Thyronectria Revisited and Re-Instated
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Beltrania-Like Taxa from Thailand
Cryptogamie, Mycologie, 2017, 38 (3): 301-319 © 2017 Adac. Tous droits réservés Beltrania-like taxa from Thailand Chuan-Gen LIN a, d,Kevin D. HYDE a, d, Saisamorn LUMYONG b &Eric H. C. MCKENZIE c* aCenter of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand bDepartment of Biology,Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand cLandcareResearch Manaaki Whenua, Private Bag 92170, Auckland, New Zealand dSchool of Science, Mae Fah Luang University,Chiang Rai 57100, Thailand Abstract – Four Beltrania-like taxa, viz., Beltrania rhombica, Beltraniella fertilis, Beltraniopsis longiconidiophora sp. nov. and Hemibeltrania cinnamomi were identified during asurvey of hyphomycetes in Thailand. Each species is provided with adescription and amolecular analysis. The new species is introduced based on morphological and molecular differences and compared with similar taxa. Beltraniella fertilis and H. cinnamomi are new records for Thailand. Beltrania-complex /Beltraniaceae /Phylogeny /Taxonomy /Xylariomycetidae InTroducTIon The family Beltraniaceae Nann. was introduced by Nannizzi in 1934 to accommodate the genus Beltrania Penz. and some similar genera, and the tribe Beltranieae was treated as asynonym of this family (Pirozynski, 1963). Presently, eight genera, viz., Beltrania, Beltraniella Subram., Beltraniopsis Bat. &J.L. Bezerra, Hemibeltrania Piroz., Parapleurotheciopsis P.M. Kirk, Porobeltraniella Gusmão, Pseudobeltrania Henn. and Subramaniomyces Varghese &V.G. Rao, are accepted in the family (Crous et al.,2015b; Maharachchikumbura et al.,2015, 2016; Rajeshkumar et al.,2016a). The conidia of these genera are very distinctive, often being biconic, with or without ahyaline equatorial, subequatorial or supraequatorial band, and with or without swollen separating cells. The unbranched or branched conidiophores and/or setae arise from radially lobed basal cells (Ellis, 1971, 1976; Seifert et al.,2011). -
Phylogeny and Taxonomy of the Genus Cylindrocladiella
Mycol Progress DOI 10.1007/s11557-011-0799-1 ORIGINAL ARTICLE Phylogeny and taxonomy of the genus Cylindrocladiella L. Lombard & R. G. Shivas & C. To-Anun & P. W. Crous Received: 10 June 2011 /Revised: 10 November 2011 /Accepted: 25 November 2011 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract The genus Cylindrocladiella was established to the 18 new Cylindrocladiella species described in this study accommodate Cylindrocladium-like fungi that have small, based on morphological and sequence data, several species cylindrical conidia and aseptate stipe extensions. Contemporary complexes remain unresolved. taxonomic studies of these fungi have relied on morphology and to a lesser extent on DNA sequence comparisons of the internal Keywords Cylindrocladiella . Cryptic species . Phylogeny. transcribed spacer regions (ITS 1, 2 and 5.8S gene) of the Taxonomy ribosomal RNA and the β-tubulin gene regions. In the present study, the identity of several Cylindrocladiella isolates collected over two decades was determined using morphology and phy- Introduction logenetic inference. A phylogeny constructed for these isolates employing the β-tubulin, histone H3, ITS, 28S large subunit and The genus Cylindrocladiella was established by Boesewinkel translation elongation factor 1-alpha gene regions resulted in the (1982) to accommodate five Cylindrocladium-like species identification of several cryptic species in the genus. In spite of producing small, cylindrical conidia. Cylindrocladiella, which is based on -
An Ex-Type Culture Cannot Always Tell the Ultimate Truth
An ex-type culture cannot always tell the CORRESPONDENCE ultimate truth This note is prompted by the case of the isolates accurately matching the description Domsch KH, Gams W, Anderson T-H (1980) generic name Ochroconis, a rather common of this species. The dried type culture Compendium of Soil Fungi. London: Academic genus of saprotrophic soil hyphomycetes, still shows the correct fungus and DNA Press. some of which grow occasionally on sequences of the other isolates representing Ellis MB (1971) Dematiaceous Hyphomycetes. Kew: humans and fish. Von Arx, in the 1970s, this species can be taken as correct. Commonwealth Mycological Institute. being mainly interested in producing Unfortunate consequences arise when Ellis MB (1976) More Dematiaceous Hyphomycetes. keys to