Typha Angustifolia and T

Total Page:16

File Type:pdf, Size:1020Kb

Typha Angustifolia and T Final Report – Typha angustifolia and T. x glauca suppression at Mukwonago River Floodplain (TNC Lulu Lake Preserve) Walworth County, WI ∳Integrated Restorations, LLC Ecological Restoration & Land Management Services Integrating Ecological Theory and Research with Restoration Practices Final Report – Typha angustifolia and T. x glauca suppression at Mukwonago River Floodplain (TNC Lulu Lake Preserve) By Craig A. Annen Integrated Restorations, LLC June 2015 228 South Park Street Belleville, WI 53508 (608) 424-6997 (office) (608) 547-1713 (mobile) [email protected] Deliverable final report for contract number 60112-2012028 between The Nature Conservancy, Inc. and Integrated Restorations, LLC Final Report – Typha angustifolia suppression at Lulu Lake Preserve Page 2 Summary 1. A well-established population of Typha angustifolia was present in the Mukwonago River wetland and was found to be spreading at an accelerated rate. This expansion was of immediate management concern and an effective suppression method needed to be developed and empirically tested to protect the biological and ecological integrity of the wetland basin. 2. Both Typha angustifolia and T. x glauca were present in the Mukwonago River floodplain wetland. 3. T. angustifolia covered 4.83 acres of the wetland basin in 2010 (prior to management intervention), equal to 10.9% of the wetland area. T. x glauca occurred sporadically as individual culms throughout the wetland basin. 4. Cumulative species richness of the wetland basin (from 2012 through 2014) was S = 159, with a high proportion of conservative species. Cumulative Floristic Quality (FQI) was estimated at 67.2. 5. Three Wisconsin Special Concern species were detected during the three-year botanical survey: Solidago ohioensis (Ohio goldenrod), Triglochin maritima (bog arrow-grass), and Thelypteris simulata (bog fern). The wetland also supports a small population of Platanthera huronensis (Huron pale green orchid). 6. The Mukwonago River wetland basin has high beta (habitat) diversity, with floristic elements of shrub-carr, southern sedge meadow, bog, fen, wet prairie, aquatic, and riparian emergent wetland types present. 7. The Mukwonago River wetland basin has exceptional natural area quality, and is a high quality natural resource in the Mukwonago River watershed. 8. A single directed cut surface application of imazapyr to T. angustifolia and T. x glauca reduced stem density > 90% for three consecutive growing seasons compared to untreated controls. 9. Plant species density and diversity were similar between treated and non-treated areas, indicating that the suppression technique was methodically selective, even though a non- selective herbicide was used. 10. A variety of sensitive wildlife species were documented within the project area, indicating that the treatment protocol did not elicit any adverse effects to these organisms. 11. Imazapyr application to 1 in 4 cut Typha stems was effective in suppressing the majority of the stand via intra-clonal rhizome translocation, although limited follow up application will be required to suppress immature Typha plants that survived treatments because they were not connected to the rhizome network of the main clone at the time of treatment. 12. This selective approach was effective at reversing the T. angustifolia invasion in this wetland basin. 13. Although absent from control plots, Lythrum salicaria increased in abundance in treated plots following a two-year lag time. Biocontrol should be concurrent with Typha suppression management in the wetlands of the Mukwonago Watershed. Final Report – Typha angustifolia suppression at Lulu Lake Preserve Page 3 Site Description The 40.3-acre project area is bisected by the Mukwonago River, which flows in a west-east direction and empties into Lulu Lake (map 1). Aquatic and emergent wetland vegetation coenoclines occupy the channel and banks of the Mukwonago River, and the wetland also supports diverse assemblages of sedge meadow, fen, bog, and wet prairie herbaceous plant communities within the topographical depressions of the river’s floodplain (map 1). The wetland consists of 29.5 acres of remnant sedge meadow overlying a Marsh (Mf) soil series, with an additional 10.8 acres of the floodplain basin supporting a diverse wet prairie community atop Houghton muck (Ht) soil series (USDA NRCS 2012, Appendix 1). Both the Houghton muck and Marsh organic soils are derived from the decay of herbaceous organic plant material within the wetland and have similar profiles. Both soil types are very poorly drained, occur on slopes of 0 – 2%, have high water holding capacities, intersect the water table at the soil surface, and are prone to frequent ponding. The Houghton muck differs from the Marsh series in that the former is rarely flooded whereas the latter is frequently flooded. The wetland has a history of prescribed burning as a part of ongoing restoration and management within the Lulu Lake Nature Preserve. When this project was initiated, a population of Typha angustifolia had invaded the sedge meadow portion of this wetland and was rapidly expanding; this expansion was of immediate management concern and suppressive intervention was deemed necessary before this species could establish a monoculture to the exclusion of native wetland vegetation. Project Goals 1. Determine the extent of the Typha angustifolia infestation in the wetland basin. 2. Ascertain if the model derived by Boers and Zedler (2008) accurately predicted this species' rate of spread. 3. Determine if individuals of both narrow-leaved cattail (Typha angustifolia) and hybrid cattail (T. x glauca) were present in the wetland. 4. Develop a selective and effective Typha suppression technique for use in areas where Typha is commingled with desirable non-target native species. 5. Reduce the distribution and abundance of established Typha angustifolia and T. x glauca stands within the sedge meadow without causing excessive collateral damage to non-target sedge meadow species or disrupting the ecological integrity of the site. 6. Empirically determine if the suppression technique was effective at reducing Typha densities without causing excessive collateral damage to non-target sedge meadow species. 7. Conduct a detailed botanical inventory and Floristic Quality Assessment of the native vegetation communities present within the wetland. Final Report – Typha angustifolia suppression at Lulu Lake Preserve Page 4 Map 1: Vegetation communities of the Mukwonago River wetland basin. Extent of Typha angustifolia invasion In a 2010 baseline survey, we mapped the extent of Typha angustifolia invasion in the Mukwonago River wetland. Where it was abundant enough to be discernible on aerial photos, T. angustifolia covered 4.35 acres of the wetland basin. The majority of T. angustifolia clones were located to the south of the Mukwonago River (map 2). T. angustifolia was intermixed with a diverse assortment of native sedge meadow species within the wetland basin. Boers and Zedler (2008) used a time-series of aerial photographs from 1963 – 2000 to construct a predictive model for T. angustifolia’s rate of spread within the watershed. Boers and Zedler (2008) reported that T. angustifolia dominated 5.3% of the Mukwonago River wetland in 2000, and based upon an analysis of its rate of spread during the 37-year time period they predicted a finite rate of population increase of r = 0.14 per year. Although these authors did not include a linear regression equation of their population growth model in the article, we were able to interpolate an expected value for the extent of T. angustifolia in 2010, the year of our baseline survey, using the linear regression figures they provided. The linear Boers and Zedler model predicted that T. angustifolia would dominate approximately 6.7% of the wetland by 2010. However, Final Report – Typha angustifolia suppression at Lulu Lake Preserve Page 5 our baseline survey (using aerial photos produced in 2010) showed that T. angustifolia actually dominated 10.9% of the wetland, corresponding to a finite rate of increase of r = 0.51 per year, higher than the population growth rate predicted by the Boers and Zedler model. A higher than expected rate of expansion prompted us to consider the possibility that a linear model might not be the best long-term predictor for T. angustifolia population dynamics in the Mukwonago River wetland. State and transition models of community dynamics predict that species invasions increase linearly until they reach a critical mass, or threshold population density, beyond which invasion progresses at an accelerated, nonlinear rate due to internal system feedbacks (Kot 2001; Hobbs and Suding 2009) that can send communities