Genome-Wide RAD Sequencing Data Provide Unprecedented Resolution

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide RAD Sequencing Data Provide Unprecedented Resolution www.nature.com/scientificreports OPEN Genome-wide RAD sequencing data provide unprecedented resolution of the phylogeny of Received: 1 February 2017 Accepted: 23 August 2017 temperate bamboos (Poaceae: Published: xx xx xxxx Bambusoideae) Xueqin Wang 1,2, Xiaying Ye1,3,4, Lei Zhao1,3,4, Dezhu Li1,5, Zhenhua Guo1 & Huifu Zhuang6 The temperate bamboos (tribe Arundinarieae, Poaceae) are strongly supported as monophyly in recent molecular studies, but taxonomic delineation and phylogenetic relationships within the tribe lack resolution. Here, we sampled 39 species (36 temperate bamboos and 3 outgroups) for restriction-site associated DNA sequencing (RAD-seq) with an emphasis on Phyllostachys clade and related clades. Using the largest data matrix for the bamboos to date, we were able to infer phylogenetic relationships with unparalleled resolution. The Phyllostachys, Shibataea, and Arundinaria clades defned from plastid phylogeny, were not supported as monophyletic group. However, the RAD-seq phylogeny largely agreed with the morphology-based taxonomy, with two clades having leptomorph rhizomes strongly supported as monophyletic group. We also explored two approaches, BWA-GATK (a mapping system) and Stacks (a grouping system), for diferences in SNP calling and phylogeny inference. For the same level of missing data, the BWA-GATK pipeline produced much more SNPs in comparison with Stacks. Phylogenetic analyses of the largest data matrices from both pipelines, using concatenation and coalescent methods provided similar tree topologies, despite the presence of missing data. Our study demonstrates the utility of RAD-seq data for elucidating phylogenetic relationships between genera and higher taxonomic levels in this important but phylogenetically challenging group. Te temperate bamboos (tribe Arundinarieae, Bambusoideae, Poaceae) are a clade of diverse taxa containing 32 genera and about 600 species1–4. Bamboos in this tribe have considerable ecological and economic value as most of species are major components of the subtropical and temperate forests in eastern and southeastern Asia. Many bamboo species are important sources of food, pulp manufacture, and materials for housing construction and artwork, such as Moso bamboo (Phyllostachys edulis)5. With highly diversifed morphology and lack of fowering characters due to long vegetative periods, this tribe is notorious for the complicated taxonomy1, 6. Although unequivocal sets of characters for classifying species and genera have not been identifed, mono- phyly of temperate bamboos has been strongly supported in many molecular studies7–12. According to biogeo- graphic analyses13, Arundinarieae diversifed during the middle to late Miocene, and followed by a rapid radiation especially within the clades containing largest genera and species. Such recent origin might make the temperate bamboos undergo very little molecular variation14 and result in the intricate phylogenetic relationships within Arundinarieae. Based on broad sampling and eight non-coding plastid regions, Zeng et al.15 divided it into ten 1Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. 2College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, China. 3Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201, China. 4University of Chinese Academy of Sciences, Beijing, 100049, China. 5Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. 6Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. Xueqin Wang and Xiaying Ye contributed equally to this work. Correspondence and requests for materials should be addressed to D.L. (email: [email protected]. ac.cn) or Z.G. (email: [email protected]) SCIENTIFIC REPORTS | 7: 11546 | DOI:10.1038/s41598-017-11367-x 1 www.nature.com/scientificreports/ major lineages, and confrmed that most genera within this tribe were highly heterogeneous and incongruent with current taxonomic circumscriptions. Subsequently, two additional clades were recovered in Yang et al.16 and Zhang et al.13, thus twelve lineages in all were currently recognized in Arundinarieae based on plastid