Multitrophic Ecosystem Services of Hoverflies in Strawberry

Total Page:16

File Type:pdf, Size:1020Kb

Multitrophic Ecosystem Services of Hoverflies in Strawberry Multitrophic ecosystem services of hoverflies in strawberry Thesis submitted for the degree of Doctor of Philosophy (PhD) Royal Holloway University of London February 2020 Dylan James Hodgkiss 2 To all the people (and insects and flowering plants) who made this project possible. And to my family and friends for humouring me through the hard times and the good. 3 Acknowledgements I would like to thank my supervisors Michelle Fountain and Mark Brown for their expert advice, patient support and guidance over the course of this PhD programme. Without your input and feedback, completing this project would quite simply have been impossible for me. I have learned so much from you both. I would also like to thank Beth Clare for her clear explanations of molecular methods, as well as her time and efforts more generally, with the hoverfly gut content analysis chapter. I am also deeply indebted to my colleagues and friends at RHUL and NIAB EMR for their advice, support and good humour: Callum Martin, Alvaro Delgado, Hauke Koch, Adrian Harris, Gemma Baron, Phil Brain, Fabio Manfredini, Beth Shaw, Emily Bailes, Graham Caspell, Arran Folly, Maddie Cannon, Ash Samuelson, David Buss, Judy Bagi, Dilly Rogers, Eva Muiruri, Megan McKerchar, Harry Siviter, Julien Lecourt, Dara Stanley, Roger Payne, Elli Leadbeater, Karen Thurston, Tracey Jeffries, Adam Whitehouse, Rob Prouse, Jean Fitzgerald, Charles Whitfield, Chantelle Jay and Zeus Mateos. Outside of RHUL and NIAB EMR, I am also very grateful to Mark Jitlal for his statistical advice, Roger Morris and Chris Raper for their expert advice with fly identification, and to the eight fruit farmers who granted me access to their strawberry fields for field surveys in 2015: Jackie Clews, James Dearing, Tom Maynard, Richard Pendry, Marion Regan, Greg Secrett, John Tobutt and Andrej Zygora. Among them, I am particularly indebted to Marion Regan, Lance Mansell and Tom Pearson at Hugh Lowe Farms Ltd., as they provided assistance and study sites in both the 2015 and 2016 growing seasons. Without the assistance of the farm managers, the project would not have been nearly as applicable to current commercial strawberry growing conditions. In addition, I am very grateful to RHUL and NIAB EMR for providing me with the funding necessary to carry out this PhD. Last but not least, I would like to express my deepest gratitude to my family and friends for their support throughout the PhD project and in life more generally in these past four and a half years. 4 Abstract Agricultural advances in the last half-century have enabled the production of larger harvests. However, farmland is now at greater risk of pest outbreaks due to losses of genetic diversity within crops rendering crop plants more vulnerable to disease. Moreover, declines in biodiversity in the wider landscape mean that fewer predators of crop pests are present to control pest species. Equally worrying are recent declines in wild and managed insects that are necessary for the pollination of 84% of crop species in Europe. In commercial strawberry (Fragaria x ananassa), aphid damage is estimated to cost growers at least £2.5 million per year in the UK alone. Moreover, in the absence of pollinating insects, strawberry yields would fall by approximately £112.5 million per year. In order to counteract these threats, I investigated the pollinator assemblages in commercial strawberry crops; the pollination effectiveness of aphidophagous hoverflies (Diptera, Syrphidae, Syrphinae); the effectiveness of planting wildflowers within strawberry fields to improve pollination and aphid pest control throughout the crop; and the gut contents of potential pest-controlling hoverflies within strawberry crops. Retail and pick-your-own fruit farms have dynamic pollinator assemblages, including hoverflies. In cage studies, pollination by aphid-eating hoverflies doubled proportions of marketable strawberries when compared to insect-excluded controls. Coriander (Coriandrum sativum) planted within strawberry crops reduced aphid infestations and encouraged aphid predators to lay more eggs near aphid colonies. Furthermore, higher counts of pollinators were recorded in coriander plots, though no differences were found in fruit quality across all treatments. Finally, aphid DNA was recovered from the digestive tracts of hoverfly larvae. Prey DNA detection rates were greater near forget-me-not plots than coriander plots. These findings suggest that hoverflies act as pollinators and pest-controllers in strawberry, and that by integrating coriander within strawberry crops their effects may be enhanced. Future work 5 should focus on how to augment hoverfly populations in strawberry crops to further enhance their efficacy so that pesticide use can be further reduced. 6 Table of Contents Chapter 1: Introduction .................................................................................................. 13 Crop pollination ecology ................................................................................................................... 15 Role of wild pollinators ................................................................................................................. 15 Pollinator behaviours on flowers .................................................................................................. 16 Pollinator diversity ........................................................................................................................ 17 Plant pollinators ............................................................................................................................ 19 Pollinator distributions ................................................................................................................. 20 Hoverflies as pollinators of strawberry ............................................................................................. 21 Strawberry pollinators .................................................................................................................. 