Investigating the Impact of Telomere Dysfunction on the Chronic Lymphocytic Leukaemia Genome

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Impact of Telomere Dysfunction on the Chronic Lymphocytic Leukaemia Genome INVESTIGATING THE IMPACT OF TELOMERE DYSFUNCTION ON THE CHRONIC LYMPHOCYTIC LEUKAEMIA GENOME Laura Escudero-Monreal A thesis submitted for the degree of Doctor of Philosophy September 2017 Institute of Cancer and Genetics School of Medicine Cardiff University Funded by Cancer Research Wales and Cardiff University I dedicate this Ph.D. thesis to everyone who suffers from cancer, for I hope one day, science can fight and win this battle. Laura Escudero-Monreal NOTICE OF SUBMISSION DECLARATION This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed: Date: STATEMENT 1 This thesis is being submitted in partial fulfilment of the requirements for the degree of PhD. Signed: Date: STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated, and the thesis has not been edited by a third party beyond what is permitted by Cardiff University’s Policy on the Use of Third Party Editors by Research Degree Students. Other sources are acknowledged by explicit references. The views expressed are my own. Signed: Date: STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed: Date: STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loans after expiry of a bar on access previously approved by the Academic Standards & Quality Committee. Signed: Date: III ACKNOWLEDGEMENTS Firstly, I would like to thank my supervisors Professor Duncan Baird and Dr Kate Liddiard for the opportunity to undertake this PhD. I am very grateful for your support and guidance throughout the project. I would also like to thank Professor Chris Pepper for your advice, to the CLL patients and to Professor Chris Fegan for providing the patient samples. Thank you to Dr Kate Liddiard, Dr Rhiannon Robinson and Mrs Julia Grimstead for teaching me the techniques and for always being willing to help; to Dr Kevin Norris for facilitating the identification of the CLL patient samples with short telomeres; and to Dr Kez Cleal for your bioinformatics input. To everyone in the lab, I will always remember the lunch time laughs and the fun nights out. Particularly the events to raise money for charity including the CGB Bake Off, the 5K pretty muddy races with The GenetChicks and the Christmas secret Santa. It has been the best working environment and I will miss you all. Especially Sam Hyatt and Melanie Hurtz, thank you for being by my side during this journey; as well as my colleagues and my housemates, you became my best friends. Sobre todo, quiero dar las gracias a mi familia, por apoyar mis decisiones y ayudarme durante el camino a convertirme en investigadora. Sin vuestro cariño, ayuda y entendimiento, hoy no estaría aquí. A mis amigas más cercanas, gracias por recordarme que hay vida más allá de la academia y ayudarme a mantener un equilibrio en mi vida. Junto con mi familia, gracias especialmente por darme ánimos cuando más los necesitaba. To my partner Jahn, thank you for your understanding, for supporting my decisions and for your unconditional love. Thank you to your family, for always making me feel welcome. Thank you to Cancer Research Wales (CRW) and Cardiff University for the funding that has enabled this project. I am grateful to the European Association for Cancer Research (EACR), Cancer Research UK (CRUK), Keystone Symposia and The Genetics Society for the travel awards that allowed me to present my work at several conferences. It helped me to broaden my horizons, get new ideas and establish collaborations. To all of you, thank you. During these past 4 years I have grown as a person but especially as a scientist. Now, more than ever, I want to become an excellent researcher and help in the fight against cancer. I know it will be hard, but with passion and dedication, everything is possible. IV SUMMARY Short dysfunctional telomeres can result in chromosome fusions that drive genomic rearrangements and ultimately malignant progression. In Chronic Lymphocytic Leukaemia (CLL), telomere length (TL) is a powerful predictor of patient survival. The aim of this project is to understand the role that telomere dysfunction plays in