Syritta Syrphus

Total Page:16

File Type:pdf, Size:1020Kb

Syritta Syrphus 3.a. At least apical 1/4 of front tibia black, at most 5th segment of front tarsus yel- low; bristles on front tarsus all black; pleura with 4 yellow spots; abdominal bands orange-yellow, with the posterior bands on tergites 3 and 4 strongly curved (figure 752). 10-16 mm. Southern Europe, extinct in Central Europe › Spilomyia digitata Rondani 3.b. Front tibiae yellow, at most with a black spot on apical 1/8. At least 4th and 5th segments of front tarsus yellow; bris- tles on at least ventral side of 4th and 5th segments of front tarsus yellow. Pleura with 5 yellow spots. Abdomen with nar- row yellow bands, the anteromedial yel- low band on tergites 2-4 slightly sepa- rated in the middle (figure 753). 10-15 mm. Central and Southern Europe, Turkey › Spilomyia saltuum Fabricius figure 755. Syritta pipiens, habitus of female (Verlinden). SYRITTA Key 1. Male: femur 3 strongly thickened, but Introduction hardly bent, basally without protuber- ance; tergites 2 and 3 with small, pale Syritta pipiens is a very common hoverfly spots (figure 754). Female: ocellar triangle found everywhere that plants are flower- black or bluish, metallic sheen; thoracic ing. They are small, linear hoverflies with dorsum dusted along side margin; tergite a characteristic flight pattern; they hover, 4: side and hind margins not dusted (fig- make a small turn and a quick flight, ure 755). 7-9 mm. Cosmopolitan › hover again, etc. Their larvae live in Syritta pipiens Linnaeus decaying plant material. Jizz: small ‘stick’ hovering in front of flowers or in vegetation. SYRPHUS Introduction Syrphus are common black and yellow hoverflies in the garden and along forest edges. They inhabit a variety of habitats, but prefer woodlands and shrubs. Males can be found hovering 1-5 metres above the ground, apparently guarding an air figure 754. Syritta pipiens, habitus of male space. The larvae of Syrphus are aphid (Verlinden). predators (figure 756). 215 figure 756. Larva of Syrphus torvus figure 757. Syrphus vitripennis, habitus of male (Verlinden). Recognition 3.a. Female: femur 3 black on about basal 2/3. Males indistinguishable from next Syrphus contain broad-bodied, black and (figure 757). 8-11 mm. › Syrphus vitri - yellow flies with a pollinose, greenish- pen nis Meigen black thorax. The face never has a black 3.b. Female: femur 3 yellow on basal 1/2, facial stripe, but the mouth edge may be usually partly brownish on apical 1/2. black. They are most easily confused with Males indistinguishable from previous. Parasyrphus species. Most Parasyrphus are 8-11 mm. North American species, smaller and have a black facial stripe found at several sites in Central Europe, (except for two species). In doubtful cases, but status doubtful (Speight, 2003) › check the anterior anepisternum for hairs Syrphus rectus Osten Sacken (Parasyrphus has hairs there, Syrphus does Note: Bartsch et al. (2009a) doubs the presence of not), and check the lower lobe of the the North American S. rectus in Northern Europe calypter for hairs (only Syrphus has hairs because they argue it falls within the range of vari- on the upper side). The key is based on ation of S. vitripennis. Barendregt (1983), Vockeroth (1992) and Goeldlin de Tiefenau (1996). 4.a. Eyes with numerous hairs, in male long and dense, in female shorter; femur Key 3 black on basal 3/4. 10-13 mm. Europe, in Asia to Japan, Nearctic › 1.a. Wing with 2nd basal cell (cell bm) Syrphus torvus Osten Sacken bare on anterior 1/4 or more; upper 4.b. Eye with at most some very short surface of the tip of femur 3 with short scattered hairs. Female: femora yellow, adpressed yellow hairs, sometimes mixed except in S. nitidifrons with its black with some black hairs › 2 femur with yellow tip › 5 1.b. Wing entirely trichose; upper surface of the tip of femur 3 with short 5.a. Mouth edge yellow, at most genae adpressed black hairs › 4 and posterior mouth edge narrowly black; frons yellow or yellow and black, 2.a. Frons immediately above lunulae yel- dusted; tibia 3 yellow; femur 1 with long low; tergites with paired yellow spots; white to yellow hairs. Female: femur 3 lateral margin of tergites yellow; face yellow › 6 yellow. 8-10 mm. Northern Europe, 5.b. Mouth edge black (figure 758); frons Northern Siberia, Nearctic › Syrphus shiny black; tibia 3 mainly black; femur 1 sexmaculatus Zetterstedt with long black hairs; tergites with spots. 2.b. Frons immediately above lunulae Female: femur 3 black with yellow apex; black; tergites mostly with entire yellow habitus (figure 759). 7-10 mm. Central bands; lateral margin of tergites black › 3 Europe › Syrphus nitidifrons Becker 216.