on unpredictable trajectories of change. Accumulation of Typha litter and its secondary effects (such as mulching competing species) is likely one feedback that induces an accelerated expansion rate. Another probable feedback involves the effects of nitrogen and phosphorus loading on biomass production and litter production. Moreover, and perhaps more importantly, the actual life expectancy and duration of reproductive fecundity (under field conditions) of clonal perennial monocots are not well known (Stüfer et al. 2002), and these variables are strong predictors of population dynamics. Although thresholds are difficult to pinpoint empirically and predictive trends involving nonlinear population dynamics are not yet completely understood, we felt there was sufficient evidence to conclude that this population
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Lecture 24: "Graminoid" Monocots IB 168, Spring 2006
    Lecture 24: "Graminoid" monocots IB 168, Spring 2006 Graminoid monocots: A clade in Poales of usually wind-pollinated taxa, sister to Bromeliaceae and without showy flowers. Three families of graminoid monocots have a worldwide distribution and are prominent members of north temperate and boreal regions of the world: (1) Cyperaceae (sedges, tules, papyrus, and relatives), (2) Juncaceae (rushes and wood-rushes), and, especially, (3) Poaceae (grasses). All three families share conspicuous attributes (and appear superficially similar): Narrow, elongate leaves (parallel venation) with sheath (basal) and blade Perianth reduced or absent (not showy) Nectaries lacking (wind-pollinated) In Cyperaceae and Poaceae, seeds are only 1 per ovary (Ovaries superior, with 1--3 locules, 2--3 stigmas) (Stamens 3 or 6) Family attributes: (1) Poaceae (grasses), also called Gramineae (conserved name) - Highly diverse (ca. 10,000 species in 600--650 genera), but not quite as many species as Compositae/Asteraceae, Orchidaceae, Fabaceae, or Rubiaceae - Worldwide distribution (except Antarctica) - Ecologically of critical importance in African savannas and veldt, Asian steppes, South American paramo/puna and pampas, and North American plains/prairie - Economically the most important plant family because it includes the grain or cereal crops [rice (Oryza), wheat (Triticum), corn or maize (Zea), rye (Secale), barley (Hordeum), oats (Avena), sorghum (Sorghum), millet (Panicum)] and sugar cane (Saccharum) -- all but corn/maize from Old World - Also economically critical because of importance for livestock fodder, soil conservation, wildlife habitat, and turf (intercalary growth allows for grazing or mowing without killing the plant), in addition to building materials (bamboos) Fossil record of grasses goes back ca.
    [Show full text]
  • Ohio Goldenrod Solidago Ohioensis
    Ohio goldenrod Solidago ohioensis C=9 Color: yellow Parts indistinguishable Plant type: Flowering perennial. Where can you find this plant? Bloom period: August – September. Distinguishing characteristics: Leaves are lance-shaped and smooth. Leaves at the base of the plant have long stalks and are much larger than the upper leaves. Leaves on the stem point upward, stems smooth. Yellow flowers open on stems that are branched at the top into a flattish cluster. Plants grow 2-3 feet tall. Habitat quality: This species does not toler- ate dense shade. It becomes more common after clearing of invasive shrubs, and is a good indica- tor of intact prairie fen systems. Developed by: Doug Landis and Anna Fiedler, MSU Department of Entomology. Funding support: National Fish and Wildlife Foundation, Lynn and Thelma MacCready Forest and Wildlife Endowment, MSU, and Hanes Trust of the Michigan Botani- cal Club. Partners: The Nature Conservancy, Michigan Natural Features Inventory, The Stewardship Network, Michigan DNR Landowner Incentive Program. For more information on native plants and prairie fens, go to www.nativeplants.msu.edu. Where can you find this plant? Indiana New York Ohio Wisconsin For more information on native plants and prairie fens, go to www.nativeplants.msu.edu MSU is an affirmative-action, equal-opportunity employer. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, gender identity, religion, age, height, weight, disability, political beliefs, sexual orientation, marital status, family status or veteran status. Issued in furtherance of MSU Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S.
