An Updated Phylogeny of Sordariomycetes Based on Phylogenetic and Molecular Clock Evidence

Total Page:16

File Type:pdf, Size:1020Kb

An Updated Phylogeny of Sordariomycetes Based on Phylogenetic and Molecular Clock Evidence Fungal Diversity DOI 10.1007/s13225-017-0384-2 An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence 1,2 3 1,2 Sinang Hongsanan • Sajeewa S. N. Maharachchikumbura • Kevin D. Hyde • 2 4 1 3 Milan C. Samarakoon • Rajesh Jeewon • Qi Zhao • Abdullah M. Al-Sadi • Ali H. Bahkali5 Received: 30 April 2017 / Accepted: 17 May 2017 Ó School of Science 2017 Abstract The previous phylogenies of Sordariomycetes by divergence period (i.e. 200–300 MYA) can be used as M.E. Barr, O.E. Eriksson and D.L. Hawksworth, and T. criteria to judge when a group of related taxa evolved and Lumbsch and S. Huhndorf, were mainly based on mor- what rank they should be given. In this paper, we provide phology and thus were somewhat subjective. Later outlines an updated classification of accepted subclasses, orders of by T. Lumbsch and S. Huhndorf, and Maharachchikum- Sordariomycetes and use divergence times to provide bura and co-authors, took into account phylogenetic evi- additional evidence to stabilize ranking of taxa in the class. dence. However, even these phylogenetic driven We point out and discuss discrepancies where the phylo- arrangements for Sordariomycetes, were somewhat sub- genetic tree conflicts with the molecular clock. jective, as the arrangements in trees depended on many variables, such as number of taxa, different gene regions Keywords Class Á Classification Á Divergence times Á and methods used in the analyses. What is needed is extra Phylogenetics Á Ranking evidence to help standardize ranking in the fungi. Esti- mation of divergence times using molecular clock methods Introduction has been proposed for providing additional rational for higher ranking of taxa. Thus, in Sordariomycetes, a Sordariomycetes is an important class of ascomycetes, mainly characterized by non-lichenized, flask-shaped fruit- ing bodies (perithecia) and unitunicate asci (Lumbsch 2000; Electronic supplementary material The online version of this article (doi:10.1007/s13225-017-0384-2) contains supplementary Zhang et al. 2006; Maharachchikumbura et al. 2015, 2016). material, which is available to authorized users. However, this simple definition could change upon the growth form and habitat. Most members of Xylariomyceti- & Qi Zhao dae and some of Sordariomycetidae have dark perithecia, [email protected] amyloid asci, true paraphyses and periphysate ostioles, while 1 Key Laboratory of Plant Diversity and Biogeography of East most taxa of Hypocreomycetidae have light coloured Asia, Kunming Institute of Botany, Chinese Academy of perithecia, nonamyloid ascal apical rings (when apical rings Sciences, Kunming 650201, Yunnan, People’s Republic of are present) and lack true paraphyses. Some groups of Sor- China dariomycetes have cleistothecia (Zhang et al. 2006; Tang 2 Center of Excellence in Fingal Research, Mae Fah Luang et al. 2007; Senanayake et al. 2015). The class Sordari- University, Chiang Rai 57100, Thailand omycetes has a cosmopolitan distribution and accommo- 3 Department of Crop Sciences, College of Agricultural and dates mostly terrestrial taxa, although several taxa can be Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman found in aquatic habitats (Hyde and Jones 1989; Tsui et al. 2000; Ho et al. 2001; Cai et al. 2002; Jones et al. 4 Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 2009a, b, 2015). They are also pathogens of plants, arthro- pods and mammals (Sung et al. 2007; Maharachchikumbura 5 Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box: 2455, Riyadh 1145, Saudi et al. 2012, 2015; Hyde et al. 2014, 2016) and have been Arabia isolated as endophytes from various plants (Guo et al. 2001; 123 Fungal Diversity Promputtha et al. 2005), while many are saprobes involved proposed changes, including new introductions and discuss in decomposition and nutrient cycling (Prados-Rosale et al. discrepancies between divergent times and phylogenetic 2012; Keim et al. 2014; Liu et al. 2015; Ariyawansa et al. results, when they are inconsistent. 