Recommended publications
  • Diptera: Syrphidae
    This is a repository copy of The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80035/ Version: Accepted Version Article: Penney, HD, Hassall, C orcid.org/0000-0002-3510-0728, Skevington, JH et al. (2 more authors) (2014) The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae). The American Naturalist, 183 (2). pp. 281-289. ISSN 0003-0147 https://doi.org/10.1086/674612 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae)1 Heather D. Penney, Christopher Hassall, Jeffrey H. Skevington, Brent Lamborn & Thomas N. Sherratt Abstract Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated, or to augment an already close morphological resemblance.
    [Show full text]
  • The Syrphid Fly, Mesogramma Marginata, and the Flowers of Apocynum.* *
    THE SYRPHID FLY, MESOGRAMMA MARGINATA, AND THE FLOWERS OF APOCYNUM.* * RAYMOND C. OSBURN. The flowers of the various species of the dogbane, Apocynum spp., have long been known to catch some of the weaker sorts of insects attracted by them, but as far as I am aware, no such wholesale slaughter of a particular species as that herein •described has been noted. In fact, if I may judge by the con- versations which I have held with both botanists and entomol- ogists, the capacity of the dogbane for trapping insects has pretty generally escaped notice. My own attention was drawn to the subject last summer "when Miss Edith Weston, a young student of botany at the Ohio State University Lake Laboratory at Put-in-Bay, brought in some flowers of Apocynum androscemifolium and called my attention to the fact that the flowers had "bugs" in them. A glance at the flowers showed that there were insects in nearly all of them and that these were all of one species, the common little Syrphid fly, Mesogramma marginata (Say). Many of these were still alive, though evidently held in such a manner that they could not escape. As the flowers are open bells, my curiosity was aroused and I began a careful examination. Having in mind the related milkweed, Asclepias, whose flower clusters sometimes entangle the legs of insects by a sticky secretion, I was a little surprised to find that all of the flies in the Apocynum flowers were held by the proboscis. As many as four were present in some of the flowers, the little bell being as full as it would hold.
    [Show full text]
  • Hoverflies: the Garden Mimics
    Article Hoverflies: the garden mimics. Edmunds, Malcolm Available at http://clok.uclan.ac.uk/1620/ Edmunds, Malcolm (2008) Hoverflies: the garden mimics. Biologist, 55 (4). pp. 202-207. ISSN 0006-3347 It is advisable to refer to the publisher’s version if you intend to cite from the work. For more information about UCLan’s research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>. For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/ All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the policies page. CLoK Central Lancashire online Knowledge www.clok.uclan.ac.uk Hoverflies: the garden mimics Mimicry offers protection from predators by convincing them that their target is not a juicy morsel after all. it happens in our backgardens too and the hoverfly is an expert at it. Malcolm overflies are probably the best the mimic for the model and do not attack Edmunds known members of tbe insect or- it (Edmunds, 1974). Mimicry is far more Hder Diptera after houseflies, blue widespread in the tropics than in temperate bottles and mosquitoes, but unlike these lands, but we have some of the most superb insects they are almost universally liked examples of mimicry in Britain, among the by the general public. They are popular hoverflies.