identify fungal genera in culture a wrongly identified fungus is designated Kew: Commonwealth Mycological Institute. morphologically, did not believe that as an epitype of a species, as happened with Gams W (1971) Cephalosporium-artige Scolecobasidium terreum E.V. Abbott 1927 Hypocrea farinosa Berk. & Broome 1851 Schimmelpilze (Hyphomycetes). Stuttgart: G. with Y-shaped yellowish conidia, and for which Overton et al. (2000) designated Fischer. other species of this genus with darker, an epitype without studying the extant Gräfenhan T, Schroers H-J, Nirenberg HI, Seifert unbranched conidia were congeneric, holotype. It was left to Jaklitschet al. (2008) KA (2011) An overview of the taxonomy, as proposed by Barron & Busch (1962). to correct the situation and to resurrect the phylogeny, and typification of nectriaceous Therefore, he let his young staff member G. generic name Protocrea Petch 1937 for this fungi in Cosmospora, Acremonium, Fusarium, Sybren de Hoog describe a separate genus, fungus and its relatives, while Overton et al.’s Stilbella, and Volutella. -
An Updated Phylogeny of Sordariomycetes Based on Phylogenetic and Molecular Clock Evidence
Fungal Diversity DOI 10.1007/s13225-017-0384-2 An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence 1,2 3 1,2 Sinang Hongsanan • Sajeewa S. N. Maharachchikumbura • Kevin D. Hyde • 2 4 1 3 Milan C. Samarakoon • Rajesh Jeewon • Qi Zhao • Abdullah M. Al-Sadi • Ali H. Bahkali5 Received: 30 April 2017 / Accepted: 17 May 2017 Ó School of Science 2017 Abstract The previous phylogenies of Sordariomycetes by divergence period (i.e. 200–300 MYA) can be used as M.E. Barr, O.E. Eriksson and D.L. Hawksworth, and T. criteria to judge when a group of related taxa evolved and Lumbsch and S. Huhndorf, were mainly based on mor- what rank they should be given. In this paper, we provide phology and thus were somewhat subjective. Later outlines an updated classification of accepted subclasses, orders of by T. Lumbsch and S. Huhndorf, and Maharachchikum- Sordariomycetes and use divergence times to provide bura and co-authors, took into account phylogenetic evi- additional evidence to stabilize ranking of taxa in the class. dence. However, even these phylogenetic driven We point out and discuss discrepancies where the phylo- arrangements for Sordariomycetes, were somewhat sub- genetic tree conflicts with the molecular clock. jective, as the arrangements in trees depended on many variables, such as number of taxa, different gene regions Keywords Class Á Classification Á Divergence times Á and methods used in the analyses. What is needed is extra Phylogenetics Á Ranking evidence to help standardize ranking in the fungi. Esti- mation of divergence times using molecular clock methods Introduction has been proposed for providing additional rational for higher ranking of taxa. -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
Pseudodidymellaceae Fam. Nov.: Phylogenetic Affiliations Of
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 87: 187–206 (2017). Pseudodidymellaceae fam. nov.: Phylogenetic affiliations of mycopappus-like genera in Dothideomycetes A. Hashimoto1,2, M. Matsumura1,3, K. Hirayama4, R. Fujimoto1, and K. Tanaka1,3* 1Faculty of Agriculture and Life Sciences, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan; 2Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan; 3The United Graduate School of Agricultural Sciences, Iwate University, 18–8 Ueda 3 chome, Morioka, 020-8550, Japan; 4Apple Experiment Station, Aomori Prefectural Agriculture and Forestry Research Centre, 24 Fukutami, Botandaira, Kuroishi, Aomori, 036-0332, Japan *Correspondence: K. Tanaka, [email protected] Abstract: The familial placement of four genera, Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina, was taxonomically revised based on morphological observations and phylogenetic analyses of nuclear rDNA SSU, LSU, tef1, and rpb2 sequences. ITS sequences were also provided as barcode markers. A total of 130 sequences were newly obtained from 28 isolates which are phylogenetically related to Melanommataceae (Pleosporales, Dothideomycetes) and its relatives. Phylo- genetic analyses and morphological observation of sexual and asexual morphs led to the conclusion that Melanommataceae should be restricted to its type genus Melanomma, which is characterised by ascomata composed of a well-developed, carbonaceous peridium, and an aposphaeria-like coelomycetous asexual morph. Although Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina are phylogenetically related to Melanommataceae, these genera are characterised by epi- phyllous, lenticular ascomata with well-developed basal stroma in their sexual morphs, and mycopappus-like propagules in their asexual morphs, which are clearly different from those of Melanomma. -