2015; Li et al. 2016). The classification of Sordariomycetes has changed Materials and methods drastically over the past decades because of the plasticity and variability in phenotype characters (Alexopoulos et al. 1996; Barr 1983, 1987, 1990; Eriksson and Hawksworth Phylogenetic analysis 1993). In addition, morphology alone is unable to provide Representative LSU, SSU, TEF1 and RPB2 sequence evidence for the natural origins and patterns of evolution data from each family in Sordariomycetes and some strains among these fungi (Mitchell et al. 1995; Vijaykrishna et al. of Leotiomycetes (346 taxa) were downloaded from Gen- 2006; Tang et al. 2007). Molecular studies on Sordari- Bank to supplement the dataset (Supplementary Table 1). omycetes began in the early 1990s and SSU and LSU Representative strains from Eurotiomycetes were used as sequence data was mostly used as markers (Berbee and outgroup taxa. The data set was aligned by using MAFFT Taylor 1992; Spatafora and Blackwell 1993; Spatafora (Katoh et al. 2009), checked and aligned manually using 1995). However, SSU and LSU alone, are not sufficient to Bioedit (Hall 1999). Maximum likelihood analysis using resolve the most of the groups in Sordariomycetes as they RAxML was performed by using raxmlGUIv.0.9b2 (Sil- have a low resolution in ranking taxa (Tang et al. 2007). vestro & Michalak 2012). The GTRGAMMA model was The higher ranking of Sordariomycetes is not yet stable. used in the analysis, the search strategy was set to 1000 Eriksson and Winka (1997) introduced three subclasses, rapid bootstrapping. The number of replicates was inferred Hypocreomycetidae, Sordariomycetidae and Xylari- using the stopping criterion (Pattengale et al. 2009). The omycetidae based on morphology (perithecial ascomata, trees from analysis were viewed in FigTree (Rambaut hamathecium composed of paraphyses, ostioles with peri- 2006). The bootstrap values equal or greater than 50% are physes and unitunicate or pseudoprotunicate asci) and given as the first set of numbers above the nodes (Fig. 1). nrDNA sequence data. However, it has been found that assemblages of protein genes yield a higher phylogenetic Molecular clock analysis resolution, as compared to ribosomal regions (Schoch et al. Data for the molecular clock analysis of Sordari- 2009). In most recent studies, in addition to ribosomal omycetes is provided in Hyde et al. (2017). We use the data genes, the phylogenetic relationships among Sordari- from the molecular clock evidence in this paper and omycetes were investigated using partial translation elon- compare it with the phylogenetic tree presented here. The gation factor 1-alpha, the second largest subunit of RNA conflicts found between the MCC tree in Hyde et al. (2017) polymerase (RPB2) and beta-tubulin genes (Zhang et al. and the phylogenetic tree in this study are discussed below. 2006; Tang et al. 2007). In a revision of Sordariomycetes, Maharachchikumbura et al. (2015) introduced three new subclasses; Diaporthomycetidae, Lulworthiomycetidae, Results and discussion and Meliolomycetidae based on morphology and combined analysis of LSU, SSU, TEF and RPB2 sequence data. Representative strains of LSU, SSU, TEF1 and RPB2 According to the outline by Maharachchikumbura et al. sequence data of Sordariomycetes and Leotiomycetes were (2016), Sordariomycetes currently has six subclasses, 32 included in the phylogenetic analysis; representative strains orders, 105 families and 1331 genera. of Eurotiomycetes were selected as an outgroup (Figs. 1, Fossil calibration data and divergence time estimates are 2). Phylogenetic analysis generated by RAxML analysis being used as additional evidence for the ranking of fungi indicates Sordariomycetes share a common ancestor with (Beimforde et al. 2014; Hongsanan et al. 2016;Pe´rez- Leotiomycetes with high support (94% ML). In the tree, Ortega et al. 2016; Samarakoon et al. 2016; Zhao et al. Diaporthomycetidae, Hypocreomycetidae, Lulwor- 2016) and studies have shown that Sordariomycetes had a thiomycetidae, Sordariomycetidae, Savoryellomycetidae higher speciation process over time, when compared to and Xylariomycetidae are well-supported. Meliolomyceti- Dothideomycetes and Leotiomycetes (Wang et al. 2010). dae belongs to Sordariomycetidae, and is no longer treated In this paper, we provide an updated backbone tree for as subclass. Savoryellomycetidae is introduced formally in Sordariomycetes based on the analysis of LSU, SSU, TEF this study based on phylogenetic analysis (100% ML) and and RPB2 sequence data. Based on the new phylogenies its stem age (267 MYA) reported in Hyde et al. (2017). The and additional evidence from divergence times published internal classification of each subclass is discussed in this in Hyde et al. (2017), several