    [Show full text]
  • (BCF), Translocation Factor (TF) and Metal Enrichment Factor (MEF) Abilities of Aquatic Macrophyte Species Exposed to Metal Contaminated Wastewater
    ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 8, Issue 1, January 2019 Evaluation of Bioaccumulation Factor (BAF), Bioconcentration Factor (BCF), Translocation Factor (TF) and Metal Enrichment Factor (MEF) Abilities of Aquatic Macrophyte Species Exposed to Metal Contaminated Wastewater S. S. Shingadgaon1, B.L. Chavan2 Research Scholar, Department of Environmental Science, School of Earth Sciences, Solapur University, Solapur, MS, India1 Former Professor and Head, Department of Environmental Science, Solapur University Solapur and presently working at Department of Environmental Science, Dr.Babasaheb Ambedkar Marathwada University, Aurangabad, MS, India 2 ABSTRACT: Wastewaters receiving aquatic bodies are quiet complex in terms of pollutants, the transport and interactions with heavy metals. This complexity is primarily due to high variability of pollutants, contaminants and related parameters. The macrophytes are plausible bio-indicators of the pollution load and level of metals within the aquatic systems than the wastewater or sediment analyses. The potential ability of aquatic macrophytes in natural water bodies receiving municipal sewage from Solapur city was assessed. Data from the studies on macrophytes exposed to a mixed test bath of metals and examined to know their potentialities to accumulate heavy metals for judging their suitability for phytoremediation technology
    [Show full text]
  • Cyperaceae of Puerto Rico. Arturo Gonzalez-Mas Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1964 Cyperaceae of Puerto Rico. Arturo Gonzalez-mas Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Gonzalez-mas, Arturo, "Cyperaceae of Puerto Rico." (1964). LSU Historical Dissertations and Theses. 912. https://digitalcommons.lsu.edu/gradschool_disstheses/912 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 64—8802 microfilmed exactly as received GONZALEZ—MAS, Arturo, 1923- CYPERACEAE OF PUERTO RICO. Louisiana State University, Ph.D., 1964 B o ta n y University Microfilms, Inc., Ann Arbor, Michigan CYPERACEAE OF PUERTO RICO A Dissertation I' Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Botany and Plant Pathology by Arturo Gonzalez-Mas B.S., University of Puerto Rico, 1945 M.S., North Carolina State College, 1952 January, 1964 PLEASE NOTE: Not original copy. Small and unreadable print on some maps. Filmed as received. UNIVERSITY MICROFILMS, INC. ACKNOWLEDGMENT The author wishes to express his sincere gratitude to Dr. Clair A. Brown for his interest, guidance, and encouragement during the course of this investigation and for his helpful criticism in the preparation of the manuscript and illustrations.
    [Show full text]
  • Hybridization Dynamics of Invasive Cattail (Typhaceae) Stands at Pierce Cedar Creek Institute: a Molecular Analysis
    HYBRIDIZATION DYNAMICS OF INVASIVE CATTAIL (TYPHACEAE) STANDS AT PIERCE CEDAR CREEK INSTITUTE: A MOLECULAR ANALYSIS Alex Graeff, Kelsey Huisman, and Dr. Pamela J. Laureto Department of Biological Sciences Grand Rapids Community College 143 Bostwick NE Grand Rapids, Michigan 49503 ABSTRACT Three cattail taxa are recognized in Michigan USA: native Typha latifolia (broad-leaf cattail), the invasive Typha angustifolia (narrow-leaf cattail), and the hybrid of these two species Typha × glauca. Typha angustifolia and T. × glauca are of special interest because of their ability to aggressively spread and out-compete the native cattail T. latifolia. Typha × glauca has been shown to out-compete both its parental taxa and produce monospecific stands. We surveyed the Pierce Cedar Creek Institute (PCCI) property for cattails and located 25 distinct cattail marshes. We determined the total area of cattail marsh at PCCI to be roughly 10% of the 267 ha property. Cattail individuals were sampled from each of the 25 stands and random amplified polymorphic DNA markers were used to identify the individuals to species. We found that 20 of the 25 stands were monospecific for the native cattail, T. latifolia. Five of the stands were mixtures of the native T. latifolia and the introduced T. angustifolia, and T. × glauca was found in two of the mixed stands. We recommend removal of the invasive T. angustifolia and T. × glauca individuals and the establishment of a monitoring plan in order to maintain the long-term health of the cattail marshes at PCCI. Keywords: Typha spp., RAPD markers, invasive species 1 INTRODUCTION Species of Typha L. (Typhaceae), commonly known as cattails, are highly productive emergent plants that grow in a variety of wetland habitats throughout the world (McManus et al.