phylogeny. Te evolutionary relationships among lineages were almost resolved but within lineages the resolution remained low12, 17, mainly due to the extremely slow molecular evolutionary rate of plastid DNA15. While in phylogeny based on nuclear DNA marker GBSSI18, 13 lineages were resolved and incongruence was revealed between the plastid and nuclear trees, indicating diferent evolutionary trajectories. Moreover, the nuclear tree provided a poorly resolved phylogenetic relationship within Arundinarieae16, 19 because of insufcient informative charac- ters, and more nuclear DNA markers were suggested to be needed to infer the evolutionary history of it. Next-generation sequencing has recently been used to address evolutionary problems in the Bambusoideae17, 20, 21. Ma et al.17 and Attigala et al.21 used plastid genome sequencing to resolve the phylogenetic relationships in Arundinarieae and obtained robust relationships among the major clades. However, studies of Arundinarieae employing next-generation sequencing have mainly focused on the plastid genome, few involved the nuclear genome. By analyzing whole-genome datasets from the Poaceae, one of them identifed 74 putative nuclear single copy orthologous genes for phylogenetic studies of temperate bamboos22, but this method is labor-intensive. With the development of high-throughput sequencing technologies, reduced-representation methods have rev- olutionized the felds of phylogeography, population genomics, and phylogenomics by providing high-resolution genomic data for non-model organisms at a reasonable cost23–25, such as restriction site-associated DNA sequenc- ing (RAD-seq)26. By reducing genomic representation, RAD-seq can identify tens of thousands of single nucle- otide polymorphism (SNP) markers, and address the issue of phylogenetic reconstruction with unprecedented power and precision, even with limited, or no reference genome27–32. Many empirical studies have employed this method on plants and animals to reconstruct their phylogenetic relationships and demonstrated its power on phylogenetic resolution in non-model organisms30, 32–35. Terefore, RAD-seq provides an opportunity to solve the contentious relationships of Arundinarieae from nuclear evolutionary trajectory. Mapping and grouping are two SNP-calling systems for obtaining large numbers of SNPs from RAD sequenc- ing data. In mapping, RAD sequencing reads are aligned to a reference genome and genotyped using standard tools, such as BWA36 and Stampy37, and the output alignments are supported by several generic SNP callers such as Genome Analysis Tool Kit38 (GATK) and SAMtools39. In grouping, RAD sequencing reads are used de novo, generating large marker sets where no reference genome is available. Several tools have been developed to produce RAD marker sets de novo, including Stacks40 and RADtools41. Pan et al.42 tested and compared SNP calling using the UNEAK, Stacks and bowtie2-GATK pipelines for genotyping-by-sequencing (GBS) data in nine individuals of the three pine species, and found that both Stacks and bowtie2-GATK were more efcient than UNEAK for SNP calling. However, to date, there has been no comparison of the performance of mapping and grouping in terms of the variants obtained and downstream phylogenetic analysis of RAD sequencing data. In a pilot study, we elucidated the phylogenetic relationship between two closely related species in temperate bamboos using RAD sequencing43. However, the utility of RAD-seq in building Arundinarieae phylogeny when more taxa sampled remains elusive. Te Phyllostachys clade (clade V) is the largest clade in Arundinarieae, with ca. 16 genera and more than 330 species which comprises about 50% of the genera and more than 70% of the spe- cies of the tribe15, 44. Te clade is remarkable for combining high morphological diversity with low plastid DNA variability. Terefore we adopt broad taxon sampling with an emphasis on Phyllostachys clade and related clades to elucidate their phylogenetic relationships, which would act as a valuable starting point for reconstructing a comprehensive phylogenetic framework for the whole tribe. Te primary goals of this investigation were (1) to test the utility of RAD data in providing a high-resolution estimate of