taxonomic changes to Sor- paper based on phylogenetic (this study) and the MCC dariomycetes are necessary. We therefore provide a list of trees (Hyde et al. 2017). Moreover, some conflicts between 123 Fungal Diversity Fig. 1 RAxML maximum likelihood phylogenetic tree Diaporthales (LSU, SSU, TEF1 and RPB2) of Calosphaeriales Sordariomycetes tree (compressed overview tree) Togniniales from 345 taxa with all lineages Magnaporthales collapsed to order level where Distoseptisporaceae possible. Subclasses are indicated in coloured blocks Myrmecridiales Annulatascales Diaporthomycedae Thyridiaceae Phomatosporales Ophiostomatales Papulosaceae Trichosphaeriaceae Sporidesmiaceae Amplistromatales
Recommended publications
  • Thyronectria Revisited and Re-Instated
    Persoonia 33, 2014: 182–211 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X685211 Persistent hamathecial threads in the Nectriaceae, Hypocreales: Thyronectria revisited and re-instated W.M. Jaklitsch1, H. Voglmayr1,2 Key words Abstract Based on type studies and freshly collected material we here re-instate the genus Thyronectria (Nec- triaceae, Hypocreales). Species of this genus were recently for the most part classified in the genera Pleonectria act (Nectriaceae) or Mattirolia (Thyridiaceae), because Thyronectria and other genera had been identified as members Ascomycota of the Thyridiaceae due to the presence of paraphyses. Molecular phylogenies based on several markers (act, ITS, Hypocreales LSU rDNA, rpb1, rpb2, tef1, tub) revealed that the Nectriaceae contain members whose ascomata are characterised Mattirolia by long, more or less persistent, apical paraphyses. All of these belong to a single genus, Thyronectria, which thus Nectriaceae has representatives with hyaline, rosy, green or even dark brown and sometimes distoseptate ascospores. The new species type species of Thyronectria, T. rhodochlora, syn. T. patavina, syn. T. pyrrhochlora is re-described and illustrated. Pleonectria Within the Nectriaceae persistent, apical paraphyses are common in Thyronectria and rarely also occur in Nectria. pyrenomycetes The genus Mattirolia is revised and merged with Thyronectria and also Thyronectroidea is regarded as a synonym rpb1 of Thyronectria. The three new species T. asturiensis, T. caudata and T. obscura are added to the genus. Species rpb2 recently described in Pleonectria as well as some species of Mattirolia are combined in the genus, and a key to tef1 Thyronectria is provided. Five species are epitypified.
    [Show full text]
  • Beltrania-Like Taxa from Thailand
    Cryptogamie, Mycologie, 2017, 38 (3): 301-319 © 2017 Adac. Tous droits réservés Beltrania-like taxa from Thailand Chuan-Gen LIN a, d,Kevin D. HYDE a, d, Saisamorn LUMYONG b &Eric H. C. MCKENZIE c* aCenter of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand bDepartment of Biology,Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand cLandcareResearch Manaaki Whenua, Private Bag 92170, Auckland, New Zealand dSchool of Science, Mae Fah Luang University,Chiang Rai 57100, Thailand Abstract – Four Beltrania-like taxa, viz., Beltrania rhombica, Beltraniella fertilis, Beltraniopsis longiconidiophora sp. nov. and Hemibeltrania cinnamomi were identified during asurvey of hyphomycetes in Thailand. Each species is provided with adescription and amolecular analysis. The new species is introduced based on morphological and molecular differences and compared with similar taxa. Beltraniella fertilis and H. cinnamomi are new records for Thailand. Beltrania-complex /Beltraniaceae /Phylogeny /Taxonomy /Xylariomycetidae InTroducTIon The family Beltraniaceae Nann. was introduced by Nannizzi in 1934 to accommodate the genus Beltrania Penz. and some similar genera, and the tribe Beltranieae was treated as asynonym of this family (Pirozynski, 1963). Presently, eight genera, viz., Beltrania, Beltraniella Subram., Beltraniopsis Bat. &J.L. Bezerra, Hemibeltrania Piroz., Parapleurotheciopsis P.M. Kirk, Porobeltraniella Gusmão, Pseudobeltrania Henn. and Subramaniomyces Varghese &V.G. Rao, are accepted in the family (Crous et al.,2015b; Maharachchikumbura et al.,2015, 2016; Rajeshkumar et al.,2016a). The conidia of these genera are very distinctive, often being biconic, with or without ahyaline equatorial, subequatorial or supraequatorial band, and with or without swollen separating cells. The unbranched or branched conidiophores and/or setae arise from radially lobed basal cells (Ellis, 1971, 1976; Seifert et al.,2011).