    [Show full text]
  • The Ayurvedic Pharmacopoeia of India
    THE AYURVEDIC PHARMACOPOEIA OF INDIA PART- I VOLUME – V GOVERNMENT OF INDIA MINISTRY OF HEALTH AND FAMILY WELFARE DEPARTMENT OF AYUSH Contents | Monographs | Abbreviations | Appendices Legal Notices | General Notices Note: This e-Book contains Computer Database generated Monographs which are reproduced from official publication. The order of contents under the sections of Synonyms, Rasa, Guna, Virya, Vipaka, Karma, Formulations, Therapeutic uses may be shuffled, but the contents are same from the original source. However, in case of doubt, the user is advised to refer the official book. i CONTENTS Legal Notices General Notices MONOGRAPHS Page S.No Plant Name Botanical Name No. (as per book) 1 ËMRA HARIDRË (Rhizome) Curcuma amada Roxb. 1 2 ANISÍNA (Fruit) Pimpinella anisum Linn 3 3 A×KOLAH(Leaf) Alangium salviifolium (Linn.f.) Wang 5 4 ËRAGVËDHA(Stem bark) Cassia fistula Linn 8 5 ËSPHOÙË (Root) Vallaris Solanacea Kuntze 10 6 BASTËNTRÌ(Root) Argyreia nervosa (Burm.f.)Boj. 12 7 BHURJAH (Stem Bark) Betula utilis D.Don 14 8 CAÛÚË (Root) Angelica Archangelica Linn. 16 9 CORAKAH (Root Sock) Angelica glauca Edgw. 18 10 DARBHA (Root) Imperata cylindrica (Linn) Beauv. 21 11 DHANVAYËSAH (Whole Plant) Fagonia cretica Linn. 23 12 DRAVANTÌ(Seed) Jatropha glandulifera Roxb. 26 13 DUGDHIKË (Whole Plant) Euphorbia prostrata W.Ait 28 14 ELAVËLUKAê (Seed) Prunus avium Linn.f. 31 15 GAÛÚÌRA (Root) Coleus forskohlii Briq. 33 16 GAVEDHUKA (Root) Coix lachryma-jobi LInn 35 17 GHOÛÙË (Fruit) Ziziphus xylopyrus Willd. 37 18 GUNDRËH (Rhizome and Fruit) Typha australis
    [Show full text]
  • Floristic Quality Assessment Report
    FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al.
    [Show full text]
  • Carex of New England
    Field Guide to Carex of New England Lisa A. Standley A Special Publication of the New England Botanical Club About the Author: Lisa A. Standley is an environmental consultant. She obtained a B.S, and M.S. from Cornell University and Ph.D. from the University of Washington. She has published several articles on the systematics of Carex, particularly Section Phacocystis, and was the author of several section treatments in the Flora of North America. Cover Illustrations: Pictured are Carex pensylvanica and Carex intumescens. Field Guide to Carex of New England Lisa A. Standley Special Publication of the New England Botanical Club Copyright © 2011 Lisa A. Standley Acknowledgements This book is dedicated to Robert Reed, who first urged me to write a user-friendly guide to Carex; to the memory of Melinda F. Denton, my mentor and inspiration; and to Tony Reznicek, for always sharing his expertise. I would like to thank all of the people who helped with this book in so many ways, particularly Karen Searcy and Robert Bertin for their careful editing; Paul Somers, Bruce Sorrie, Alice Schori, Pam Weatherbee, and others who helped search for sedges; Arthur Gilman, Melissa Dow Cullina, and Patricia Swain, who carefully read early drafts of the book; and to Emily Wood, Karen Searcy, and Ray Angelo, who provided access to the herbaria at Harvard University, the University of Massachusetts, and the New England Botanical Club. CONTENTS Introduction .......................................................................................................................1
    [Show full text]
  • Study of Structure and Properties of Tunisian Typha Leaf Fibers
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 3, March - 2014 Study of Structure and Properties of Tunisian Typha Leaf Fibers Rezig Sana1, Jaouadi Mounir 2 , Msahli Slah3 1 PhD, Laboratory of Textile Engineering, University of Monastir, Tunisia 2 PhD, Laboratory of Textile Engineering, University of Monastir, Tunisia 3 Professor, Laboratory of Textile Engineering, University of Monastir, Tunisia Abstract —Typha fiber is derived from the leaves of Typha some researchers have tried to extract and develop Typha plant, which belongs to the family Typhaceae. The fiber has been fibers of different varieties in the world, the Tunisian Typha obtained using a hot alkali treatment. Some properties of this variety has not been described in the literature. fiber, such as diameter, linear density, tensile properties and thermal properties have been determined. In this study, we attempted to extract the Typha fibers and Using scanning electron microscope, the morphological structure remove non-cellulosic materials using a hot alkali treatment. of the obtained fibers has been investigated and shows a Fiber quality has been evaluated in terms of extraction yield, structure similar to a natural composite of ultimate fiber bundles diameter measurement, linear density, morphological and of cellulose. As a result, measured properties have been mechanical properties. Thermal analysis and Infrared spectrum compared with untreated typha fibers and other lignocellulosic have also been investigated, since fiber performance depends fibers in order to conclude on the importance of the textile potential of the Typha leaf fibers. on its chemical composition and physical properties. As a result, measured properties have been compared with untreated Keywords—Typha fiber; hot alkali treatment; thermal properties; Typha fibers and other lignocellulosic fibers in order to tensile properties; morphological structure.