22 Integrated Pest Management ........................................................................................................... 23 Aphid predators in strawberry crops ............................................................................................ 25 Documenting trophic interactions ................................................................................................ 26 Habitat management for beneficial insects ...................................................................................... 27 Sown wildflower strips .................................................................................................................. 28 Crop quality ................................................................................................................................... 30 Wildflower selection ..................................................................................................................... 30 References ........................................................................................................................................ 33 Chapter 2: The relative frequency of insect flower visitors in open and polythene-clad strawberry crops ............................................................................................................ 49 Abstract ............................................................................................................................................. 50 Introduction ...................................................................................................................................... 51 Methods ............................................................................................................................................ 53 Data analysis ................................................................................................................................. 56 Results ............................................................................................................................................... 59 Abundance .................................................................................................................................... 59 Diversity ........................................................................................................................................ 60 Species dominance ....................................................................................................................... 61 Discussion.......................................................................................................................................... 66 References ........................................................................................................................................ 70 Chapter 3: Syrphine hoverflies are effective pollinators of commercial strawberry .......... 74 Abstract ............................................................................................................................................. 75 Introduction ...................................................................................................................................... 76 Methods ............................................................................................................................................ 77 Pollination effectiveness of a mix of hoverfly species on strawberry flowers ............................. 77 7 Comparison of pollination effectiveness
Recommended publications
  • Diptera: Syrphidae
    This is a repository copy of The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80035/ Version: Accepted Version Article: Penney, HD, Hassall, C orcid.org/0000-0002-3510-0728, Skevington, JH et al. (2 more authors) (2014) The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae). The American Naturalist, 183 (2). pp. 281-289. ISSN 0003-0147 https://doi.org/10.1086/674612 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae)1 Heather D. Penney, Christopher Hassall, Jeffrey H. Skevington, Brent Lamborn & Thomas N. Sherratt Abstract Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated, or to augment an already close morphological resemblance.
    [Show full text]
  • Paecilomyces Niveus Stolk & Samson, 1971 (Ascomycota
    http://dx.doi.org/10.1590/1519-6984.08014 Original Article Paecilomyces niveus Stolk & Samson, 1971 (Ascomycota: Thermoascaceae) as a pathogen of Nasonovia ribisnigri (Mosley, 1841) (Hemiptera, Aphididae) in Brazil M. A. C. Zawadneaka*, I. C. Pimentelb, D. Roblb, P. Dalzotob, V. Vicenteb, D. R. Sosa-Gómezc, M. Porsanib and F. L. Cuqueld aLaboratório de Entomologia Prof. Ângelo Moreira da Costa Lima, Departamento de Patologia Básica, Universidade Federal do Paraná – UFPR, CP 19020, CEP 81531-980, Curitiba, PR, Brazil bLaboratório de Microbiologia, Departamento de Patologia Básica, Universidade Federal do Paraná – UFPR, CP 19020, CEP 81531-980, Curitiba, PR, Brazil cLaboratório de Entomologia, Embrapa Soja, CP 231, CEP 86001-970, Londrina, PR, Brazil dDepartamento de Fitotecnia e Fitossanitarismo, Universidade Federal do Paraná – UFPR, Rua dos Funcionários, CP 1540, CEP 80035-050, Curitiba, PR, Brazil *e-mail: [email protected] Received: May 2, 2014 – Accepted: August 27, 2014 – Distributed: November 30, 2015 (With 2 figures) Abstract Nasonovia ribisnigri is a key pest of lettuce (Lactuca sativa L.) in Brazil that requires alternative control methods to synthetic pesticides. We report, for the first time, the occurrence of Paecilomyces niveus as an entomopathogen of the aphid Nasonovia ribisnigri in Pinhais, Paraná, Brazil. Samples of mummified aphids were collected from lettuce crops. The fungus P. niveus (PaePR) was isolated from the insect bodies and identified by macro and micromorphology. The species was confirmed by sequencing Internal Transcribed Spacer (ITS) rDNA. We obtained a sequence of 528 bp (accession number HQ441751), which aligned with Byssochlamys nivea strains (100% identities). In a bioassay, 120 h after inoculation of N.