    [Show full text]
  • Baccha (Ocyptamus) Medina, B
    The Syrphidae of Puerto Rico1'2 H. S. Telford3-* One cannot state with certainty when the first syrphid was collected from Puerto Rico and adjacent islands. Fabricius described a number of 1 Manuscript submitted to Editorial Board October 30, 1972. 2 Scientific paper number 3914. College of Agriculture Research Center, Washing­ ton State University, Pullman, Washington. Work was conducted under Project No. 0046. 3 Professor and Entomologist, Department of Entomology, Washington State University; Visiting Scientist, Department of Entomology, Agricultural Experiment Station, Mayagiiez Campus, Uío Piedras, Puerto Rico, September 1968-March 1969. This study was made possible by financial support from the Department of En­ tomology, Agricultural Experiment Station, Mayagiiez Campus, University of Puerto Rico, Río Piedras. I wish to thank Dr. L. P. R. F. Martorell, formerly Chairman, Department of Entomology, Agricultural Experiment Station, especially for his support and aid in all aspects of the project. Mr. Silverio Medina Gaud, Associate Entomologist, Agricultural Experiment Station, was of considerable help. He ac­ companied me on almost all field trips, assisted in sorting and preparing the material and made valuable field trips on his own. Dr. J. R. Vockeroth, Entomology Research Institute, Ottawa, Canada, verified many determinations and offered advice on nomenclatural problems. Others who materially aided in the loan of specimens, verified determinations or in other ways were: Dr. George Drury, U.S. Atomic Energy Commission, El Verde-Caribbean National Forest, Puerto Rico; Dr. Y. S. Sedman, Western Illinois University; Dr. L. V. Knutson, Systematic Entomology Laboratory, Agricultural Research Service, United States Department of Agriculture; Dr. P. W. Wygodzinsky, American Museum of Natural History; Dr.
    [Show full text]
  • Syrphidae of Southern Illinois: Diversity, Floral Associations, and Preliminary Assessment of Their Efficacy As Pollinators
    Biodiversity Data Journal 8: e57331 doi: 10.3897/BDJ.8.e57331 Research Article Syrphidae of Southern Illinois: Diversity, floral associations, and preliminary assessment of their efficacy as pollinators Jacob L Chisausky‡, Nathan M Soley§,‡, Leila Kassim ‡, Casey J Bryan‡, Gil Felipe Gonçalves Miranda|, Karla L Gage ¶,‡, Sedonia D Sipes‡ ‡ Southern Illinois University Carbondale, School of Biological Sciences, Carbondale, IL, United States of America § Iowa State University, Department of Ecology, Evolution, and Organismal Biology, Ames, IA, United States of America | Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Canada ¶ Southern Illinois University Carbondale, College of Agricultural Sciences, Carbondale, IL, United States of America Corresponding author: Jacob L Chisausky ([email protected]) Academic editor: Torsten Dikow Received: 06 Aug 2020 | Accepted: 23 Sep 2020 | Published: 29 Oct 2020 Citation: Chisausky JL, Soley NM, Kassim L, Bryan CJ, Miranda GFG, Gage KL, Sipes SD (2020) Syrphidae of Southern Illinois: Diversity, floral associations, and preliminary assessment of their efficacy as pollinators. Biodiversity Data Journal 8: e57331. https://doi.org/10.3897/BDJ.8.e57331 Abstract Syrphid flies (Diptera: Syrphidae) are a cosmopolitan group of flower-visiting insects, though their diversity and importance as pollinators is understudied and often unappreciated. Data on 1,477 Syrphid occurrences and floral associations from three years of pollinator collection (2017-2019) in the Southern Illinois region of Illinois, United States, are here compiled and analyzed. We collected 69 species in 36 genera off of the flowers of 157 plant species. While a richness of 69 species is greater than most other families of flower-visiting insects in our region, a species accumulation curve and regional species pool estimators suggest that at least 33 species are yet uncollected.
