The Glacial World According to Wally

Total Page:16

File Type:pdf, Size:1020Kb

The Glacial World According to Wally THE GLACIAL WORLD ACCORDING TO WALLY W.S. BROECKER ELDIGO PRESS 2002 THE GLACIAL WORLD ACCORDING TO WALLY W.S. BROECKER LAMONT-DOHERTY EARTH OBSERVATORY OF COLUMBIA UNIVERSITY Palisades, NY 10964 September 1992 Second Revised Edition June 1995 Third Revised Edition August 2002 FOREWORD In 1990 I started a book on glacial climates. I planned four sections, one on indicators, one on clocks, one on records and finally, one on the physics of the system. After completing the first three of these, I got stuck in my attempt to come up with a conceptual view of what might be driving these changes. However, having taught a course on climate change for many years, I know that much of the information one needs is not available in textbook form. Instead, we all depend heavily on reprints. As this proves to be an inefficient route for students interested in learning the basics of our field, I have tried to capture many of these basics in the first three sections of my would-be book. As I realized that it would be several years before I completed this project, I thought it might be useful to the community if I were to make available the three largely completed sections. This was done in 1992. In preparation for use in a short course to be taught at the Geological Society of America in November 2002, I undertook an effort to update the first three sections and the references during the early part of 2002. I encourage purchasers of the book to make as many copies as they wish for use by students and colleagues. The spiral binding is easily removed so as to facilitate duplication. Library-bound copies are also available. DEDICATION To Gary Comer A newfound friend and patron of young abrupt-change researchers. ................................................................ This book is available at a cost of $50 for the spiral-bound version or $70 for the hard-bound version (shipping included) Pre-payment is preferred. Checks in US$ should be made out to Trustees of Columbia University. To purchase contact Patty Catanzaro Eldigio Press Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964 USA Tel.: (845) 365-8515; Fax: (845) 365-8155; e-mail: [email protected] Copyright 1993 TABLE OF CONTENTS PROLOGUE INDICATORS INTRODUCTION ...................................................................................... 1 ICE VOLUME............................................................................................ 1 Glacial Moraines............................................................................. 2 Shorelines........................................................................................ 4 Oxygen Isotopes.............................................................................. 13 Summary......................................................................................... 21 TEMPERATURE ....................................................................................... 21 Mountaintop Temperatures............................................................. 23 Polar Temperatures ......................................................................... 25 Sea Surface Temperatures............................................................... 31 Continental Temperatures............................................................... 45 The Tropical Temperature Dilemma .............................................. 55 ARIDITY .................................................................................................... 56 Precipitation.................................................................................... 58 Rock Varnish.................................................................................. 61 Dust................................................................................................. 63 ATMOSPHERIC GAS COMPOSITION................................................... 67 Carbon Dioxide............................................................................... 67 Methane........................................................................................... 75 Isotopic Composition of Atmospheric Gases ................................. 77 OCEANIC CHEMISTRY........................................................................... 83 Trace Metals.................................................................................... 83 Carbon Isotopes.............................................................................. 96 RATE OF DEEP SEA VENTILATION..................................................... 105 CO3 Concentration ......................................................................... 109 Paleo pH.......................................................................................... 119 CLOCKS INTRODUCTION ...................................................................................... 1 THE RADIOCARBON CLOCK................................................................ 1 ANNUAL CLOCKS................................................................................... 5 THE URANIUM-THORIUM CLOCK ...................................................... 15 CLOCKS READING MORE THAN 50,000 YEARS.............................. 29 THE POTASSIUM-ARGON CLOCK....................................................... 35 TABLE OF CONTENTS (continued) IN SITU PRODUCTION CLOCKS........................................................... 39 PLANETARY CLOCKS............................................................................ 40 SUNDIALS................................................................................................. 41 RECORDS 55 MILLION YEARS OF POLAR COOLING ......................................... 1 MILANKOVITCH CYCLES..................................................................... 12 THE RECORD IN ANTARCTIC ICE....................................................... 24 THE LAST 160,000 YEARS...................................................................... 26 THE LAST TERMINATION..................................................................... 37 DANSGAARD-OESCHGER EVENTS..................................................... 63 HEINRICH EVENTS................................................................................. 69 RELATIONSHIP BETWEEN DANSGAARD-OESCHGER EVENTS AND HEINRICH EVENTS ........................................................... 