    [Show full text]
  • Natural Enemies of the Currant Lettuce Aphid, Nasonovia Ribisnigri (Mosely) (Hemiptera: Aphididae) and Their Population Fluctuations in Ahvaz, Iran
    J. Crop Prot. 2014, 3 (4):487-497_______________________________________________________ Research Article Natural enemies of the currant lettuce aphid, Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae) and their population fluctuations in Ahvaz, Iran Afrooz Farsi1*, Farhan Kocheili1, Mohammad Saeed Mossadegh1, Arash Rasekh1 and Mehrzad Tavoosi2 1. Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran. 2. Agriculture and Natural Resources Research Center of Khuzestan-Ahvaz. Abstract: Nasonovia ribisnigri (Mosely) is one of the most important pests of the lettuce plant and it was reported for the first time in Ahvaz in 2008. In order to investigate the dominant species of its natural enemies and their population fluctuations, sample were taken arbitrarily from fifty plants twice a week during the growing season in 2010-2012. In this study, ten species of predators, three species of parasitoids and two species of hyperparasitoids were collected and identified. Hoverflies with a relative frequency of 55% were the dominant predators. Peaks of lacewings and subsequently ladybird beetles were more coincident with peaks of aphid population in mid-March in the first year of studies. But their densities in the second year were very low. Also, hoverflies and parasitoids were mainly observed in the high densities in late March-early April, in both years. Regression analysis indicated that populations of aphids were mainly affected by ladybird beetles and lacewings in the first year of study, as well as by ladybird beetles, hoverflies and parasitoids in the second year. Therefore, additional studies are required for further evaluation on the potential abilities of these natural enemies being a good candidates for the future biological control programs.
    [Show full text]
  • The Syrphid Fly, Mesogramma Marginata, and the Flowers of Apocynum.* *
    THE SYRPHID FLY, MESOGRAMMA MARGINATA, AND THE FLOWERS OF APOCYNUM.* * RAYMOND C. OSBURN. The flowers of the various species of the dogbane, Apocynum spp., have long been known to catch some of the weaker sorts of insects attracted by them, but as far as I am aware, no such wholesale slaughter of a particular species as that herein •described has been noted. In fact, if I may judge by the con- versations which I have held with both botanists and entomol- ogists, the capacity of the dogbane for trapping insects has pretty generally escaped notice. My own attention was drawn to the subject last summer "when Miss Edith Weston, a young student of botany at the Ohio State University Lake Laboratory at Put-in-Bay, brought in some flowers of Apocynum androscemifolium and called my attention to the fact that the flowers had "bugs" in them. A glance at the flowers showed that there were insects in nearly all of them and that these were all of one species, the common little Syrphid fly, Mesogramma marginata (Say). Many of these were still alive, though evidently held in such a manner that they could not escape. As the flowers are open bells, my curiosity was aroused and I began a careful examination. Having in mind the related milkweed, Asclepias, whose flower clusters sometimes entangle the legs of insects by a sticky secretion, I was a little surprised to find that all of the flies in the Apocynum flowers were held by the proboscis. As many as four were present in some of the flowers, the little bell being as full as it would hold.