the phylogenetic relationships among tem- perate bamboos, where a broad sample was examined; and (2) to evaluate and compare mapping and grouping systems for SNP calling and phylogeny inference based on RAD sequencing data. Results RAD sequencing. We obtained an average of 11.0 million paired-end reads of 82–86 bp per sample and approximately 615 million reads in all afer barcode trimming, cleaning and quality checking. Details of the sequencing output are provided in Supplementary Table S1. Data matrices from mapping system. Using BWA, we were able to map between 6.58% (Guadua angus- tifolia) and 99.12% (Phyllostachys edulis) (mean = 57.55%) of the RAD tags to the genomic scafold sequences. Te reference-based GATK HaplotypeCaller identifed 6,602,640 raw variants. Filtering for a coverage of 10 to 500 resulted in 5,934,688 variants being retained. Only 1390
Recommended publications
  • DPR Journal 2016 Corrected Final.Pmd
    Bul. Dept. Pl. Res. No. 38 (A Scientific Publication) Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 ISSN 1995 - 8579 Bulletin of Department of Plant Resources No. 38 PLANT RESOURCES Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 Advisory Board Mr. Rajdev Prasad Yadav Ms. Sushma Upadhyaya Mr. Sanjeev Kumar Rai Managing Editor Sudhita Basukala Editorial Board Prof. Dr. Dharma Raj Dangol Dr. Nirmala Joshi Ms. Keshari Maiya Rajkarnikar Ms. Jyoti Joshi Bhatta Ms. Usha Tandukar Ms. Shiwani Khadgi Mr. Laxman Jha Ms. Ribita Tamrakar No. of Copies: 500 Cover Photo: Hypericum cordifolium and Bistorta milletioides (Dr. Keshab Raj Rajbhandari) Silene helleboriflora (Ganga Datt Bhatt), Potentilla makaluensis (Dr. Hiroshi Ikeda) Date of Publication: April 2016 © All rights reserved Department of Plant Resources (DPR) Thapathali, Kathmandu, Nepal Tel: 977-1-4251160, 4251161, 4268246 E-mail: [email protected] Citation: Name of the author, year of publication. Title of the paper, Bul. Dept. Pl. Res. N. 38, N. of pages, Department of Plant Resources, Kathmandu, Nepal. ISSN: 1995-8579 Published By: Mr. B.K. Khakurel Publicity and Documentation Section Dr. K.R. Bhattarai Department of Plant Resources (DPR), Kathmandu,Ms. N. Nepal. Joshi Dr. M.N. Subedi Reviewers: Dr. Anjana Singh Ms. Jyoti Joshi Bhatt Prof. Dr. Ram Prashad Chaudhary Mr. Baidhya Nath Mahato Dr. Keshab Raj Rajbhandari Ms. Rose Shrestha Dr. Bijaya Pant Dr. Krishna Kumar Shrestha Ms. Shushma Upadhyaya Dr. Bharat Babu Shrestha Dr. Mahesh Kumar Adhikari Dr. Sundar Man Shrestha Dr.
    [Show full text]
  • American Bamboo Society
    $5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No. 34 Spring 2014 This is the thirty-fourth year that the American Bamboo Several existing cultivar names are not fully in accord with Society (ABS) has compiled a Source List of bamboo plants requirements for naming cultivars. In the interests of and products. The List includes more than 510 kinds nomenclature stability, conflicts such as these are overlooked (species, subspecies, varieties, and cultivars) of bamboo to allow continued use of familiar names rather than the available in the US and Canada, and many bamboo-related creation of new ones. The Source List editors reserve the products. right to continue recognizing widely used names that may not be fully in accord with the International Code of The ABS produces the Source List as a public service. It is Nomenclature for Cultivated Plants (ICNCP) and to published on the ABS website: www.Bamboo.org . Copies are recognize identical cultivar names in different species of the sent to all ABS members and can also be ordered from ABS same genus as long as the species is stated. for $5.00 postpaid. Some ABS chapters and listed vendors also sell the Source List. Please see page 3 for ordering Many new bamboo cultivars still require naming, description, information and pages 50 and following for more information and formal publication. Growers with new cultivars should about the American Bamboo Society, its chapters, and consider publishing articles in the ABS magazine, membership application. “Bamboo.” Among other requirements, keep in mind that new cultivars must satisfy three criteria: distinctiveness, The vendor sources for plants, products, and services are uniformity, and stability.