(Hypocreales) Proposed for Acceptance Or Rejection
IMA FUNGUS · VOLUME 4 · no 1: 41–51 doi:10.5598/imafungus.2013.04.01.05 Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) ARTICLE proposed for acceptance or rejection Amy Y. Rossman1, Keith A. Seifert2, Gary J. Samuels3, Andrew M. Minnis4, Hans-Josef Schroers5, Lorenzo Lombard6, Pedro W. Crous6, Kadri Põldmaa7, Paul F. Cannon8, Richard C. Summerbell9, David M. Geiser10, Wen-ying Zhuang11, Yuuri Hirooka12, Cesar Herrera13, Catalina Salgado-Salazar13, and Priscila Chaverri13 1Systematic Mycology & Microbiology Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA; corresponding author e-mail: Amy.Rossman@ ars.usda.gov 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada 3321 Hedgehog Mt. Rd., Deering, NH 03244, USA 4Center for Forest Mycology Research, Northern Research Station, USDA-U.S. Forest Service, One Gifford Pincheot Dr., Madison, WI 53726, USA 5Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia 6CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 7Institute of Ecology and Earth Sciences and Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia 8Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK 9Sporometrics, Inc., 219 Dufferin Street, Suite 20C, Toronto, Ontario, Canada M6K 1Y9 10Department of Plant Pathology and Environmental Microbiology, 121 Buckhout Laboratory, The Pennsylvania State University, University Park, PA 16802 USA 11State -
Culture Inventory
For queries, contact the SFA leader: John Dunbar - [email protected] Fungal collection Putative ID Count Ascomycota Incertae sedis 4 Ascomycota Incertae sedis 3 Pseudogymnoascus 1 Basidiomycota Incertae sedis 1 Basidiomycota Incertae sedis 1 Capnodiales 29 Cladosporium 27 Mycosphaerella 1 Penidiella 1 Chaetothyriales 2 Exophiala 2 Coniochaetales 75 Coniochaeta 56 Lecythophora 19 Diaporthales 1 Prosthecium sp 1 Dothideales 16 Aureobasidium 16 Dothideomycetes incertae sedis 3 Dothideomycetes incertae sedis 3 Entylomatales 1 Entyloma 1 Eurotiales 393 Arthrinium 2 Aspergillus 172 Eladia 2 Emericella 5 Eurotiales 2 Neosartorya 1 Paecilomyces 13 Penicillium 176 Talaromyces 16 Thermomyces 4 Exobasidiomycetes incertae sedis 7 Tilletiopsis 7 Filobasidiales 53 Cryptococcus 53 Fungi incertae sedis 13 Fungi incertae sedis 12 Veroneae 1 Glomerellales 1 Glomerella 1 Helotiales 34 Geomyces 32 Helotiales 1 Phialocephala 1 Hypocreales 338 Acremonium 20 Bionectria 15 Cosmospora 1 Cylindrocarpon 2 Fusarium 45 Gibberella 1 Hypocrea 12 Ilyonectria 13 Lecanicillium 5 Myrothecium 9 Nectria 1 Pochonia 29 Purpureocillium 3 Sporothrix 1 Stachybotrys 3 Stanjemonium 2 Tolypocladium 1 Tolypocladium 2 Trichocladium 2 Trichoderma 171 Incertae sedis 20 Oidiodendron 20 Mortierellales 97 Massarineae 2 Mortierella 92 Mortierellales 3 Mortiererallales 2 Mortierella 2 Mucorales 109 Absidia 4 Backusella 1 Gongronella 1 Mucor 25 RhiZopus 13 Umbelopsis 60 Zygorhynchus 5 Myrmecridium 2 Myrmecridium 2 Onygenales 4 Auxarthron 3 Myceliophthora 1 Pezizales 2 PeZiZales 1 TerfeZia 1 -
Two New Species of Camarops (Boliniaceae, Ascomycotina) and a Key to Argentinean Species
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2005 Band/Volume: 57 Autor(en)/Author(s): Del Valle Cantania M., Romero A. I. Artikel/Article: Two new species of Camarops (Boliniaceae, Ascomycotina) and a key to Argentinean species. 3-18 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Two new species of Camarops (Boliniaceae, Ascomycotina) and a key to Argentinean species M. del Valle Catania1 & Andrea I. Romero2* 1 Fundaciön Miguel Lillo. Miguel Lillo 251. S.M. de Tucumän, 4000, Argentina 2 PHHIDEB-CONICET, Depto. Cs. Bioldgicas, Facultad de Cs. Exactas y Naturales (UBA), Ciudad Universitaria, Pabellön II, 4to. Piso, C1428EHA Buenos Aires, Argentina Catania, M. del Valle & Romero, A. I. (2003). Two new species of Camarops (Boliniaceae, Ascomycotina) and a key to Argentinean species. - Sydowia 57 (1): 3-18. Four species of Camarops growing on Podocarpus parlatorei were collected in Argentina. Two of them, C. sacciformis and C. podocarpi, are undescribed species and the other two {C.pugillus and C.lutea) are new records for Argentina. A dichotomous key to the six species so far known from Argentina is provided. Keywords: Camarops, Podocarpus, Argentina, systematics. The genus Camarops P. Karst. (Boliniaceae Rick) presently includes fourteen species (Kirk & al., 2001), which have been described and reported by Shear (1938, 1940), Nannfeldt (1972), Hilber & Hilber (1980), Rogers (1981), Lundqvist (1987), Rogers & Samuels (1987), Samuels & Rogers (1987), and Vasilyeva (1988, 1997). A key to the Camarops species in the Americas was provided by San Martin & Lavin (1997). -