    [Show full text]
  • Pseudodidymellaceae Fam. Nov.: Phylogenetic Affiliations Of
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 87: 187–206 (2017). Pseudodidymellaceae fam. nov.: Phylogenetic affiliations of mycopappus-like genera in Dothideomycetes A. Hashimoto1,2, M. Matsumura1,3, K. Hirayama4, R. Fujimoto1, and K. Tanaka1,3* 1Faculty of Agriculture and Life Sciences, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan; 2Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan; 3The United Graduate School of Agricultural Sciences, Iwate University, 18–8 Ueda 3 chome, Morioka, 020-8550, Japan; 4Apple Experiment Station, Aomori Prefectural Agriculture and Forestry Research Centre, 24 Fukutami, Botandaira, Kuroishi, Aomori, 036-0332, Japan *Correspondence: K. Tanaka, [email protected] Abstract: The familial placement of four genera, Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina, was taxonomically revised based on morphological observations and phylogenetic analyses of nuclear rDNA SSU, LSU, tef1, and rpb2 sequences. ITS sequences were also provided as barcode markers. A total of 130 sequences were newly obtained from 28 isolates which are phylogenetically related to Melanommataceae (Pleosporales, Dothideomycetes) and its relatives. Phylo- genetic analyses and morphological observation of sexual and asexual morphs led to the conclusion that Melanommataceae should be restricted to its type genus Melanomma, which is characterised by ascomata composed of a well-developed, carbonaceous peridium, and an aposphaeria-like coelomycetous asexual morph. Although Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina are phylogenetically related to Melanommataceae, these genera are characterised by epi- phyllous, lenticular ascomata with well-developed basal stroma in their sexual morphs, and mycopappus-like propagules in their asexual morphs, which are clearly different from those of Melanomma.
    [Show full text]
  • Evidence That the Gemmae of Papulaspora Sepedonioides Are Neotenous Perithecia in the Melanosporales
    Mycologia, 100(4), 2008, pp. 626–635. DOI: 10.3852/08-001R # 2008 by The Mycological Society of America, Lawrence, KS 66044-8897 Evidence that the gemmae of Papulaspora sepedonioides are neotenous perithecia in the Melanosporales Marie L. Davey1 modates ascomycetes producing asexual thallodic Akihiko Tsuneda propagules that at some point in their development Randolph S. Currah are heterogenous and differentiated into a core of Department of Biological Sciences, University of Alberta, enlarged, often darkly pigmented central cells that is Edmonton, Alberta, Canada T6G 2E9 surrounded by smaller, mostly hyaline sheathing cells (Weresub and LeClair 1971, Kirk et al 2001). The diagnostic propagules of Papulaspora have been Abstract: Papulaspora sepedonioides produces large referred to as bulbils, small sclerotia, conidia and multicellular gemmae with several, thick-walled cen- papulospores (Weresub and LeClair 1971) but herein tral cells enclosed within a sheath of smaller thin- are classified under the generalized term ‘‘gemmae’’, walled cells. Phylogenetic analysis of the large subunit in reference to their function as multicellular asexual rDNA indicates P. sepedonioides has affinities to the reproductive structures. Melanosporales (Hypocreomycetidae). The develop- The phylogenetic affinities of members of Papulas- ment of gemmae in P. sepedonioides was characterized pora are largely unresolved, although Papulaspora by light and scanning and transmission electron anamorphs have been reported for species of microscopy and was similar to previous ontogenetic Melanospora and Ceratostoma (Ceratostomataceae, studies of ascoma development in the Melanospor- Melanosporales sensu Hibbett et al 2007) (Bainier ales. However instead of giving rise to ascogenous 1907, Hotson 1917, Weresub and LeClair 1971) and a tissues the central cells of the incipient gemma species of Chaetomium (Chaetomiaceae, Sordariales) became darkly pigmented, thick walled and filled (Zang et al 2004).
