Carvalho1, R. Silva-Mann1 and A.F. Blank1 1Laboratório de Recursos Genéticos e Óleos Essenciais, Departamento de Engenharia Agronômica, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil 2Laboratório de Biologia Molecular, Agência Paulista de Tecnologia dos Agronegócios, Polo Centro Sul, Piracicaba, SP, Brasil 3Laboratório de Diversidade Genética e Melhoramento, Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP, Brasil Corresponding author: A.F. Blank E-mail: [email protected] Genet. Mol. Res. 15 (1): gmr.15017458 Received August 17, 2015 Accepted October 29, 2015 Published February 19, 2016 DOI http://dx.doi.org/10.4238/gmr.15017458 ABSTRACT. Patchouli [Pogostemon cablin (Blanco) Benth.] is an aromatic, herbaceous plant belonging to the Lamiaceae family native to Southeast Asia. Its leaves produce an essential oil regularly used by the perfume and cosmetics industries. However, since patchouli from the Philippines and India were described and named Pogostemon patchouli, there has been a divergence in the identity of these species. The objective of the current study was to study the genetic diversity of patchouli accessions in the Active Germplasm Bank of Universidade Federal de Sergipe using microsatellite and inter simple sequence repeat markers. The results of both types of molecular markers showed that there are two well-defined clusters of accessions that harbor exclusive alleles.
    [Show full text]
  • Antimicrobial Activity of the Essential Oils of Three Species of Pogostemon
    Journal Home page : www.jeb.co.in « E-mail : [email protected] JEB ISSN: 0254-8704 Journal of Environmental Biology CODEN: JEBIDP Antimicrobial activity of the essential oils of three species of Pogostemon J.E. Thoppil11 *, A. Tajo , J. Minija 1 , M.J. Deena 11 , K. Sreeranjini , L. Leeja 1 , M. Sivadasan 2 and A.H. Alfarhan 2 1Cell and Molecular Biology Division, Department of Botany, University of Calicut, Calicut–673 635, India 2Department of Botany and Microbiology, College of Science, King Saud University, P.B. No. 2455, Riyadh–11451, Kingdom of Saudi Arabia *Corresponding Authors Email : [email protected] Abstract Publication Info Antimicrobial studies on 7 strains of bacteria and 8 strains of fungi using disk diffusion assay, revealed Paper received: potential activities of crude essential oils in Pogostemon benghalensis, P. purpurascens and P. vestitus. 10 January 2013 Essential oils produced highest inhibition zones against Staphylococcus aureus (39.33, 37.33 and 35.67 mm for P. benghalensis essential oil) and Candida albicans (34.33, 26.33 and 17.67 mm for P. purpurascens essential oil) among bacteria and fungi respectively, when compared with pure reference Revised received: -1 25 July 2013 standards (35 mm for Gentamycin sulphate (40 mg ml ) against S. aureus and 30.33 mm for Nystatin [50 IU] against C. albicans). Results also indicated the existence of potential antimicrobial activity of Pogostemon essential oils against other microorganisms viz., Proteus vulgaris, E. coli and Aspergillus Re-revised received: parasiticus. Leaf essential oils of P. purpurascens and P. benghalensis can be considered as a new source 05 September 2013 for developing local antifungal and antibacterial agents.
    [Show full text]
  • Bob Allen's OCCNPS Presentation About Plant Families.Pages
    Stigma How to identify flowering plants Style Pistil Bob Allen, California Native Plant Society, OC chapter, occnps.org Ovary Must-knows • Flower, fruit, & seed • Leaf parts, shapes, & divisions Petal (Corolla) Anther Stamen Filament Sepal (Calyx) Nectary Receptacle Stalk Major local groups ©Bob Allen 2017 Apr 18 Page !1 of !6 A Botanist’s Dozen Local Families Legend: * = non-native; (*) = some native species, some non-native species; ☠ = poisonous Eudicots • Leaf venation branched; veins net-like • Leaf bases not sheathed (sheathed only in Apiaceae) • Cotyledons 2 per seed • Floral parts in four’s or five’s Pollen apertures 3 or more per pollen grain Petal tips often • curled inward • Central taproot persists 2 styles atop a flat disk Apiaceae - Carrot & Parsley Family • Herbaceous annuals & perennials, geophytes, woody perennials, & creepers 5 stamens • Stout taproot in most • Leaf bases sheathed • Leaves alternate (rarely opposite), dissected to compound Style “horns” • Flowers in umbels, often then in a secondary umbel • Sepals, petals, stamens 5 • Ovary inferior, with 2 chambers; styles 2; fruit a dry schizocarp Often • CA: Apiastrum, Yabea, Apium*, Berula, Bowlesia, Cicuta, Conium*☠ , Daucus(*), vertically Eryngium, Foeniculum, Torilis*, Perideridia, Osmorhiza, Lomatium, Sanicula, Tauschia ribbed • Cult: Apium, Carum, Daucus, Petroselinum Asteraceae - Sunflower Family • Inflorescence a head: flowers subtended by an involucre of bracts (phyllaries) • Calyx modified into a pappus • Corolla of 5 fused petals, radial or bilateral, sometimes both kinds in same head • Radial (disk) corollas rotate to salverform • Bilateral (ligulate) corollas strap-shaped • Stamens 5, filaments fused to corolla, anthers fused into a tube surrounding the style • Ovary inferior, style 1, with 2 style branches • Fruit a cypsela (but sometimes called an achene) • The largest family of flowering plants in CA (ca.
    [Show full text]
  • A Systematic Study of Leonotis (Pers.) R. Br. (Lamiaceae) in Southern Africa
    A systematic study of Leonotis (Pers.) R. Br. (Lamiaceae) in southern Africa by Wayne Thomas Vos Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Botany University of Natal Pietermaritzburg February 1995 11 To Unus and Lorna Vos III Preface The practical work incorporated in this thesis was undertaken in the Botany Department, University of Natal, Pietermaritzburg, from January 1990 to May 1994, under the guidance of Mr. T.J. Edwards. I hereby declare that this thesis, submitted for the degree of Doctor of Philosophy, University of Natal, Pietermaritzburg, is the result of my own investigations, except where the work of others is acknowledged. Wayne Thomas Vos February 1995 IV Acknowledgements I would like to thank my supervisor Mr. T.l Edwards and co-supervisor Prof. 1 Van Staden and Dr. M.T. Smith for their tremendous support, assistance on field trips and for proof reading the text. I am grateful to the members of my research committee, Mr. T.l Edwards, Dr. M. T. Smith, Prof. 1 Van Staden, Prof. R.I. Yeaton and Dr. lE. Granger for their suggestions and guidance. I acknowledge the University of Natal Botany Department and The Foundation of Research and Development for fmancial assistance. A special thanks to my parents, Trelss McGregor and Mrs. M.G. Gilliland, for their tremendous support and encouragement. The translation of the diagnosis into latin by Mr. M. Lambert of the Classics Department, University of Natal, and the German translation by Ms. C. Ackermann, are gratefully acknowledged. Sincere thanks are extended to the staff of the Electron Microscope Unit of the University of Natal, Pietermaritzburg, for their assistance.
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]