driving the evolution of the CLL genome. Telomere fusions were detected in 71% of 276 CLL patients with short telomeres (TL<3.81Kb). From 9 CLL patient samples with the highest fusion frequency (>4.20x10- 5/diploid genome), 914 telomere fusions were characterised using Illumina HiSeq paired- end sequencing. In addition to intra- and inter-chromosomal recombinations, telomere fusions with non-telomeric loci were detected, including the ancestral telomere at Chr2q13, mitochondrial DNA, and loci associated with copy number aberrations in CLL. Telomere fusions also incorporated genes expressed in CLL-B lymphocytes and other oncogenes, suggesting that active chromatin is more prone to damage and aberrant repair. These events were potentially mediated by A-NHEJ that requires microhomology. Translocations involving hTERT, proximal to the 5p telomere, have previously been detected in CLL and associated with telomerase upregulation. In this study, 5p telomere fusions were identified in 22.6% patient samples and 172 fusion events that involved 5p were characterised, which may explain mechanisms of telomerase reactivation in cancer. Surprisingly, 67% of the 9 patients presented bimodal TL distributions compared to the overall cohort (4% of 276), consistent with intra-tumour heterogeneity, which was confirmed for one patient. For this patient with indolent disease, chromosomal rearrangements were detected, in addition to a novel mutation in REV3L implicated in translesion synthesis that may negatively impact cancer cells fitness and be a potential therapeutic target. This study shows that telomere dysfunction in CLL initiates genome-wide instability providing a source for genetic variability that allows intra-tumour heterogeneity and tumour progression. However, therapeutically-exploiting this instability could prove beneficial for patient outcome. V List of abbreviations LIST OF ABBREVIATIONS ADMIRE Does the ADdition of Mitoxantrone Improve Response to FCR chemotherapy in patients with CLL? (ADMIRE) trial AID APOBEC-Induced cytosine Deamination (c: canonical; nc: non-canonical) ALC Absolute Lymphocyte Count ALT Alternative Lengthening of Telomeres AML Acute Myeloid Leukaemia ARCTIC Attenuated dose Rituximab with ChemoTherapy In Chronic lymphocytic leukaemia (ARCTIC) trial A-NHEJ Alternative Non-Homologous End Joining ANOVA ANalysis OF VAriance APBs ALT-associated promyelocytic leukaemia (PML) nuclear bodies ATM Ataxia Telangiectasia Mutated ATR Ataxia telangiectasia and Rad3 related ATRX Alpha Thalassemia/Mental Retardation Syndrome X-Linked BAI Indexed BAM file BAM Binary version of a SAM file BFB Breakage-Fusion-Bridge BIR Break-Induced Replication BL Baseline BLAST Basic Local Alignment Search Tool BML Bloom syndrome protein bp Base Pairs BRCA1 Breast Cancer Type 1 Susceptibility BRCA2 Breast Cancer Type 2 Susceptibility BSA Bovine Serum Albumin BTK Bruton Tyrosine Kinase BWA Burrows-Wheeler Aligner CBS Central Biotechnology Service (CBS) CDK Cyclin-Dependent Kinase CF Chromosome Fusion CFS Common Fragile Site CHK1 Checkpoint Kinase 1 CHK2 Checkpoint Kinase 2 CIN Chromosomal INstability CLL Chronic Lymphocytic Leukaemia C-NHEJ Classical Non-Homologous End Joining CN-LOH Copy-Neutral Loss Of Heterozygosity CNV Copy Number Variation CTCF CCCTC-binding factor CtIP CtBP-interacting protein DAPI 4',6-diamidino-2-phenylindole VI List of abbreviations DAVID Database for Annotation, Visualization and Integrated Discovery DAXX Death-Domain Associated DDR DNA-Damage Response DKC Dyskerin DLBCL Diffuse Large B-Cell Lymphoma D-Loop Displacement Loop DMSO Dimethyl Sulfoxide DNA Deoxyribonucleic acid DNA-PKcs DNA-Dependent Protein Kinase DN-hTERT Dominant Negative Human Telomerase Reverse Transcriptase dNTP Deoxyribonucleotide DSB Double-Strand Break ECTR Extrachromosomal telomeric repeats EDTA Ethylenediaminetetraacetic Acid EtBr Ethidium Bromide ETS E-twenty-six-domain EXO1 Exonuclease 1 FACS Fluorescence-Activated Cell Sorting FBS Fetal Bovine Serum FCS Fetal Calf Serum FCR Fluradabine, Chlorabucil and Rituximab FISH Fluorescence In situ Hybridisation FJ Fusion Junction (m: mapped; um: unmapped) FoSTeS Fork Stalling and Template Switching GABP GA-Binding Protein GRCh37 Genome Reference Consortium human build 37 GSEA