    [Show full text]
  • Hoverfly Newsletter No
    Dipterists Forum Hoverfly Newsletter Number 48 Spring 2010 ISSN 1358-5029 I am grateful to everyone who submitted articles and photographs for this issue in a timely manner. The closing date more or less coincided with the publication of the second volume of the new Swedish hoverfly book. Nigel Jones, who had already submitted his review of volume 1, rapidly provided a further one for the second volume. In order to avoid delay I have kept the reviews separate rather than attempting to merge them. Articles and illustrations (including colour images) for the next newsletter are always welcome. Copy for Hoverfly Newsletter No. 49 (which is expected to be issued with the Autumn 2010 Dipterists Forum Bulletin) should be sent to me: David Iliff Green Willows, Station Road, Woodmancote, Cheltenham, Glos, GL52 9HN, (telephone 01242 674398), email:[email protected], to reach me by 20 May 2010. Please note the earlier than usual date which has been changed to fit in with the new bulletin closing dates. although we have not been able to attain the levels Hoverfly Recording Scheme reached in the 1980s. update December 2009 There have been a few notable changes as some of the old Stuart Ball guard such as Eileen Thorpe and Austin Brackenbury 255 Eastfield Road, Peterborough, PE1 4BH, [email protected] have reduced their activity and a number of newcomers Roger Morris have arrived. For example, there is now much more active 7 Vine Street, Stamford, Lincolnshire, PE9 1QE, recording in Shropshire (Nigel Jones), Northamptonshire [email protected] (John Showers), Worcestershire (Harry Green et al.) and This has been quite a remarkable year for a variety of Bedfordshire (John O’Sullivan).
    [Show full text]
  • Université Du Québec À Montréal Évaluation De
    UNIVERSITÉ DU QUÉBEC À MONTRÉAL ÉVALUATION DE DEUX NOUVEAUX AGENTS DE LUTTE BIOLOGIQUE CONTRE LE PUCERON DE LA DIGITALE À BASSE TEMPÉRATURE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE MAÎTRISE EN BIOLOGIE PAR YMILIE FRANCOEUR-PIN MAI 2019 UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques Avertissement La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs (SDU-522 - Rév.07-2011). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à l'Université du Québec à Montréal une licence non exclusive d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l'auteur] autorise l'Université du Québec à Montréal à reproduire,· diffuser, prêter, distribuer ou vendre des copies· de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l'auteur] conserve la· liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire.» REMERCIEMENTS Je tiens à débuter mon mémoire en remerciant ceux et celles qui ont contribué à mon cheminement durant ma maîtrise. Quand j'ai débuté mon projet de recherche, je ne savais pas du tout ce qui m'attendais.
    [Show full text]
  • Testing the Global Malaise Trap Program – How Well Does the Current Barcode Reference Library Identify Flying Insects in Germany?
    Biodiversity Data Journal 4: e10671 doi: 10.3897/BDJ.4.e10671 General Article Testing the Global Malaise Trap Program – How well does the current barcode reference library identify flying insects in Germany? Matthias F. Geiger‡, Jerome Moriniere§, Axel Hausmann§, Gerhard Haszprunar§, Wolfgang Wägele‡, Paul D.N. Hebert|, Björn Rulik ‡ ‡ Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany § SNSB-Zoologische Staatssammlung, München, Germany | Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Canada Corresponding author: Matthias F. Geiger ([email protected]) Academic editor: Lyubomir Penev Received: 28 Sep 2016 | Accepted: 29 Nov 2016 | Published: 01 Dec 2016 Citation: Geiger M, Moriniere J, Hausmann A, Haszprunar G, Wägele W, Hebert P, Rulik B (2016) Testing the Global Malaise Trap Program – How well does the current barcode reference library identify flying insects in Germany? Biodiversity Data Journal 4: e10671. https://doi.org/10.3897/BDJ.4.e10671 Abstract Background Biodiversity patterns are inherently complex and difficult to comprehensively assess. Yet, deciphering shifts in species composition through time and space are crucial for efficient and successful management of ecosystem services, as well as for predicting change. To better understand species diversity patterns, Germany participated in the Global Malaise Trap Program, a world-wide collection program for arthropods using this sampling method followed by their DNA barcode analysis. Traps were deployed at two localities: “Nationalpark Bayerischer Wald” in Bavaria, the largest terrestrial Natura 2000 area in Germany, and the nature conservation area Landskrone, an EU habitats directive site in the Rhine Valley. Arthropods were collected from May to September to track shifts in the taxonomic composition and temporal succession at these locations.