    [Show full text]
  • <I>Acrocordiella</I>
    Persoonia 37, 2016: 82–105 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X690475 Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria W.M. Jaklitsch1,2, A. Gardiennet3, H. Voglmayr2 Key words Abstract Fresh material, type studies and molecular phylogeny were used to clarify phylogenetic relationships of the nine genera Acrocordiella, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Ascomycota Requienella, Seiridium and Strickeria. At first sight, some of these genera do not seem to have much in com- Dothideomycetes mon, but all were found to belong to the Xylariales, based on their generic types. Thus, the most peculiar finding new genus is the phylogenetic affinity of the genera Acrocordiella, Requienella and Strickeria, which had been classified in phylogenetic analysis the Dothideomycetes or Eurotiomycetes, to the Xylariales. Acrocordiella and Requienella are closely related but pyrenomycetes distinct genera of the Requienellaceae. Although their ascospores are similar to those of Lepteutypa, phylogenetic Pyrenulales analyses do not reveal a particularly close relationship. The generic type of Lepteutypa, L. fuckelii, belongs to the Sordariomycetes Amphisphaeriaceae. Lepteutypa sambuci is newly described. Hymenopleella is recognised as phylogenetically Xylariales distinct from Lepteutypa, and Hymenopleella hippophaëicola is proposed as new name for its generic type, Spha­ eria (= Lepteutypa) hippophaës. Clypeosphaeria uniseptata is combined in Lepteutypa. No asexual morphs have been detected in species of Lepteutypa. Pseudomassaria fallax, unrelated to the generic type, P. chondrospora, is transferred to the new genus Basiseptospora, the genus Pseudapiospora is revived for P. corni, and Pseudomas­ saria carolinensis is combined in Beltraniella (Beltraniaceae).
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]
  • UC Riverside UC Riverside Previously Published Works
    UC Riverside UC Riverside Previously Published Works Title Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Permalink https://escholarship.org/uc/item/3fm155t1 Authors U'Ren, Jana M Miadlikowska, Jolanta Zimmerman, Naupaka B et al. Publication Date 2016-05-01 DOI 10.1016/j.ympev.2016.02.010 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California *Graphical Abstract (for review) ! *Highlights (for review) • Endophytes illuminate Xylariaceae circumscription and phylogenetic structure. • Endophytes occur in lineages previously not known for endophytism. • Boreal and temperate lichens and non-flowering plants commonly host Xylariaceae. • Many have endophytic and saprotrophic life stages and are widespread generalists. *Manuscript Click here to view linked References 1 Contributions of North American endophytes to the phylogeny, 2 ecology, and taxonomy of Xylariaceae (Sordariomycetes, 3 Ascomycota) 4 5 6 Jana M. U’Ren a,* Jolanta Miadlikowska b, Naupaka B. Zimmerman a, François Lutzoni b, Jason 7 E. Stajichc, and A. Elizabeth Arnold a,d 8 9 10 a University of Arizona, School of Plant Sciences, 1140 E. South Campus Dr., Forbes 303, 11 Tucson, AZ 85721, USA 12 b Duke University, Department of Biology, Durham, NC 27708-0338, USA 13 c University of California-Riverside, Department of Plant Pathology and Microbiology and Institute 14 for Integrated Genome Biology, 900 University Ave., Riverside, CA 92521, USA 15 d University of Arizona, Department of Ecology and Evolutionary Biology, 1041 E. Lowell St., 16 BioSciences West 310, Tucson, AZ 85721, USA 17 18 19 20 21 22 23 24 * Corresponding author: University of Arizona, School of Plant Sciences, 1140 E.