79 MECHANISMS INTRODUCTION ...................................................................................... 1 FORCINGS................................................................................................. 1 INSOLATION SEASONALITY CYCLES............................................... 1 THERMOHALINE CIRCULATION REORGANIZATIONS.................. 2 FLUCTUATIONS IN SOLAR ENERGY OUTPUT................................. 3 THE BIPOLAR SEESAW.......................................................................... 6 AMPLIFIERS ............................................................................................. 6 WATER VAPOR........................................................................................ 8 CLOUD COVER........................................................................................ 9 TERMINATIONS....................................................................................... 9 SUMMARY................................................................................................ 10 FOSSIL FUEL CO2 .................................................................................... 11 BIBLIOGRAPHY PROLOGUE In the debate regarding the possible consequences of the ongoing buildup of greenhouse gases, the climate record for the past hundred-thousand years sends us an important message. Contrary to the view held by those who downplay the consequences of fossil fuel burning, the paleorecord clearly demonstrates that the Earth’s climate system is far from self stabilizing. Rather, it has undergone large responses to seemingly small forcings. Not only have major changes occurred, but some of the largest have taken place on the time scale of a few decades. Further, the magnitude of these shifts is far greater than expected from any known forcing (i.e., fluctuations in solar output, variable interception of sunlight by dust and aerosols, changes in seasonality resulting from variations in the Earth’s orbital parameters...). Thus I am driven to the conclusion that the Earth’s climate system has several distinct modes of operation. To date, no Earth system model has been able to adequately account for the growth and maintenance of large ice sheets which occupied most of Canada and Scandinavia during peak glacial time. Nor has any model been able to adequately account for the atmosphere’s low CO2 content and high dust content during these times. Nor has any model been able to reproduce the rectangular character of past climate changes. We do, however, have one valuable clue in this regard. Models clearly demonstrate that the ocean’s thermohaline circulation has a number of quasi-stable modes of operation. Further, these models show how the ocean might be triggered to jump from one of these modes to another. But to date, no clear explanation has been given as to how these changes in ocean operation translate into the globe-encompassing atmospheric changes recorded in the paleoclimate record. The paleoclimatic record challenges us by demonstrating that much more must be learned about the Earth’s climate system before we can have any confidence in model- based predictions of the changes which will result from the buildup
Recommended publications
  • Review of the Geology and Paleontology of the Ellsworth Mountains, Antarctica
    U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 107; doi:10.3133/of2007-1047.srp107 Review of the geology and paleontology of the Ellsworth Mountains, Antarctica G.F. Webers¹ and J.F. Splettstoesser² ¹Department of Geology, Macalester College, St. Paul, MN 55108, USA ([email protected]) ²P.O. Box 515, Waconia, MN 55387, USA ([email protected]) Abstract The geology of the Ellsworth Mountains has become known in detail only within the past 40-45 years, and the wealth of paleontologic information within the past 25 years. The mountains are an anomaly, structurally speaking, occurring at right angles to the Transantarctic Mountains, implying a crustal plate rotation to reach the present location. Paleontologic affinities with other parts of Gondwanaland are evident, with nearly 150 fossil species ranging in age from Early Cambrian to Permian, with the majority from the Heritage Range. Trilobites and mollusks comprise most of the fauna discovered and identified, including many new genera and species. A Glossopteris flora of Permian age provides a comparison with other Gondwana floras of similar age. The quartzitic rocks that form much of the Sentinel Range have been sculpted by glacial erosion into spectacular alpine topography, resulting in eight of the highest peaks in Antarctica. Citation: Webers, G.F., and J.F. Splettstoesser (2007), Review of the geology and paleontology of the Ellsworth Mountains, Antarctica, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.K. Cooper and C.R. Raymond et al., USGS Open- File Report 2007-1047, Short Research Paper 107, 5 p.; doi:10.3133/of2007-1047.srp107 Introduction The Ellsworth Mountains are located in West Antarctica (Figure 1) with dimensions of approximately 350 km long and 80 km wide.
    [Show full text]
  • Outburst Floods from Moraine-Dammed Lakes in the Himalayas
    Outburst floods from moraine-dammed lakes in the Himalayas Detection, frequency, and hazard Georg Veh Cumulative dissertation submitted for obtaining the degree “Doctor of Natural Sciences” (Dr. rer. nat.) in the research discipline Natural Hazards Institute of Environmental Science and Geography Faculty of Science University of Potsdam submitted on March 26, 2019 defended on August 12, 2019 First supervisor: PD Dr. Ariane Walz Second supervisor: Prof. Oliver Korup, PhD First reviewer: PD Dr. Ariane Walz Second reviewer: Prof. Oliver Korup, PhD Independent reviewer: Prof. Dr. Wilfried Haeberli Published online at the Institutional Repository of the University of Potsdam: https://doi.org/10.25932/publishup-43607 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-436071 Declaration of Authorship I, Georg Veh, declare that this thesis entitled “Outburst floods from moraine-dammed lakes in the Himalayas: Detection, frequency, and hazard” and the work presented in it are my own. I confirm that: This work was done completely or mainly while in candidature for a research degree at the University of Potsdam. Where any part of this dissertation has previously been submitted for a degree or any other qualification at the University of Potsdam, or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.