    [Show full text]
  • Syrphidae of Southern Illinois: Diversity, Floral Associations, and Preliminary Assessment of Their Efficacy As Pollinators
    Biodiversity Data Journal 8: e57331 doi: 10.3897/BDJ.8.e57331 Research Article Syrphidae of Southern Illinois: Diversity, floral associations, and preliminary assessment of their efficacy as pollinators Jacob L Chisausky‡, Nathan M Soley§,‡, Leila Kassim ‡, Casey J Bryan‡, Gil Felipe Gonçalves Miranda|, Karla L Gage ¶,‡, Sedonia D Sipes‡ ‡ Southern Illinois University Carbondale, School of Biological Sciences, Carbondale, IL, United States of America § Iowa State University, Department of Ecology, Evolution, and Organismal Biology, Ames, IA, United States of America | Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Canada ¶ Southern Illinois University Carbondale, College of Agricultural Sciences, Carbondale, IL, United States of America Corresponding author: Jacob L Chisausky ([email protected]) Academic editor: Torsten Dikow Received: 06 Aug 2020 | Accepted: 23 Sep 2020 | Published: 29 Oct 2020 Citation: Chisausky JL, Soley NM, Kassim L, Bryan CJ, Miranda GFG, Gage KL, Sipes SD (2020) Syrphidae of Southern Illinois: Diversity, floral associations, and preliminary assessment of their efficacy as pollinators. Biodiversity Data Journal 8: e57331. https://doi.org/10.3897/BDJ.8.e57331 Abstract Syrphid flies (Diptera: Syrphidae) are a cosmopolitan group of flower-visiting insects, though their diversity and importance as pollinators is understudied and often unappreciated. Data on 1,477 Syrphid occurrences and floral associations from three years of pollinator collection (2017-2019) in the Southern Illinois region of Illinois, United States, are here compiled and analyzed. We collected 69 species in 36 genera off of the flowers of 157 plant species. While a richness of 69 species is greater than most other families of flower-visiting insects in our region, a species accumulation curve and regional species pool estimators suggest that at least 33 species are yet uncollected.
    [Show full text]
  • Hoverflies Family: Syrphidae
    Birmingham & Black Country SPECIES ATLAS SERIES Hoverflies Family: Syrphidae Andy Slater Produced by EcoRecord Introduction Hoverflies are members of the Syrphidae family in the very large insect order Diptera ('true flies'). There are around 283 species of hoverfly found in the British Isles, and 176 of these have been recorded in Birmingham and the Black Country. This atlas contains tetrad maps of all of the species recorded in our area based on records held on the EcoRecord database. The records cover the period up to the end of 2019. Myathropa florea Cover image: Chrysotoxum festivum All illustrations and photos by Andy Slater All maps contain Contains Ordnance Survey data © Crown Copyright and database right 2020 Hoverflies Hoverflies are amongst the most colourful and charismatic insects that you might spot in your garden. They truly can be considered the gardener’s fiend as not only are they important pollinators but the larva of many species also help to control aphids! Great places to spot hoverflies are in flowery meadows on flowers such as knapweed, buttercup, hogweed or yarrow or in gardens on plants such as Canadian goldenrod, hebe or buddleia. Quite a few species are instantly recognisable while the appearance of some other species might make you doubt that it is even a hoverfly… Mimicry Many hoverfly species are excellent mimics of bees and wasps, imitating not only their colouring, but also often their shape and behaviour. Sometimes they do this to fool the bees and wasps so they can enter their nests to lay their eggs. Most species however are probably trying to fool potential predators into thinking that they are a hazardous species with a sting or foul taste, even though they are in fact harmless and perfectly edible.