    [Show full text]
  • SMT Nr 2 2016
    Svensk Mykologisk Tidskrift Volym 37 · nummer 2 · 2016 Svensk Mykologisk Tidskrift inkluderar tidigare: www.svampar.se Svensk Mykologisk Tidskrift Sveriges Mykologiska Förening Tidskriften publicerar originalartiklar med svamp- Föreningen verkar för anknytning och med svenskt och nordeuropeiskt - en bättre kännedom om Sveriges svampar och intresse. Tidskriften utkommer med fyra nummer svampars roll i naturen per år och ägs av Sveriges Mykologiska Förening. - skydd av naturen och att svampplockning och an- Instruktioner till författare finns på SMF:s hemsida nat uppträdande i skog och mark sker under iakt- www.svampar.se. Tidskriften erhålls genom med- tagande av gällande lagar lemskap i SMF. Tidskriften framställs med bidrag - att kontakter mellan lokala svampföreningar och från Tore Nathorst-Windahls minnesfond. svampintresserade i landet underlättas - att kontakt upprätthålls med mykologiska förenin- gar i grannländer - en samverkan med mykologisk forskning och Redaktion vetenskap. Redaktör och ansvarig utgivare Mikael Jeppson Medlemskap erhålles genom insättning av medlems- Lilla Håjumsgatan 4 avgiften på föreningens bankgiro 461 35 TROLLHÄTTAN 5388-7733 0520-82910 [email protected] Medlemsavgiften för 2016 är: • 275:- för medlemmar bosatta i Sverige Hjalmar Croneborg • 375:- för medlemmar bosatta utanför Sverige Gammelgarn Mattsarve 504 • 125:- för studerande medlemmar bosatta i 623 67 Katthammarsvik Sverige (maximalt under 5 år) tel. 0706 15 05 75 • 50:- för familjemedlemmar (erhåller ej SMT) [email protected] Subscriptions from abroad are welcome. Payments Jan Nilsson for 2016 (SEK 375.-) can be made by credit card by Smeberg 2 visting our webshop at www.svampar.se or to our 457 50 BULLAREN bank account: 0525-20972 [email protected] IBAN: SE6180000835190038262804 BIC/SWIFT: SWEDSESS Äldre nummer av Svensk Mykologisk Tidskrift (inkl.
    [Show full text]
  • Pacific Northwest Fungi
    North American Fungi Volume 8, Number 10, Pages 1-13 Published June 19, 2013 Vialaea insculpta revisited R.A. Shoemaker, S. Hambleton, M. Liu Biodiversity (Mycology and Botany) / Biodiversité (Mycologie et Botanique) Agriculture and Agri-Food Canada / Agriculture et Agroalimentaire Canada 960 Carling Avenue / 960, avenue Carling, Ottawa, Ontario K1A 0C6 Canada Shoemaker, R.A., S. Hambleton, and M. Liu. 2013. Vialaea insculpta revisited. North American Fungi 8(10): 1-13. doi: http://dx.doi: 10.2509/naf2013.008.010 Corresponding author: R.A. Shoemaker: [email protected]. Accepted for publication May 23, 2013 http://pnwfungi.org Copyright © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada Abstract: Vialaea insculpta, occurring on Ilex aquifolium, is illustrated and redescribed from nature and pure culture to assess morphological features used in its classification and to report new molecular studies of the Vialaeaceae and its ordinal disposition. Tests of the germination of the distinctive ascospores in water containing parts of Ilex flowers after seven days resulted in the production of appressoria without mycelium. Phylogenetic analyses based on a fragment of ribosomal RNA gene small subunit suggest that the taxon belongs in Xylariales. Key words: Valsaceae and Vialaeaceae, (Diaporthales), Diatrypaceae (Diatrypales), Amphisphaeriaceae and Hyphonectriaceae (Xylariales), Ilex, endophyte. 2 Shoemaker et al. Vialaea inscupta. North American Fungi 8(10): 1-13 Introduction: Vialaea insculpta (Fr.) Sacc. is on oatmeal agar at 20°C exposed to daylight. a distinctive species occurring on branches of Isolation attempts from several other collections Ilex aquifolium L. Oudemans (1871, tab.
    [Show full text]
  • Xylariales, Ascomycota), Designation of an Epitype for the Type Species of Iodosphaeria, I
    VOLUME 8 DECEMBER 2021 Fungal Systematics and Evolution PAGES 49–64 doi.org/10.3114/fuse.2021.08.05 Phylogenetic placement of Iodosphaeriaceae (Xylariales, Ascomycota), designation of an epitype for the type species of Iodosphaeria, I. phyllophila, and description of I. foliicola sp. nov. A.N. Miller1*, M. Réblová2 1Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, IL, USA 2Czech Academy of Sciences, Institute of Botany, 252 43 Průhonice, Czech Republic *Corresponding author: [email protected] Key words: Abstract: The Iodosphaeriaceae is represented by the single genus, Iodosphaeria, which is composed of nine species with 1 new taxon superficial, black, globose ascomata covered with long, flexuous, brown hairs projecting from the ascomata in a stellate epitypification fashion, unitunicate asci with an amyloid apical ring or ring lacking and ellipsoidal, ellipsoidal-fusiform or allantoid, hyaline, phylogeny aseptate ascospores. Members of Iodosphaeria are infrequently found worldwide as saprobes on various hosts and a wide systematics range of substrates. Only three species have been sequenced and included in phylogenetic analyses, but the type species, taxonomy I. phyllophila, lacks sequence data. In order to stabilize the placement of the genus and family, an epitype for the type species was designated after obtaining ITS sequence data and conducting maximum likelihood and Bayesian phylogenetic analyses. Iodosphaeria foliicola occurring on overwintered Alnus sp. leaves is described as new. Five species in the genus form a well-supported monophyletic group, sister to thePseudosporidesmiaceae in the Xylariales. Selenosporella-like and/or ceratosporium-like synasexual morphs were experimentally verified or found associated with ascomata of seven of the nine accepted species in the genus.