    [Show full text]
  • Radiocarbon After Four Decades RADIOCARBON R.E
    Radiocarbon After Four Decades RADIOCARBON R.E. Taylor A. Long R.S. Kra Editors Radiocarbon After Four Decades An Interdisciplinary Perspective With 148 Illustrations Springer Science+Business Media, LLC R.E. Thylor Austin Long Department of Anthropology Department of Geosciences Institute of Geophysics and Planetary Physics The University of Arizona University of California, Riverside Thscon, AZ 85721 USA Riverside, CA 92521-0418 USA Renee S. Kra Department of Geosciences The University of Arizona Thscon, AZ 85721 USA Library of Congress Cataloging-in-Publication Data Radiocarbon after four decades: an interdisciplinary perspective / [editors], R.E. Taylor, Austin Long, Renee S. Kra. p. cm. Includes bibliographical references and index. ISBN 978-1-4757-4251-0 ISBN 978-1-4757-4249-7 (eBook) DOI 1O.l007/978-1-4757-4249-7 1. Radiocarbon dating. I. Taylor, R. E. (Royal Ervin), 1938- II. Long, Austin. III. Kra, Renee S. QC798.D3R3 1992 546'.6815884-dc20 91-44448 Printed on acid-free paper. © 1992 Springer Science+BusinessMedia New York Originally published by Springer-Verlag New York, Inc. in 1992 Softcover reprint of the hardcover 1st edition 1992 All rights reserved. This work may not be translated or copied in whole or in part without the written per­ mission of the publisher,Springer Science+Bnsiness Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereaf­ ter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title The new prophet : Harold C. Urey, scientist, atheist, and defender of religion Permalink https://escholarship.org/uc/item/3j80v92j Author Shindell, Matthew Benjamin Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO The New Prophet: Harold C. Urey, Scientist, Atheist, and Defender of Religion A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History (Science Studies) by Matthew Benjamin Shindell Committee in charge: Professor Naomi Oreskes, Chair Professor Robert Edelman Professor Martha Lampland Professor Charles Thorpe Professor Robert Westman 2011 Copyright Matthew Benjamin Shindell, 2011 All rights reserved. The Dissertation of Matthew Benjamin Shindell is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ Chair University of California, San Diego 2011 iii TABLE OF CONTENTS Signature Page……………………………………………………………………...... iii Table of Contents……………………………………………………………………. iv Acknowledgements………………………………………………………………….
    [Show full text]
  • Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs Amanda Colleen Lough Washington University in St
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) Summer 9-1-2014 Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs Amanda Colleen Lough Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Lough, Amanda Colleen, "Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs" (2014). All Theses and Dissertations (ETDs). 1319. https://openscholarship.wustl.edu/etd/1319 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Earth and Planetary Sciences Dissertation Examination Committee: Douglas Wiens, Chair Jill Pasteris Philip Skemer Viatcheslav Solomatov Linda Warren Michael Wysession Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs by Amanda Colleen Lough A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2014 St. Louis, Missouri © 2014, Amanda Colleen Lough Table of Contents List of Figures .............................................................................................................................
    [Show full text]
  • Figuring out a Date Archaeologists Cannot Always Immediately Give a Date for Some Things They Find
    Figuring Out a Date Archaeologists cannot always immediately give a date for some things they find. One way archaeologists try to figure out dates is by comparing kinds of materials used to make things. Early people used stone tools. Eventually, people discovered metal, which was better than stone, and they began using that. Archaeologists know that stone was used before metal because they find stone in deeper layers in the stratigraphy. How the ax developed: 1. The first axes were held in the hand. 2. Polished stone axes were used by the earliest farmers to clear land. 3. The first bronze axes copied the stone ones 4. Bronze axes developed to fit in wooden handles. 5. A new development used a loop to hold the ax to the handle. 6. A strong modern ax has a steel head. In the 1940s, there was a revolution in archaeology. An American chemist named Willard Libby discovered a new method for dating objects from the distant past, called radiocarbon, or carbon-14 dating. It is based on the scientific principle that all living things contain a certain amount of radioactive carbon. Once a living thing dies, carbon begins to decay. Scientists know that half of the carbon decays in 5,730 years. Measuring how much radioactive carbon is present in a sample gives a date. This kind of dating can be used for rocks, pottery, and glass. Charcoal is always a good sample for radiocarbon dating. 'r'*~neuti6ts. nitrogen and fonn 'Th~'heutrons . radioactive carbon ;interact with (C14). ",-.' ... Plants take in this ... In living plants ..