    [Show full text]
  • Man Ual Ofnearctic Diptera Volume 2
    Man ual ofNearctic Diptera volume 2 Coordinated by J. F. McAlpine (Editor) B. V. Peterson G. E. Shewell H. J. Teskey J. R. Vockeroth D„ M. Wood Biosystematics Research Centre (formerly Institute) Ottawa, Ontario Research Branch Agriculture Canada Monograph No. 28 1987 M M \ SYRPHIDAE 52 J. R. VOCKEROTH AND F. C. THOMPSON Fig. 52.1. Adult male of Syrphus torvus Osten Sacken. Small to large, very slender to robust flies (Figs. 1-3), Mouthparts variable in length, usually correlated with length 4-25 mm long. Body usually black, very often with yellow of subcranial cavity; taxonomic significance of variation or orange markings on head and thorax and particularly on unknown. Antenna sometimes borne on a short or long fron- abdomen, more rarely predominantly brown, yellow, tal prominence (Figs. 12, 13); scape and pedicel subcylin- metallic green, or blue, or with various combinations of these drical but varying greatly in length, with hairs or setae; first or other colors. Integument usually smooth but sometimes flagellomere varying greatly in shape, and often with a partly or totally punctate, sculptured, or rugose, usually near- distinct sensory pit on lower part of inner surface; arista ly covered with dense short hairs, rarely with long hairs or usually with two aristomeres but sometimes with three, usual- nearly bare; some hairs sometimes flattened or scale-like and ly dorsal but sometimes subapical or apical, usually longer forming dense tomentum, or on thorax strong and bristle- than first flagellomere but very short in some Microdontinae like; both haired and bare portions shining, slightly to densely and in some groups with apical arista, usually bare or with pruinose, or with very short dense pile.
    [Show full text]
  • (Hymenoptera, Chalcidoidea) from Norway VII
    © Norwegian Journal of Entomology. 14 December 2018 New records of Encyrtidae (Hymenoptera, Chalcidoidea) from Norway VII LARS OVE HANSEN & GEORGE JAPOSHVILI Hansen, L.O. & Japoshvili, G. 2018. New records of Encyrtidae (Hymenoptera, Chalcidoidea) from Norway VII. Norwegian Journal of Entomology 65, 101–107. The study of the family Encyrtidae at the Natural History Museum of Oslo continues. In this revision, eight species are reported for the first time from Norway, bringing the total number of Norwegian encyrtids up to 151. Bothriothorax koponeni Khlopunov, 1984 is reported for the first time outside Finland, and Syrphophagus subviridis (Hoffer, 1970) for the first time outside Slovakia. Until now, Isodromus limosus Hoffer, 1969 has only been reported from Bohemia in the Czech Republic and Kostroma Oblast in Russia, while Copidosoma aretas (Walker, 1838), Lamennaisia nobilis Nees, 1834, Leptomastix epona (Walker, 1844), Psyllaephagus abbreviatus (Hoffer, 1963) and Syrphophagus aphidivorus (Mayr, 1876) are all recorded from Norway for the first time. New records are given for Anagyrus belibus (Walker, 1837), Bothriothorax clavicornis (Dalman, 1820), Encyrtus albitarsis Zetterstedt, 1838 and Tetracnemoidea piceae (Erdös, 1946). Pseudencyrtus idmon (Walker, 1844) and Sectiliclava cleone (Walker, 1848) are recorded for the first time since Francis Walker (1809–1874) collected the types during his visit to Finnmark in 1836. Comments on the biology and distribution for the species are given. The aim of this ongoing study is to highlight the distribution of the family in Norway and finally provide a check-list of the Norwegian species. Key words: Hymenoptera, Chalcidoidea, Encyrtidae, new records, Finnmark, Norway, Europe, canopy fogging, Malaise traps, Coccoidea, scale insects, Francis Walker.
    [Show full text]
  • Commentary Plasticity in Arthropod Cryotypes T
    2585 The Journal of Experimental Biology 210, 2585-2592 Published by The Company of Biologists 2007 doi:10.1242/jeb.002618 Commentary Plasticity in arthropod cryotypes T. C. Hawes and J. S. Bale* School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK *Author for correspondence (e-mail: [email protected]) Accepted 12 March 2007 Summary Low-temperature acclimation and acclimatization history and organism is proposed, descending, respectively, produce phenotypic changes in arthropods at multiple from what we define as ‘cryotype’ (class of cryoprotective levels of biological organization from the molecular to the strategy) to genotype and, ultimately, phenotype. behavioural. The role and function of plasticity – where a Alternative (and sometimes complementary) strategies to constitutive, reversible change occurs in the phenotype in plasticity include specialization, generalization, bet- response to low temperature – may be partitioned hedging, cross-resistance and convergence. The transition hierarchically at evolutionary scales according to of cryotypes from basal to derived states is a continuum of cryoprotective strategy, at macrophysiological scales trait optimization, involving the fixation of plasticity and/or according to climatic variability, and at meso- and micro- its alternatives. scales according to ecological niche and exposure. In correspondence with these scales (which are interdependent rather than mutually exclusive), a Key words: arthropod, cold tolerance, cryotype, cryoprotection, hierarchical typology of interaction between thermal acclimation, acclimatization, phenotype. Introduction elasticity depends on the type of rubber band and the stimulus Animal physiology in the real world is dynamic – it must it is given, so the plasticity of an arthropod’s response varies in respond to variability at multiple temporal and spatial scales.