    [Show full text]
  • Download Bamboo Records (Public Information)
    Status Date Accession Number Names::PlantName Names::CommonName Names::Synonym Names::Family No. Remaining Garden Area ###########2012.0256P Sirochloa parvifolia Poaceae 1 African Garden ###########1989.0217P Thamnocalamus tessellatus mountain BamBoo; "BergBamBoes" in South Africa Poaceae 1 African Garden ###########2000.0025P Aulonemia fulgor Poaceae BamBoo Garden ###########1983.0072P BamBusa Beecheyana Beechy BamBoo Sinocalamus Beechyana Poaceae 1 BamBoo Garden ###########2003.1070P BamBusa Burmanica Poaceae 1 BamBoo Garden ###########2013.0144P BamBusa chungii White BamBoo, Tropical Blue BamBoo Poaceae 1 BamBoo Garden ###########2007.0019P BamBusa chungii var. BarBelatta BarBie BamBoo Poaceae 1 BamBoo Garden ###########1981.0471P BamBusa dolichoclada 'Stripe' Poaceae 2 BamBoo Garden ###########2001.0163D BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########2012.0069P BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########1981.0079P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########1981.0084P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########2000.0297P BamBusa dolichomerithalla 'Silverstripe' Blowpipe BamBoo 'Silverstripe' Poaceae 1 BamBoo Garden ###########2013.0090P BamBusa emeiensis 'Flavidovirens' Poaceae 1 BamBoo Garden ###########2011.0124P BamBusa emeiensis 'Viridiflavus' Poaceae 1 BamBoo Garden ###########1997.0152P BamBusa eutuldoides Poaceae 1 BamBoo Garden ###########2003.0158P BamBusa eutuldoides
    [Show full text]
  • Download Pdf of Bamboos of Nepal
    AN ILLUSTRATED GUIDE Chris Stapleton Illustrations of the genera and species, with notes on identification, distribution, utilisation, and propagation BAMBOOS OF NEPAL: AN ILLUSTRATED GUIDE Chris Stapleton Forestry Department, University of Aberdeen Royal Botanic Garden Edinburgh Royal Botanic Gardens Kew in association with Forestry Research and Information Centre Department of Forestry and Plant Research His Majesty’ s Government of Nepal Kathmandu Royal Botanic Gardens, Kew, on behalf of The Overseas Development Administration, London Forestry Research Programme, University of Oxford Published by The Royal Botanic Gardens, Kew for The OverseasDevelopment Administrationof the BritishGovernment ForestryResearch Programme Universityof Oxford, Halifax House, 6 South Parks,Road, Oxford OX1 3UB All rights reserved.This book is protected by copyright. No part of it may be reproduced, stored in a retrievalsystem, or transmitted,in any form or by any means, electronic, mechanical, photocopying, recording, or otherwisewithout written permission from the copyright holders. Firstpublished 1994 Design, illustrations,and layout by the author, Cover by Media Resources, RBG Kew, Research for this guide and its production were funded by the OverseasDevelopment Administration,under research grantsR4195 and R4849. Field work was implemented by the ForestryDepartment of Aberdeen Universityin conjunction with the Department of Forestryand Plant Research of His Majesty’s Government of Nepal. Illustrationsand camera-readycopy were produced at the Royal Botanic
    [Show full text]
  • THE BAMBOOS of NEPAL and BHUTAN PART III: Drepanostachyum, Himalayacalamus, Ampelocalamus, Neomicrocalamus and Chimonobambusa (Gramineae: Poaceae, Bambusoideae)
    EDINB. J. BOT. 51(3): 301–330 (1994) THE BAMBOOS OF NEPAL AND BHUTAN PART III: Drepanostachyum, Himalayacalamus, Ampelocalamus, Neomicrocalamus and Chimonobambusa (Gramineae: Poaceae, Bambusoideae) C. M. A. S TAPLETON * This paper completes the systematic treatment of the bamboos of Nepal and Bhutan, covering five genera from subtropical to lower temperate zones. Three further genera from the subtribe Arundinariinae Bentham are included: Drepanostachyum Keng f., Himalayacalamus Keng f., and Ampelocalamus Chen, Wen & Sheng . They have semelauctant ebracteate inflorescences, pachymorph rhizomes, and 3 stamens. Neomicrocalamus Keng f. has semel- auctant bracteate inflorescences and 6 stamens, and is in the new subtribe described here, Racemobambosinae. Chimonobambusa Makino has bracteate inflorescences and 3 stamens and is the only Himalayan genus in the subtribe Shibataeinae (Nakai) Soderstrom & Ellis. A new Drepanostachyum species from Bhutan is described as D. annulatum. Himalayacalamus , which was originally described as a monotypic genus, is enlarged by the description of five new species, H. asper , H. brevinodus , H. cupreus , H. fimbriatus , and H. porcatus , all from Nepal. A Himalayan representative of the genus Ampelocalamus , A. patellaris , is transferred from Dendrocalamus. Neomicrocalamus andro- pogonifolius from eastern Bhutan is transferred from Bambusa . STATUS AND S EPARATION OF THE G ENERA These genera have all been considered to be part of Arundinaria Michaux at one time. The type species of the genera Drepanostachyum Keng f. , Ampelocalamus Chen, Wen & Sheng, Neomicrocalamus Keng f., and Chimonobambusa Makino were originally described as species of Arundinaria Michaux, while the type species of Himalayacalamus was initially described as a species of Thamnocalamus Munro, before being transferred into Arundinaria .