Gene Set Enrichment Analysis GWAS Genome-Wide Association Studies H2AFX H2A histone Family, member X HCl Hydrochloric Acid HCT1080 Human fibrosarcoma cell line HCT116 Human colon cancer cell line HDR Homology Directed Repair HEK293 Human Embryonic Kidney 293 cell line hg19 Human genome version 19 HJ Holliday Junction hnRNPA1 heterogeneous nuclear RiboNucleoProtein A1 HR Homologous Recombination HR Hazard Ratio HSCT Haematopoietic Stem Cell Transplantation HT Q-FISH High Throughput Quantitative Fluorescent In situ Hybridisation ICGC International Cancer Genome Consortium Ig Immunoglobulin IGHV ImmunoGlobulin Heavy-chain Variable region gene (m:mutated; u: unmutated) IGV Integrative Genome Viewer VII List of abbreviations kb Kilobases Ku Ku70-Ku80
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Pseudouridine Synthases Modify Human Pre-Mrna Co-Transcriptionally and Affect Splicing
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.273565; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect splicing Authors: Nicole M. Martinez1, Amanda Su1, Julia K. Nussbacher2,3,4, Margaret C. Burns2,3,4, Cassandra Schaening5, Shashank Sathe2,3,4, Gene W. Yeo2,3,4* and Wendy V. Gilbert1* Authors and order TBD with final revision. Affiliations: 1Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, CT 06520, USA. 2Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA. 3Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA. 4Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA. 5Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. *Correspondence to: [email protected], [email protected] Abstract: Eukaryotic messenger RNAs are extensively decorated with modified nucleotides and the resulting epitranscriptome plays important regulatory roles in cells 1. Pseudouridine (Ψ) is a modified nucleotide that is prevalent in human mRNAs and can be dynamically regulated 2–5. However, it is unclear when in their life cycle RNAs become pseudouridylated and what the endogenous functions of mRNA pseudouridylation are. To determine if pseudouridine is added co-transcriptionally, we conducted pseudouridine profiling 2 on chromatin-associated RNA to reveal thousands of intronic pseudouridines in nascent pre-mRNA at locations that are significantly associated with alternatively spliced exons, enriched near splice sites, and overlap hundreds of binding sites for regulatory RNA binding proteins.
    [Show full text]
  • Vfabstract-Booklet-2017---Nda-Removed.Pdf
    WELCOME Dear CRINA Research Day Attendee: Thank you for joining us at the fourth annual CRINA Research Day. Last year, at our third event we welcomed over 250 attendees and featured more than 100 posters from many departments and faculties across campus. We are happy to announce that many of those attendees signed up to be members of CRINA, forming the core of our cancer research community. One year later, we continue to build our cancer research community by hosting a cancer-themed Research Day yet again. This year, we have continued to provide trainees with an opportunity to organize the program and present their work orally to our cancer research community at the University of Alberta. We hope that you continue to explore what the University of Alberta has to offer in the cancer research sphere and grow your network of collaborators through future CRINA Research Days. CRINA as an institute has a well-established reporting structure with operations committees and advisory boards. At our core, we continue to strengthen connections within our cancer research community by hosting events throughout the year such as seminars and symposia. Our leadership team is working on defining University of Alberta cancer research strengths in terms of research excellence and available infrastructure and platforms, with plans to build on these strengths to accelerate discovery and innovation. CRINA also represents the interests of its members as a unified voice on the provincial stage, working with AHS, AIHS and the ACF. Our ultimate goal is to establish our Institute as a national leader in cancer research and patient care, wherein clinical outcomes are addressed with scientific inquiry and where research drives innovations in cancer prevention, treatment and survivorship.