    [Show full text]
  • Detecting Pest Control Services Across Spatial and Temporal Scales
    UC Berkeley UC Berkeley Previously Published Works Title Detecting pest control services across spatial and temporal scales Permalink https://escholarship.org/uc/item/3bg4f4t7 Authors Chaplin-Kramer, R de Valpine, P Mills, NJ et al. Publication Date 2013-12-01 DOI 10.1016/j.agee.2013.10.007 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Agriculture, Ecosystems and Environment 181 (2013) 206–212 Contents lists available at ScienceDirect Agriculture, Ecosystems and Environment jo urnal homepage: www.elsevier.com/locate/agee Detecting pest control services across spatial and temporal scales ∗ Rebecca Chaplin-Kramer , Perry de Valpine, Nicholas J. Mills, Claire Kremen Department of Environmental Science, Policy & Management, University of California, Berkeley, 130 Mulford Hall #3114, Berkeley, CA 94720, USA a r t i c l e i n f o a b s t r a c t Article history: Natural habitat may deliver ecosystem services to agriculture through the provision of natural enemies Received 14 May 2013 of agricultural pests. Natural or non-crop habitat has strongly positive effects on natural enemies in Received in revised form 2 October 2013 cropland, but the resulting impact on pests is not as well established. This study measured weekly natural Accepted 4 October 2013 enemy (syrphid fly larvae) and pest (cabbage aphid) abundances in Central California broccoli fields for three years. Abundance of syrphid fly larvae increased strongly with the proportion of natural habitat Keywords: surrounding the farm. As the density of syrphid fly larvae increased, weekly aphid population growth Biological control rates slowed, such that aphid densities just prior to harvest were lowest in farms with natural habitat.
    [Show full text]
  • Vol 10 Part 1. Diptera. Syrphidae
    Royal Entomological Society HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS To purchase current handbooks and to download out-of-print parts visit: http://www.royensoc.co.uk/publications/index.htm This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales License. Copyright © Royal Entomological Society 2012 ROYAL ENTOMOLOGICAL SOCIETY OF LONDON Vol. X. Part 1. HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS DIPTERA SYRPHIDAE By R. L. COE LONDON Published by the Society • and Sold at its Rooms 4-1, Queen's Gate, S.W. 7 2sth August, 195"3 Accession No. 4966 Author Coe R L Subject DIPTERA HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS The aim of this series of publications is to provide illustrated keys to the whole of the British Insects (in so far as this is possible), in ten volumes, as follows : I. Part I. General Introduction. Part 9. Ephemeroptera. , 2. Thysanura. , 10. Odonata. , 3. Protura. , 11. Thysanoptera. , 4. Collembola. , 12. Neuroptera. , 5. Dermaptera and , 13. :Mecoptera. Orthoptera. , 14. Trichoptera. , 6. Plecoptera. , 15. Strepsiptera. , 7. Psocoptera. , 16. Siphonaptera. , 8. Anoplura. II. Hemiptera. Ill. Lepidoptera. IV. and V. Coleoptera. VI. Hymenoptera : Symphyta and Aculeata. VII. Hymenoptera : Ichneumonoidea. VIII. Hymenoptera : Cynipoidea, Chalcidoidea, and Serphoidea. IX. Diptera: Nematocera and Brachycera. X. Diptera : Cyclorrhapha. Volumes II to X will be divided into parts of convenient size, but it is not po....a.1~u:-....:~.----.....l.L ___....__ __ _ ...:.• _ _ ....._-J....._,_. __~ _ _.__ Co ACCESSION NUMBER .................... .. .......... and each 1 >Ugh much 1ted, it is e British Entomological & Natural History Pa Society availa c/o Dinton Pastures Country Park, Oli Davis Street, Hurst, 1trar at th• Reading, Berkshire Tli RG10 OTH cost of init Presented by ..