    [Show full text]
  • A New Genus of Temperate Woody Bamboos
    A peer-reviewed open-access journal PhytoKeys 109: 67–76 (2018) A new genus of temperate woody bamboos... 67 doi: 10.3897/phytokeys.109.27566 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research A new genus of temperate woody bamboos (Poaceae, Bambusoideae, Arundinarieae) from a limestone montane area of China Yu-Xiao Zhang1,2, Peng-Fei Ma2, De-Zhu Li2 1 Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, Yunnan 650224, China 2 Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China Corresponding author: De-Zhu Li ([email protected]) Academic editor: C. Morden | Received 19 June 2018 | Accepted 12 September 2018 | Published 12 October 2018 Citation: Zhang Y-X, Ma P-F, Li D-Z (2018) A new genus of temperate woody bamboos (Poaceae, Bambusoideae, Arundinarieae) from a limestone montane area of China. PhytoKeys 109: 67–76. https://doi.org/10.3897/ phytokeys.109.27566 Abstract Ampelocalamus calcareus is a climbing and slender bamboo, known from south Guizhou, China. This species grows in broadleaved forests of limestone montane areas. Recent molecular phylogenetic analyses demonstrated that A. calcareus was sister to all other lineages of the tribe Arundinarieae rather than a member of Ampelocalamus. The morphological features and habitats of A. calcareus and related genera including Ampelocalamus, Drepanostachyum and Himalayacalamus were compared and discussed. The characteristics of the branch complements, nodes and foliage leaves distinguish A. calcareus from morpho- logically similar taxa. On the basis of molecular and morphological evidence, we propose to establish a new genus, Hsuehochloa, to accommodate A.
    [Show full text]
  • Bambusa Gurgandii, a New Species of Bamboo
    Bambusa gurgandii K. M. Wong & M. H. Diep (Poaceae, Bambusoideae), a new species of bamboo from Vietnam Khoon Meng Wong & My Hanh Diep Abstract WONG, K. M. & M.H. DIEP (2015). Bambusa gurgandii K. M. Wong & M. H. Diep (Poaceae, Bambusoideae), a new species of bamboo from Vietnam. Candollea 70: 211-218. In English, English abstract. DOI: http://dx.doi.org/10.15553/c2015v702a6 Bambusa Schreb. (Poaceae, Bambusoideae) is a large and complex tropical and subtropical Asian genus that is currently being taxonomically remodeled through morphological and molecular phylogenetic approaches. The type and type alliance of the genus is, however, morphologically well distinguished. Preliminary documentation suggests there could be some 60-70 species of Bambusa in Vietnam, although confirmation requires more rigorous herbarium-based vouchering. A new species of bamboo belonging to the type alliance, Bambusa gurgandii K. M. Wong & M. H. Diep, is described, known only from cultivated specimens in Vietnam. It belongs to the group of unarmed Bambusa species including Bambusa burmanica Gamble, Bambusa farinacea K. M. Wong, Bambusa nutans Wall. ex Munro, Bambusa polymorpha Munro, Bambusa teres Buch.-Ham. ex Munro and Bambusa tulda Roxb. but is distinguished by details of the pseudospikelets and flowers. Keywords POACEAE – BAMBUSOIDEAE ‒ Bambusa ‒ Vietnam ‒ Phu An Bamboo Village ‒ Taxonomy Addresses of the authors : KMW: Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore 259569. E-mail: [email protected] MHD: Phu An Bamboo Village, Vietnam National University of HCMC, 124 Road 744, Phu An, Ben Cat, Binh Duong, Vietnam. Submitted on May 21, 2015. Accepted on June 11, 2015. Edited by M.