    [Show full text]
  • Mem170-Bm.Pdf by Guest on 30 September 2021 452 Index
    Index [Italic page numbers indicate major references] acacamite, 437 anticlines, 21, 385 Bathyholcus sp., 135, 136, 137, 150 Acanthagnostus, 108 anticlinorium, 33, 377, 385, 396 Bathyuriscus, 113 accretion, 371 Antispira, 201 manchuriensis, 110 Acmarhachis sp., 133 apatite, 74, 298 Battus sp., 105, 107 Acrotretidae, 252 Aphelaspidinae, 140, 142 Bavaria, 72 actinolite, 13, 298, 299, 335, 336, 339, aphelaspidinids, 130 Beacon Supergroup, 33 346 Aphelaspis sp., 128, 130, 131, 132, Beardmore Glacier, 429 Actinopteris bengalensis, 288 140, 141, 142, 144, 145, 155, 168 beaverite, 440 Africa, southern, 52, 63, 72, 77, 402 Apoptopegma, 206, 207 bedrock, 4, 58, 296, 412, 416, 422, aggregates, 12, 342 craddocki sp., 185, 186, 206, 207, 429, 434, 440 Agnostidae, 104, 105, 109, 116, 122, 208, 210, 244 Bellingsella, 255 131, 132, 133 Appalachian Basin, 71 Bergeronites sp., 112 Angostinae, 130 Appalachian Province, 276 Bicyathus, 281 Agnostoidea, 105 Appalachian metamorphic belt, 343 Billingsella sp., 255, 256, 264 Agnostus, 131 aragonite, 438 Billingsia saratogensis, 201 cyclopyge, 133 Arberiella, 288 Bingham Peak, 86, 129, 185, 190, 194, e genus, 105 Archaeocyathidae, 5, 14, 86, 89, 104, 195, 204, 205, 244 nudus marginata, 105 128, 249, 257, 281 biogeography, 275 parvifrons, 106 Archaeocyathinae, 258 biomicrite, 13, 18 pisiformis, 131, 141 Archaeocyathus, 279, 280, 281, 283 biosparite, 18, 86 pisiformis obesus, 131 Archaeogastropoda, 199 biostratigraphy, 130, 275 punctuosus, 107 Archaeopharetra sp., 281 biotite, 14, 74, 300, 347 repandus, 108 Archaeophialia,
    [Show full text]
  • The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus
    ISSN (Online) 2393-8021 IARJSET ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology Vol. 5, Issue 10, October 2018 The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus Dr.(Prof.) V.C.A NAIR* Educational Physicist, Research Guide for Physics at Shri J.J.T. University, Rajasthan-333001, India. *[email protected] Abstract: The Research Paper consists mainly of the birth dates of scientists and philosophers Before Christ (BC) and After Death (AD) starting from Thales of Miletus with a brief description of their work and contribution to the development of Physics. The author has taken up some 400 odd scientists and put them in a chronological order. Nobel laureates are considered separately in the same paper. Along with the names of researchers are included few of the scientific events of importance. The entire chain forms a cascade and a ready reference for the reader. The graph at the end shows the recession in the earlier centuries and its transition to renaissance after the 12th century to the present. Keywords: As the contents of the paper mainly consists of names of scientists, the key words are many and hence the same is not given I. INTRODUCTION As the material for the topic is not readily available, it is taken from various sources and the collection and compiling is a Herculean task running into some 20 pages. It is given in 3 parts, Part I, Part II and Part III. In Part I the years are given in Chronological order as per the year of birth of the scientist and accordingly the serial number.