    [Show full text]
  • Lorena Novoa-Aponte
    A Strain: fl/fl ∆hep Strain: fl/fl ∆hep AnalysisAAV: ofLuc the ironLuc chaperonePCBP1-WT PCBP1PCBP1-∆Fe interactome:PCBP1-∆RNA PCBP1 variant intersection of DNA repair and iron traffickingAAV: Luc Luc WT ∆Fe ∆RNA PCBP1 −40 Lorena Novoa-Aponte a*, Sarju J. Patel a, Olga Protchenko a, James Wohlschlegel b, Caroline C. Philpott a −40 PCBP1, IHC PCBP1, GAPDH - a Genetics and Metabolism Section,a NIDDK, NIH, Bethesda, MD, USA. b Department of Biological Chemistry, UCLA, Los Angeles, CA, USA C.C. Philpott, et al. *[email protected] 80 B P = 0.0262 60 40 1. Iron is essential but toxic 2. Increased DNA damage in cells lacking PCBP1 ns H&E ? + 20 C.C. Philpott, et al. Iron is used as an essential cofactor by several enzymes involved in DNA ⦿ Increased TUNEL in cells and tissue livers from mice lacking PCBP1. ? replication and repair. However, unchaperoned iron promotes redox ⦿ PCBP1 binds both, iron and single-stranded nucleicTG, nmol/mg protein 0 acids. stress that may affect DNA stability. Strain: Δhep Δhep Δhep ? ⦿ The iron binding activity of PCBP1 controls suppressionAAV: of DNA damage C WT ∆Fe ∆RNA PCBP1 variant ? Iron storage HEK293 cells Mouse Liver ? A 8 siNT+P1var 100 ? A 8 var siPCBP1 2 ? Mammals use the iron siNT+P1 ns var Fe-S cluster assembly 6 siPCBP1+P1siPCBP1 80 ADI1 TUNEL chaperone PCBP1 to var ? 6 siPCBP1+P1 metalate several iron- 60 = 0.0468 = 0.0354 = 0.0465 cell / mm population P P P population + dependent enzymes + 4 + 4 ? 40 Degradation of HIF1α Fig. 3. Iron chaperone-mediated handling of cytosolic labile iron pool.
    [Show full text]
  • Whole Egg Consumption Increases Gene Expression Within the Glutathione Pathway in the Liver of Zucker Diabetic Fatty Rats
    Food Science and Human Nutrition Publications Food Science and Human Nutrition 11-3-2020 Whole egg consumption increases gene expression within the glutathione pathway in the liver of Zucker Diabetic Fatty rats Joe L. Webb Iowa State University Amanda E. Bries Iowa State University, [email protected] Brooke Vogel Iowa State University Claudia Carrillo Iowa State University, [email protected] Lily Harvison Iowa State University, [email protected] See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/fshn_hs_pubs Part of the Dietetics and Clinical Nutrition Commons, Endocrinology, Diabetes, and Metabolism Commons, Exercise Science Commons, Food Chemistry Commons, Human and Clinical Nutrition Commons, and the Molecular, Genetic, and Biochemical Nutrition Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ fshn_hs_pubs/38. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Food Science and Human Nutrition at Iowa State University Digital Repository. It has been accepted for inclusion in Food Science and Human Nutrition Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Whole egg consumption increases gene expression within the glutathione pathway in the liver of Zucker Diabetic Fatty rats Abstract Nutrigenomic evidence supports the idea that Type 2 Diabetes Mellitus (T2DM) arises due to the interactions between the transcriptome, individual genetic profiles, lifestyle, and diet. Since eggs are a nutrient dense food containing bioactive ingredients that modify gene expression, our goal was to examine the role of whole egg consumption on the transcriptome during T2DM.