    [Show full text]
  • Perennials for Winter Gardens Perennials for Winter Gardens
    TheThe AmericanAmerican GARDENERGARDENER® TheThe MagazineMagazine ofof thethe AAmericanmerican HorticulturalHorticultural SocietySociety November / December 2010 Perennials for Winter Gardens Edible Landscaping for Small Spaces A New Perspective on Garden Cleanup Outstanding Conifers contents Volume 89, Number 6 . November / December 2010 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 8 NEWS FROM THE AHS Boston’s garden contest grows to record size, 2011 AHS President’s Council trip planned for Houston, Gala highlights, rave reviews for Armitage webinar in October, author of article for The American Gardener receives garden-writing award, new butterfly-themed children’s garden installed at River Farm. 12 2010 AMERICA IN BLOOM AWARD WINNERS Twelve cities are recognized for their community beautification efforts. 42 ONE ON ONE WITH… David Karp: Fruit detective. page 26 44 HOMEGROWN HARVEST The pleasures of popcorn. EDIBLE LANDSCAPING FOR SMALL SPACES 46 GARDENER’S NOTEBOOK 14 Replacing pavement with plants in San BY ROSALIND CREASY Francisco, soil bacterium may boost cognitive With some know-how, you can grow all sorts of vegetables, fruits, function, study finds fewer plant species on and herbs in small spaces. earth now than before, a fungus-and-virus combination may cause honeybee colony collapse disorder, USDA funds school garden CAREFREE MOSS BY CAROLE OTTESEN 20 program, Park Seed sold, Rudbeckia Denver Looking for an attractive substitute for grass in a shady spot? Try Daisy™ wins grand prize in American moss; it’ll grow on you. Garden Award Contest. 50 GREEN GARAGE® OUTSTANDING CONIFERS BY RITA PELCZAR 26 A miscellany of useful garden helpers. This group of trees and shrubs is beautiful year round, but shines brightest in winter.
    [Show full text]
  • The Evolution and Utility of Ribosomal ITS Sequences in Bambusinae and Related Species: Divergence, Pseudogenes, and Implications for Phylogeny
    c Indian Academy of Sciences RESEARCH ARTICLE The evolution and utility of ribosomal ITS sequences in Bambusinae and related species: divergence, pseudogenes, and implications for phylogeny HUI-XING SONG, SU-PING GAO, MING-YAN JIANG, GUANG-LI LIU, XIAO-FANG YU and QI-BING CHEN∗ School of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, People’s Republic of China Abstract Ribosomal internal transcribed spacer (ITS) sequences are commonly used for phylogenetic reconstruction because they are highly reiterated as components of rDNA repeats, and hence are often subject to rapid homogenization through concerted evo- lution. Concerted evolution leads to intragenomic uniformity of repeats even between loci on nonhomologous chromosomes. However, a number of studies have shown that the ITS polymorphism within individuals is quite common. The molecu- lar systematics of Bambusinae and related species were recently assessed by different teams using independently generated ITS sequences, and the results disagreed in some remarkable features. Here we compared the ITS sequences of the mem- bers of Bambusa s. l., the genera Dendrocalamus, Dinochloa, Gigantochloa, Guadua, Melocalamus, Monocladus, Oxytenan- thera, Thyrsostachys, Pleioblastus, Pseudosasa and Schizostachyum. We have reanalysed the ITS sequences used by different research teams to reveal the underlying patterns of their different results. After excluding the sequences suspected to repre- sent paralogous loci, a phylogenetic analysis of the subtribe Bambusinae species were performed using maximum parsimony and maximum-likelihood methods. The implications of the findings are discussed. The risk of incorporating ITS paralogues in plant evolutionary studies that can distort the phylogenetic signal should caution molecular systematists. [Song H.-X., Gao S.-P., Jiang M.-Y., Liu G.-L., Yu X.-F.
    [Show full text]
  • SELECTED BAMBOO LITERATURE Ades, G. 1999. Important Discovery
    SELECTED BAMBOO LITERATURE Ades, G. 1999. Important discovery of lesser bamboo bat roosting site in Hong Kong. Porcupine! 19: 22. Brailovsky, H. 1988. Hemiptera—Heteroptera de Mexico. XXXIX. Descripción de una tribu nueva, un género Nuevo y una especie nueva de coreidos recolectados en bamboo (Bambusa sp.) (Coreidae-Coreinae). Anal. Inst. Biol. UNAM 58, ser. Zool. 1: 155-164. Bystriakova, N., V. Kapos & I. Lysenko. 2004. Bamboo biodiversity: Africa, Madgascar and the Americas. UNEP-WCMC/INBAR, Biodiversity Series 19. UK: Swaingrove Imaging. http://www.ourplanet.com/wcmc/19.html Bystriakova, N., V. Kapos, C. Stapleton & I. Lysenko. 2003. Bamboo biodiversity: information for planning conservation and management in the Asia-Pacific region. UNEP- WCMC/INBAR, Biodiversity Series 14. UK: Swaingrove Imaging. http://www.ourplanet.com/wcmc/14.html Clark, L.G. 2001. Bambusoideae. Pp. 21-49 in Flora Fanerogâmica do Estado de São Paulo, Volume I, Poaceae, H. Longhi-Wagner, ed. São Paulo: Editora Hucitec. [Includes collaboration with X. Londoño (Eremocaulon, Guadua), H. Longhi-Wagner and R.P. de Oliveira (Olyra, Parodiolyra), T. Sendulsky (Merostachys).] Clark, L.G. 2004. Two new species of Aulonemia and Chusquea (Poaceae: Bambusoideae) from Brazil. Revista Brasileira de Botânica 27: 31-36. Clark, L.G., G. Davidse & R.P. Ellis. 1989. Natural hybridization in bamboos: Evidence from Chusquea sect. Swallenochloa (Poaceae: Bambusoideae). National Geographic Research 5: 459-476. Clark, L.G., S. Dransfield, J. Triplett & J.G. Sánchez-Ken. In press. Phylogenetic relationships among the one-flowered genera of Bambuseae (Poaceae: Bambusoideae). In J. T. Columbus et al. (eds.). Monocots: Comparative biology and evolution. 2 vols.