    [Show full text]
  • Biodiversity – Economy Or Ecology? Long-Term Study of Changes in the Biodiversity of Aphids Living in Steppe-Like Grasslands in Central Europe
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 140–146, 2017 http://www.eje.cz doi: 10.14411/eje.2017.019 ORIGINAL ARTICLE Biodiversity – economy or ecology? Long-term study of changes in the biodiversity of aphids living in steppe-like grasslands in Central Europe BARBARA OSIADACZ 1, ROMAN HAŁAJ 2 and DAMIAN CHMURA3 1 Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Dąbrowskiego St. 159, PL 60-594 Poznań, Poland; e-mail: [email protected] 2 The Upper Silesian Nature Society, Huberta St. 35, PL 40-543 Katowice, Poland; e-mail: [email protected] 3 Institute of Environmental Protection and Engineering, University of Bielsko-Biała, Willowa 2, PL 43-309 Bielsko-Biała, Poland; e-mail: [email protected] Key words. Hemiptera, Aphidoidea, bio-ecological groups, community structure, protected habitats, loss of biodiversity, human impact, NMDS methods, regional hotspots Abstract. This paper examines the changes in the species composition of aphids living in dry calcareous grasslands in Central Europe over a 25-year period. To the best of our knowledge, this is the fi rst analysis of this type in the world that takes into account both previous and current data on species richness as well as groups of aphids that are distinguishable on the basis of biological and ecological criteria such as host-alternation and feeding types, life cycle, ecological niche, symbiosis with ants and their eco- logical functional groups. Over the period of more than 25 years, there has been a signifi cant decrease in aphid α-diversity, from 171 to 105 species.
    [Show full text]
  • Diptera, Sy Ae)
    Ce nt re fo r Eco logy & Hydrology N AT U RA L ENVIRO N M EN T RESEA RC H CO U N C IL Provisional atlas of British hover les (Diptera, Sy ae) _ Stuart G Ball & Roger K A Morris _ J O I N T NATURE CONSERVATION COMMITTEE NERC Co pyright 2000 Printed in 2000 by CRL Digital Limited ISBN I 870393 54 6 The Centre for Eco logy an d Hydrolo gy (CEI-0 is one of the Centres an d Surveys of the Natu ral Environme nt Research Council (NERC). Established in 1994, CEH is a multi-disciplinary , environmental research organisation w ith som e 600 staff an d w ell-equipp ed labo ratories and field facilities at n ine sites throughout the United Kingdom . Up u ntil Ap ril 2000, CEM co m prise d of fou r comp o nent NERC Institutes - the Institute of Hydrology (IH), the Institute of Freshw ater Eco logy (WE), the Institute of Terrestrial Eco logy (ITE), and the Institute of Virology an d Environmental Micro b iology (IVEM). From the beginning of Ap dl 2000, CEH has operated as a single institute, and the ind ividual Institute nam es have ceased to be used . CEH's mission is to "advance th e science of ecology, env ironme ntal microbiology and hyd rology th rough h igh q uality and inte rnat ionall) recognised research lead ing to better understanding and quantifia ttion of the p hysical, chem ical and b iolo gical p rocesses relating to land an d freshwater an d living organisms within the se environments".
    [Show full text]
  • Growth, Development and Consumption by Four Syrphid Species Associated with the Lettuce Aphid, Nasonovia Ribisnigri, in California ⇑ Julie V
    Biological Control xxx (2011) xxx–xxx Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Growth, development and consumption by four syrphid species associated with the lettuce aphid, Nasonovia ribisnigri, in California ⇑ Julie V. Hopper , Erik H. Nelson, Kent M. Daane, Nicholas J. Mills Department of Environmental Science, Policy and Management, Mulford Hall, University of California, Berkeley, CA 94720-3114, USA article info abstract Article history: The lettuce aphid, Nasonovia ribisnigri Mosley, was accidentally introduced into California from Europe Received 1 November 2010 during the late 1990s and soon became an economic pest of Romaine lettuce along California’s central Accepted 25 March 2011 coast region. Indigenous syrphid larvae attack the lettuce aphid and are believed to be effective in the Available online xxxx management of this invasive pest, although there have been no studies on the capacity of the syrphid lar- vae to kill and consume lettuce aphids. We focused on four syrphid species commonly found in central Keywords: coast lettuce fields: Allograpta obliqua (Say), Eupeodes fumipennis (Thomson), Sphaerophoria sulphuripes Biological control (Thomson), and Toxomerus marginatus (Say). Laboratory feeding experiments were conducted to estimate Aphididae the development times of all juvenile stages, the daily growth rate of larvae, the number of third instar Syrphidae Predation potential aphids killed, the aphid biomass killed, and the aphid biomass consumed as measures of predator perfor- Lettuce mance. Results show that during larval development E. fumipennis killed the most third-instar aphids (507 aphids, 88 mg biomass killed) and reached the largest size, followed by A. obliqua (228 aphids, 39 mg killed), S.
    [Show full text]