    [Show full text]
  • The Role of Ecological Compensation Areas in Conservation Biological Control
    The role of ecological compensation areas in conservation biological control ______________________________ Promotor: Prof.dr. J.C. van Lenteren Hoogleraar in de Entomologie Promotiecommissie: Prof.dr.ir. A.H.C. van Bruggen Wageningen Universiteit Prof.dr. G.R. de Snoo Wageningen Universiteit Prof.dr. H.J.P. Eijsackers Vrije Universiteit Amsterdam Prof.dr. N. Isidoro Università Politecnica delle Marche, Ancona, Italië Dit onderzoek is uitgevoerd binnen de onderzoekschool Production Ecology and Resource Conservation Giovanni Burgio The role of ecological compensation areas in conservation biological control ______________________________ Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff, in het openbaar te verdedigen op maandag 3 september 2007 des namiddags te 13.30 in de Aula Burgio, Giovanni (2007) The role of ecological compensation areas in conservation biological control ISBN: 978-90-8504-698-1 to Giorgio Multaque tum interiisse animantum saecla necessest nec potuisse propagando procudere prolem. nam quaecumque vides vesci vitalibus auris aut dolus aut virtus aut denique mobilitas est ex ineunte aevo genus id tutata reservans. multaque sunt, nobis ex utilitate sua quae commendata manent, tutelae tradita nostrae. principio genus acre leonum saevaque saecla tutatast virus, vulpis dolus et gfuga cervos. at levisomma canum fido cum pectore corda et genus omne quod est veterino semine partum lanigeraeque simul pecudes et bucera saecla omnia sunt hominum tutelae tradita, Memmi. nam cupide fugere feras pacemque secuta sunt et larga suo sine pabula parta labore, quae damus utilitatiseorum praemia causa. at quis nil horum tribuit natura, nec ipsa sponte sua possent ut vivere nec dare nobis praesidio nostro pasci genus esseque tatum, scilicet haec aliis praedae lucroque iacebant indupedita suis fatalibus omnia vinclis, donec ad interutum genus id natura redegit.
    [Show full text]
  • The Hoverflies of Marsland Nature Reserve
    The Hoverflies of Marsland Nature Reserve Arctophila ( Sericomyia ) superbiens Biology: The larvae remain undescribed, but are thought to be aquatic or semi- aquatic. Stubbs & Falk (1983) report an observation of a female ovipositing in a water filled hoofprint in a shaded muddy path beside a stream. Found near springs, wet flushes or streams, usually near the edge of woodland or carr. Adults visit purple flowers, especially Succisa, white umbels and yellow composites Distribution: A northern and western species which is locally abundant in suitable localities, these tending to be sheltered, and on neutral to acid soils. Local in North Devon/Cornwall First recorded on reserve in September 2008. July-October peak August Baccha elongata Biology: This species is found in shady places such as woodland rides and edges, hedgerows and mature gardens, where adults may be seen hovering low amongst ground-layer plants. The larvae are aphidophagous, preying on a variety of ground-layer species in shaded situations, e.g. Uromelan jaceae on Centaurea scabiosa, Brachycaudina napelli on Aconitum, and the bramble aphid, Sitobion fragariae onRubus. It overwinters as a larva Distribution: Widely recorded throughout Britain, but like most woodland species, scarce or absent from poorly-wooded areas such as the East Anglian fens and the Scottish islands. There is considerable uncertainty about the status of B. obscuripennis which has often been regarded as a distinct species. Most records submitted to the scheme are attributed to “ Baccha spp.”, but analysis of those where separation has been attempted do not suggest any differences in range, flight period or habitat preference Brachypalpoides lenta ( Xylota lenta ) Biology: The larvae of this species occur in decaying heartwood of beech, particularly in live trees with exposed decay at ground level.
    [Show full text]