    [Show full text]
  • 08 Golf-Men Guide-Bleeds.Pmd
    26 27 he San Francisco Bay Area is a major metropoli- tan area of approximately six million people and Tone of the most scenic regions in the United States. The Bay Area includes the major cities of San Francisco and Oakland, as well as Berkeley, home of the world- renowned University of California. Just south is the city of San Jose and the Silicon Valley, home to many of the world’s high-tech companies. The Bay Area also lies within easy driving distance of the high Sierra resorts of Lake Tahoe and Yosemite, the Monterey/Carmel penin- sula, the world famous Napa wine country, and the spec- tacular Mendocino Coast. Everyone knows “The City” - San Francisco - from count- less photographs, movies and television shows that cap- ture its magic. It is a city built on a series of more than 40 hills, offering panoramic views of every kind. The hub of a nine-county complex and the financial and insurance capi- tal of the world, San Francisco has a resident population of about 740,000. San Francisco is situated on a 46.6 square-mile peninsula bounded on the west by the Pa- cific Ocean, on the north by the Golden Gate strait, and from north to east by the San Francisco Bay. The City has been named the world’s top city twice by readers of Conde Nast Traveller and the top U.S. city seven times since 1988. The San Francisco Bay is spanned by two landmarks, the Golden Gate and San Francisco-Oakland Bay bridges, and graced by four islands: Alcatraz, Angel, Yerba Buena and Treasure.
    [Show full text]
  • Case Studies from the Archival and Cultural Heritage Program in The
    QUICK DESIGN GUIDE Prac4cal archives, persistent cultural memory: Case studies from the Archival and Cultural Heritage program in the Graduate QUICK TIPS (--THIS SECTION DOES NOT PRINT--) School of Library and Informaon Science at Dominican University (--THIS SECTION DOES NOT PRINT--) This PowerPoint template requires basic PowerPoint (version 2007 or newer) skills. Below is a list of commonly This PowerPoint 2007 template produces a 36”x60” asked questions specific to this template. professional poster. It will save you valuable time placing Edward J. Valauskas ([email protected]) If you are using an older version of PowerPoint some titles, subtitles, text, and graphics. Graduate School of Library and Informaon Science, Dominican University, River Forest, IL template features may not work properly. Use it to create your presentation. Then send it to Using the template PosterPresentations.com for premium quality, same day Introduc4on Experiences with photographic archives Experiences with musical archives Experiences with digital collec4ons Verifying the quality of your graphics affordable printing. Go to the VIEW menu and click on ZOOM to set your Archival and Cultural Heritage studies at GSLIS combine classroom Displaced persons (DP) photographic archives, Balzekas Museum of The Da! Project, creation of an archives for the Chicago post-punk, Creation of an open access scholarly journal, World Libraries (http:// preferred magnification. This template is at 50% the size experiences with rich, interactive opportunities with collections and Lithuanian Culture, Chicago. existential band Da! www.worlib.org) We provide a series of online tutorials that will guide you of the final poster. All text and graphics will be printed at institutions in the Chicago area and elsewhere.
    [Show full text]
  • Lesson Plan Leona Woods Marshall Libby: American Nuclear Physicist
    Lesson Plan Leona Woods Marshall Libby: American Nuclear Physicist Leona Woods Marshall (left) with husband John Marshall at the Third International Conference on High Energy Physics (ICHEP), Rochester, 1952, (AKA) The Rochester Conference. Photo Courtesy AIP Emilio Segre Visual Archives, Marshak Collection. Grade Level(s): 9+ Subject(s): History, Physics In-Class Time: 55-70 minutes Prep Time: 10-15 minutes Materials • Copies of the American Physical Society Article on Leona Woods Marshall Libby, and research project summaries (all found in the Supplemental Materials) • Copies of the Discussion Questions (found in the Supplemental Materials) • Classroom Internet Access • A/V equipment Objective Students will learn about Leona Woods Marshall Libby, who worked on the Manhattan Project and afterward had a successful and diverse career as a research physicist. They will read about her life and work, which included spectroscopy, high-energy nuclear research, engineering, environmental studies and climate change. Students will then discuss the interdisciplinary nature of Libby’s work and the values of this approach. Prepared by the Center for the History of Physics at AIP 1 Introduction Leona Woods was born in 1919 in Illinois. She was a very strong student, and by age 19 had earned a B.S. degree in chemistry from the University of Chicago. She immediately began graduate coursework. As soon as she had finished her Ph.D. dissertation on spectroscopy in 1942, she was hired to work with Enrico Fermi’s group of physicists on the Manhattan Project at the Chicago Metallurgical Laboratory (Met Lab).1 Leona was the only woman physicist at the Met Lab, and was in attendance when Pile 1 sustained the world’s first controlled critical nuclear reaction.
    [Show full text]