    [Show full text]
  • Stroke Genetics and Genomics
    Faculdade de Medicina da Universidade de Lisboa Unidade Neurológica de Investigação Clínica PhD Thesis Stroke Genetics and Genomics Tiago Krug Coelho Host Institution: Instituto Gulbenkian de Ciência Supervisor at Instituto Gulbenkian de Ciência: Doctor Sofia Oliveira Supervisor at Faculdade de Medicina da Universidade de Lisboa: Professor José Ferro PhD in Biomedical Sciences Specialization in Neurosciences 2010 Stroke Genetics and Genomics A ciência tem, de facto, um único objectivo: a verdade. Não esgota perfeitamente a sua tarefa se não descobre a causa do todo. Chiara Lubich i Stroke Genetics and Genomics ii Stroke Genetics and Genomics A impressão desta dissertação foi aprovada pela Comissão Coordenadora do Conselho Científico da Faculdade de Medicina de Lisboa em reunião de 28 de Setembro de 2010. iii Stroke Genetics and Genomics iv Stroke Genetics and Genomics As opiniões expressas são da exclusiva responsabilidade do seu autor. v Stroke Genetics and Genomics vi Stroke Genetics and Genomics Abstract ABSTRACT This project presents a comprehensive approach to the identification of new genes that influence the risk for developing stroke. Stroke is the leading cause of death in Portugal and the third leading cause of death in the developed world. It is even more disabling than lethal, and the persistent neurological impairment and physical disability caused by stroke have a very high socioeconomic cost. Moreover, the number of affected individuals is expected to increase with the current aging of the population. Stroke is a “brain attack” cutting off vital blood and oxygen to the brain cells and it is a complex disease resulting from environmental and genetic factors.
    [Show full text]
  • Genomic and Transcriptomic Investigations Into the Feed Efficiency Phenotype of Beef Cattle
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Genomic and transcriptomic investigations into the feed efficiency phenotype of beef cattle Author(s) Higgins, Marc Publication Date 2019-03-06 Publisher NUI Galway Item record http://hdl.handle.net/10379/15008 Downloaded 2021-09-25T18:07:39Z Some rights reserved. For more information, please see the item record link above. Genomic and Transcriptomic Investigations into the Feed Efficiency Phenotype of Beef Cattle Marc Higgins, B.Sc., M.Sc. A thesis submitted for the Degree of Doctor of Philosophy to the Discipline of Biochemistry, School of Natural Sciences, National University of Ireland, Galway. Supervisor: Dr. Derek Morris Discipline of Biochemistry, School of Natural Sciences, National University of Ireland, Galway. Supervisor: Dr. Sinéad Waters Teagasc, Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange. Submitted November 2018 Table of Contents Declaration ................................................................................................................ vii Funding .................................................................................................................... viii Acknowledgements .................................................................................................... ix Abstract ......................................................................................................................