    [Show full text]
  • 5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No
    $5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No. 30 Spring 2010 This is the thirtieth year that the American Bamboo Society Several existing cultivar names are not fully in accord with (ABS) has compiled a Source List of bamboo plants and requirements for naming cultivars. In the interests of products. The List includes more than 450 kinds (species, nomenclature stability, conflicts such as these are overlooked subspecies, varieties, and cultivars) of bamboo available in to allow continued use of familiar names rather than the the US and Canada, and many bamboo-related products. creation of new ones. The Source List editors reserve the right to continue recognizing widely used names that may The ABS produces the Source List as a public service. It is not be fully in accord with the International Code of published on the ABS website: www.AmericanBamboo.org. Nomenclature for Cultivated Plants (ICNCP) and to Paper copies are sent to all ABS members and can also be recognize identical cultivar names in different species of the ordered from ABS for $5.00 postpaid. Some ABS chapters same genus as long as the species is stated. and listed vendors also sell the Source List. Please see page 3 for ordering information and pages 54 and following for Many new bamboo cultivars still require naming, more information about the American Bamboo Society, its description, and formal publication. Growers with new chapters, and membership application. cultivars should consider publishing articles in the ABS magazine, “Bamboo.” Among other requirements, keep in The vendor sources for plants, products, and services are mind that new cultivars must satisfy three criteria: compiled annually from information supplied by the distinctiveness, uniformity, and stability.
    [Show full text]
  • Biological Report 30 May 1995 National Biological Service
    Biological Report 30 May 1995 National Biological Service The National Biological Service publishes five technical report series. Manuscripts are accepted from Service employees or contractors, students and faculty associated with cooperative research units, and other persons whose work is sponsored by the Service. Manuscripts are received with the understanding that they are unpublished. Manuscripts receive anonymous peer review. The final decision to publish lies with the editor. Editorial Staff Series Descrhtions WAGING EDITOR Biological Report ISSN 0895-1926 Paul A. Opler -Technical papers about applied research of limited scope. Subjects include new information arising from comprehensive studies, surveys and inventories, effects of land use on fish ASSISTANT BRANCH LEADER and wildlife, diseases of fish and wildlife, and developments Paul A. Vohs in technology. Proceedings of technical conferences and symposia may be published in this series. SCIENTIFIC EDITORS Fish and Wildlife Leaflet ISSN 0899461X Elizabeth D. Rockwell Summaries of technical information for readers of non- James R. Zuboy technical or semitechnical material. Subjects include topics of current interest, results of inventories and surveys, management techniques, and descriptions of imported fish TECHNICAL EDITORS and wildlife and their diseases. Jerry D. Cox Fish and Wildlife Research ISSN 1040-2411 Deborah K. Harris Papers on experimental research, theoretical presentations, and interpretive literature reviews. VISUAL INFORMATION SPECIALIST North American Fauna ISSN 0078-1304 Monographs of long-term or basic research on faunal and Constance M. Lemos floral life histories, distributions, population dynamics, and taxonomy and on community ecology. EDITORIAL ASSISTANT Resource Publication ISSN 0163-4801 Martha W. Nichols Semitechnical and nonexperimental technical topics including surveys; data, status, and historical reports; handbooks; checklists; manuals; annotated bibliographies; EDITORIAL CLERK and workshop papers.
    [Show full text]