    [Show full text]
  • New York Natural Heritage Program Rare Plant Status List May 2004 Edited By
    New York Natural Heritage Program Rare Plant Status List May 2004 Edited by: Stephen M. Young and Troy W. Weldy This list is also published at the website: www.nynhp.org For more information, suggestions or comments about this list, please contact: Stephen M. Young, Program Botanist New York Natural Heritage Program 625 Broadway, 5th Floor Albany, NY 12233-4757 518-402-8951 Fax 518-402-8925 E-mail: [email protected] To report sightings of rare species, contact our office or fill out and mail us the Natural Heritage reporting form provided at the end of this publication. The New York Natural Heritage Program is a partnership with the New York State Department of Environmental Conservation and by The Nature Conservancy. Major support comes from the NYS Biodiversity Research Institute, the Environmental Protection Fund, and Return a Gift to Wildlife. TABLE OF CONTENTS Introduction.......................................................................................................................................... Page ii Why is the list published? What does the list contain? How is the information compiled? How does the list change? Why are plants rare? Why protect rare plants? Explanation of categories.................................................................................................................... Page iv Explanation of Heritage ranks and codes............................................................................................ Page iv Global rank State rank Taxon rank Double ranks Explanation of plant
    [Show full text]
  • Potential Benefits and Toxicity of Nanoselenium and Nitric Oxide in Peppermint
    doi:10.14720/aas.2018.111.2.11 Original research article / izvirni znanstveni članek Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint Hossein NAZERIEH1, Zahra Oraghi ARDEBILI1*, Alireza IRANBAKHSH2 Received January 13, 2018; accepted May 04, 2018. Delo je prispelo 13. januarja 2018, sprejeto 04. maja 2018. ABSTRACT IZVLEČEK Taking account of nano-compounds and biofortification, this POTENCIALNE KORISTI IN STRUPENOST research was conducted to evaluate peppermint (Mentha x NANOSELENA IN DUŠIKOVEGA OKSIDA PRI piperita L.) responses to nano-selenium (nSe; 0, 2, and POPROVI METI 20 mg l-1) and/or nitric oxide (NO; 0 and 8 mg l-1). Significant increases in leaf length, and area, and shoot fresh mass were Raziskava je bila izvedena za ovrednostenje odziva poprove enhanced by the low level of nSe and/or NO, contrasted with mete (Mentha x piperita L.) na nano selen (nSe; 0, 2, in the high dose. The inhibitory effects of the high dose of nSe 20 mg l-1) in/ali dušikov oksid (NO; 0 in 8 mg l-1). Značilno on the growth-related characteristics were significantly povečanje dolžine in površine listov in sveže mase poganjkov mitigated by NO. The adverse impact of nSe20 on chlorophyll je bilo vzpodbujeno z majhnimi količinami nSe in/ali NO, concentration was alleviated by NO. The individual and nasprotno od učinkov velikih količin. Zaviralni učinki velikih combined treatments of nSe2 led to the significant inductions koncentracij nSe na z rastjo povezane parametre so bili in the activities of nitrate reductase and peroxidase, whereas značilno zmanjšani z dodatkom NO.
    [Show full text]