    [Show full text]
  • Qt38n028mr Nosplash A3e1d84
    ! ""! ACKNOWLEDGEMENTS I dedicate this thesis to my parents who inspired me to become a scientist through invigorating scientific discussions at the dinner table even when I was too young to understand what the hippocampus was. They also prepared me for the ups and downs of science and supported me through all of these experiences. I would like to thank my advisor Dr. Elizabeth Blackburn and my thesis committee members Dr. Eric Verdin, and Dr. Emmanuelle Passegue. Liz created a nurturing and supportive environment for me to explore my own ideas, while at the same time teaching me how to love science, test my questions, and of course provide endless ways to think about telomeres and telomerase. Eric and Emmanuelle both gave specific critical advice about the proper experiments for T cells and both volunteered their lab members for further critical advice. I always felt inspired with a sense of direction after thesis committee meetings. The Blackburn lab is full of smart and dedicated scientists whom I am thankful for their support. Specifically Dr. Shang Li and Dr. Brad Stohr for their stimulating scientific debates and “arguments.” Dr. Jue Lin, Dana Smith, Kyle Lapham, Dr. Tet Matsuguchi, and Kyle Jay for their friendships and discussions about what my data could possibly mean. Dr. Eva Samal for teaching me molecular biology techniques and putting up with my late night lab exercises. Beth Cimini for her expertise with microscopy, FACs, singing, and most of all for being a caring and supportive friend. Finally, I would like to thank Dr. Imke Listerman, my scientific partner for most of the breast cancer experiments.
    [Show full text]
  • Computational Inferences of Mutations Driving Mesenchymal Differentiation in Glioblastoma
    Computational Inferences of Mutations Driving Mesenchymal Differentiation in Glioblastoma James Chen Submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree in the Graduate School of Arts and Sciences Columbia University 2013 ! 2013 James Chen All rights reserved ABSTRACT Computational Inferences of Mutations Driving Mesenchymal Differentiation in Glioblastoma James Chen This dissertation reviews the development and implementation of integrative, systems biology methods designed to parse driver mutations from high- throughput array data derived from human patients. The analysis of vast amounts of genomic and genetic data in the context of complex human genetic diseases such as Glioblastoma is a daunting task. Mutations exist by the hundreds, if not thousands, and only an unknown handful will contribute to the disease in a significant way. The goal of this project was to develop novel computational methods to identify candidate mutations from these data that drive the molecular differentiation of glioblastoma into the mesenchymal subtype, the most aggressive, poorest-prognosis tumors associated with glioblastoma. TABLE OF CONTENTS CHAPTER 1… Introduction and Background 1 Glioblastoma and the Mesenchymal Subtype 3 Systems Biology and Master Regulators 9 Thesis Project: Genetics and Genomics 20 CHAPTER 2… TCGA Data Processing 23 CHAPTER 3… DIGGIn Part 1 – Selecting f-CNVs 33 Mutual Information 40 Application and Analysis 45 CHAPTER 4… DIGGIn Part 2 – Selecting drivers 52 CHAPTER 5… KLHL9 Manuscript 63 Methods 90 CHAPTER 5a… Revisions work-in-progress 105 CHAPTER 6… Discussion 109 APPENDICES… 132 APPEND01 – TCGA classifications 133 APPEND02 – GBM f-CNV list 136 APPEND03 – MES f-CNV candidate drivers 152 APPEND04 – Scripts 149 APPEND05 – Manuscript Figures and Legends 175 APPEND06 – Manuscript Supplemental Materials 185 i ACKNOWLEDGEMENTS I would like to thank the Califano Lab and my mentor, Andrea Califano, for their intellectual and motivational support during my stay in their lab.
    [Show full text]
  • The Inverse Agonist DG172 Triggers a Pparβ/Δ-Independent Myeloid Lineage Shift and Promotes GM-CSF/IL-4-Induced Dendritic Cell Differentiation
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on September 26, 2021 1 MOL #94672 #94672 MOL -independent myeloid lineage shift and -independent myeloid lineage δ / β nagel, Wolfgang Meissner, Gavin Giehl, Cornelia Giehl, Cornelia Gavin Wolfgang Meissner, nagel, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version.