11-31 Strandzha.Indd
MYCOLOGIA BALCANICA 8: 157–160 (2011) 157 New records of microfungal genera from Mt. Strandzha in Bulgaria (south-eastern Europe). II Elşad Hüseyin ¹*, Faruk Selçuk ¹ & Ali S. Bülbül ² ¹ Ahi Evran University, Arts and Sciences Faculty, Department of Biology, Kırşehir, Turkey ² Gazi University Sciences Faculty, Department of Biology, Ankara, Turkey Received 1 September 2011 / Accepted 1 December 2011 Abstract. Twenty species of ascomycetous and anamorphic fungi from twenty genera are reported for the first time from Mt. Strandzha in Bulgaria. Key words: Pezizomycotina, anamorphic fungi, Bulgaria, fungal diversity, Mt. Strandzha Introduction Index Fungorum (www.indexfungorum.org, accessed 2011). Host plants were identified using the Flora of Turkey and In 2005 during fi eld investigations in Mt. Strandzha in East Aegean Islands (Davis 1965–1985). Taxa, its families Bulgaria twenty genera that included twenty species of and author citations were listed according to Cannon & non-lichenized Pezizomycotina and anamorphic fungi were Kirk (2007), Kirk et al. (2008), and Index Fungorum (www. collected and identifi ed. Th ese collections are reported herein. indexfungorum.org, accessed 2011). Families and species All genera of these fungi are new records for the mycobiota of names are listed in alphabetical order in text. All specimens Bulgaria. are deposited at the Mycological Collection of the Arts and Sciences Faculty of Ahi Evran University (AhEUM), Kırşehir, Turkey. Materials and methods Abbrevation: EH: Collection number of Elşad Hüseyin. Specimens of the fungi were taken to the laboratory and examined under a Leica DM-E compound microscope. List of specimens Sections were hand cut using a razor blade. Th e fungi were identified using the relevant literature (Popushoy 1971; Boliniales Shvartsman at al. -
Annual Report 2013
UNIVERSITY OF ALBERTA MICROFUNGUS COLLECTION AND HERBARIUM (UAMH) A Unit of the Devonian Botanic Garden, Faculty of Agriculture, Life and Environmental Sciences Telephone 780‐987‐4811; Fax 780‐987‐4141; e‐mail: [email protected] http://www.uamh.devonian.ualberta.ca SUMMARY OF ACTIVITIES FOR 2013 Supporting fungal research for over 50 years Staff, Volunteers Professor Emeritus (Curator to June 30) ‐ L. Sigler Devonian Botanic Garden/UAMH, Fac. Agriculture, Life & Environmental Sciences Medical Microbiology & Immunology, Fac. of Medicine Adjunct Professor in Biological Sciences Consultant in Mycology, PLNA/UAH Microbiology & Public Health Acting Curator from July 1, 2013 (.5 FTE Non‐academic, .5 FTE trust) – C. Gibas Technicians (trust, casual): A. Anderson; V. Jajczay Volunteer‐ M. Packer Cultures Received, Distributed and Accessioned Cultures received for identification, deposit or in exchange (Table 1) ....................................... 210 Cultures distributed on request or in exchange (Table 2) ............................................................ 179 Culture Collection and Herbarium Accessions Accessions processed to Dec 31. .................................................................................................. 147 Total accessions ........................................................................................................................ 11819 Information on Culture Accessions available through print and on‐line CATALOGUES Catalogue of the University of Alberta Microfungus Collection and -
Causal Agent, Biology and Management of the Leaf and Stem
CAUSAL AGENT, BIOLOGY AND MANAGEMENT OF THE LEAF AND STEM DISEASE OF BOXWOOD {BUXUS SPP.) A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by FANG SHI In partial fulfillment of requirements for the degree of Master of Science May, 2011 ©Fang Shi, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-82801-4 Our file Notre reference ISBN: 978-0-494-82801-4 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.