    [Show full text]
  • (<I>Sporocadaceae</I>): an Important Genus of Plant Pathogenic Fungi
    Persoonia 40, 2018: 96–118 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2018.40.04 Seiridium (Sporocadaceae): an important genus of plant pathogenic fungi G. Bonthond1, M. Sandoval-Denis1,2, J.Z. Groenewald1, P.W. Crous1,3,4 Key words Abstract The genus Seiridium includes multiple plant pathogenic fungi well-known as causal organisms of cankers on Cupressaceae. Taxonomically, the status of several species has been a topic of debate, as the phylogeny of the appendage-bearing conidia genus remains unresolved and authentic ex-type cultures are mostly absent. In the present study, a large collec- canker pathogen tion of Seiridium cultures and specimens from the CBS and IMI collections was investigated morphologically and Cupressus phylogenetically to resolve the taxonomy of the genus. These investigations included the type material of the most pestalotioid fungi important Cupressaceae pathogens, Seiridium cardinale, S. cupressi and S. unicorne. We constructed a phylogeny systematics of Seiridium based on four loci, namely the ITS rDNA region, and partial translation elongation factor 1-alpha (TEF), β-tubulin (TUB) and RNA polymerase II core subunit (RPB2). Based on these results we were able to confirm that S. unicorne and S. cupressi represent different species. In addition, five new Seiridium species were described, S. cupressi was lectotypified and epitypes were selected for S. cupressi and S. eucalypti. Article info Received: 24 August 2017; Accepted: 2 November 2017; Published: 9 January 2018. INTRODUCTION cardinale is the most aggressive and was first identified in California, from where the disease has since spread to other The genus Seiridium (Sordariomycetes, Xylariales, Sporoca­ continents.
    [Show full text]
  • An Advance in the Endophyte Story: Oxydothidaceae Fam. Nov . with Six New Species of Oxydothis
    Mycosphere 7 (9): 1425–1446 (2016) www.mycosphere.org ISSN 2077 7019 Article – special issue Doi 10.5943/mycosphere/7/9/15 Copyright © Guizhou Academy of Agricultural Sciences An advance in the endophyte story: Oxydothidaceae fam. nov. with six new species of Oxydothis Konta S1, Hongsanan S1, Tibpromma S1,2, Thongbai B1, Maharachchikumbura SSN3, Bahkali AH4, Hyde KD1,2 & Boonmee S1* 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 3Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 8, 123, Al Khoud, Oman 4Department of Botany and Microbiology, King Saudi University, Riyadh, Saudi Arabia Konta S, Hongsanan S, Tibpromma S, Thongbai B, Maharachchikumbura SSN, Bahkali AH, Hyde KD, Boonmee S. 2016 – An advance in the endophyte story: Oxydothidaceae fam. nov. with six new species of Oxydothis. Mycosphere 7 (9), 1425–1446, Doi 10.5943/mycosphere/7/9/15 Abstract Oxydothis species are associated with monocotyledons including Arecaceae (palms), Pandanaceae, Poaceae (Bamboo) and Liliaceae and have been recorded as endophytes, pathogens and saprobes. Species of Oxydothis form singly or in clusters, as darkened, raised regions or dots on the surface of host. This paper clarifies the placement of Oxydothis and related species based on morphological characteristics and phylogenetic analyses using recent collections from Thailand. Oxydothis species are characterized by cylindrical asci, with a J+ (rarely J-) subapical ring and filiform to fusiform, hyaline, 1-septate ascospores, tapering from the center to spine-like, pointed or rounded ends.
    [Show full text]