    [Show full text]
  • Hypermutation of DPYD Deregulates Pyrimidine Metabolism and Promotes Malignant Progression Lauren Edwards, Rohit Gupta, and Fabian Volker Filipp
    Published OnlineFirst November 25, 2015; DOI: 10.1158/1541-7786.MCR-15-0403 Genomics Molecular Cancer Research Hypermutation of DPYD Deregulates Pyrimidine Metabolism and Promotes Malignant Progression Lauren Edwards, Rohit Gupta, and Fabian Volker Filipp Abstract New strategies are needed to diagnose and target human the background mutation rate. Structural analysis of the DPYD melanoma. To this end, genomic analyses was performed to protein dimer reveals a potential hotspot of recurring somatic assess somatic mutations and gene expression signatures using mutations in the ligand-binding sites as well as the interfaces of a large cohort of human skin cutaneous melanoma (SKCM) protein domains that mediated electron transfer. Somatic muta- patients from The Cancer Genome Atlas (TCGA) project to tions of DPYD are associated with upregulation of pyrimidine identify critical differences between primary and metastatic degradation, nucleotide synthesis, and nucleic acid processing tumors. Interestingly, pyrimidine metabolism is one of the major while salvage and nucleotide conversion is downregulated in pathways to be significantly enriched and deregulated at the TCGA SKCM. transcriptional level in melanoma progression. In addition, dihy- dropyrimidine dehydrogenase (DPYD) and other important Implications: At a systems biology level, somatic mutations of pyrimidine-related genes: DPYS, AK9, CAD, CANT1, ENTPD1, DPYD cause a switch in pyrimidine metabolism and promote NME6, NT5C1A, POLE, POLQ, POLR3B, PRIM2, REV3L, and gene expression of pyrimidine enzymes toward malignant pro- UPP2 are significantly enriched in somatic mutations relative to gression. Mol Cancer Res; 14(2); 196–206. Ó2015 AACR. Introduction Pyrimidine synthesis is a key metabolic bottleneck important for DNA replication in tumor cells and, therefore, represents a Cancer cells take advantage of distinct metabolic pathways valuable diagnostic and therapeutic target.
    [Show full text]
  • Identification of Novel Cellular Factors Involved in HIV-1 Latency
    Identification of novel cellular factors involved in HIV-1 latency Vorgelegt beim Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades Doctor rerum naturalium Dissertation von Alexandra Borch 1. Referentin: Prof. Dr. Beatrix Süß 2. Referent: Prof. Dr. Alexander Löwer 3. Referent: Prof. Dr. Klaus Cichutek Darmstadt 2019 Die vorliegende Arbeit wurde unter der Leitung von Prof. Dr. Klaus Cichutek in der Arbeitsgruppe von Dr. Renate König „Host-Pathogen Interactions“ am Paul-Ehrlich-Institut in Langen angefertigt. Die Betreuung seitens der Technischen Universität Darmstadt erfolgte durch Prof. Dr. Beatrix Süß vom Fachbereich Biologie. Borch, Alexandra Identification of novel cellular factors involved in HIV-1 latency Beim Fachbereich Biologie, Technische Universität Darmstadt Jahr der Veröffentlichung der Dissertation auf TUprints:2020 URN: urn:nbn:de:tuda-tuprints-112896 Datum der Einreichung: 02.10.2019 Datum der mündlichen Prüfung: 13.12.2019 Veröffentlicht unter CC BY-SA 4.0 International https://creativecommons.org/licenses/ Summary Summary Despite ongoing efforts, HIV-1 (the causative agent of AIDS) remains an unresolved health threat. Even though current therapy approaches efficiently block ongoing viral replication they cannot cure the infection due to the presence of a latent reservoir. It is of crucial importance to understand that this viral reservoir can fuel new rounds of viral replication and spread the infection. The viral reservoir is defined as cells (best-characterized are resting memory CD4+ T cells) harboring a replication-competent provirus while not producing new progeny virus, a state that can be reversed. Strategies to eradicate the viral reservoir include the so-called ‘shock and kill’ approach, which is a two-step process, aiming in the first step to reactivate the latent reservoir, leading to the production of new viruses.
    [Show full text]