Various Species)

Total Page:16

File Type:pdf, Size:1020Kb

Various Species) Specialty Crops for Pacific Island Agroforestry (http://agroforestry.net/scps) Farm and Forestry Production and Marketing Profile for Bamboo (various species) By Andrew Benton, Lex Thomson, Peter Berg, and Susan Ruskin USES AND PRODUCTS are usually shaped by hand or machine to ensure all four Bamboos produce woody culms that may be used whole as sides are straight, and then pressed together with glues into timber, or split for a multitude of wood products. The young laminated boards, which themselves can be shaped into shoots of some species can be eaten. The major usable mate- panels, parquet flooring, door and window frames, and so rials produced by bamboos are described below. on. These are widely produced in China, Japan, and India. Whole poles Splits Whole poles are widely used for construction, for scaffold- Splits are thin strips that are flexible enough to be woven. ing, frameworks, and other structural components of build- Broad, thin splits are often woveni nto mats, which can be ings (after proper preservation treatments). Pole sections pressed together into mat board. Narrower splits are fre- are also for round-pole furniture, handicrafts, and irrigation quently used in weaving handicrafts, furniture, and panels. systems. Bambusa vulgaris poles are widely used for tem- Splits of Schizostachyum glaucifolium are commonly used in porary building structures and rafts. The most promising Fiji for weaving into mats and interior panels. construction bamboos introduced into the Pacific islands Sticks include B. oldhamii, Dendrocalamus asper, D. giganteus and Sticks are produced by splitting laths, or thick splits, de- D. latiflorus, and Guadua angustifolia. B. tuldoides has excel- pending on the type of stick required. The process is often lent potential for making strong, long fishing poles. mechanized with hand- or electricity-operated machines. Laths Veneer Laths are thick strips of bamboo wood. Theymay either Veneers are produced by longitudinal shaving of the culm. be full thickness splits of a bamboo culm, or be further Veneers, laminations, and composites are used in surfboards, processed into plane-sided laths of bamboo wood which boats, and furniture. © Craig Elevitch © Craig Elevitch © Craig © INBAR © INBAR Top left: Structural components in a home, North Kona, Hawai‘i. Top right: Woven baskets for picking coffee, South Kona, Hawai‘i. Bottom left: Chairs made from small diameter poles, China. Bottom right: Bamboo flooring. Farm and Forestry Production and Marketing Profile for Bamboo by Andrew Benton, Lex Thomson, Peter Berg, and Susan Ruskin 2 Quindembo Bamboo Nursery © Craig Elevitch © Craig © Elevitch © Craig Left: Schizostachyum glaucifolium is native to some Pacific islands and widely introduced to others by ancient Polynesians. South Kohala, Hawai‘i. Middle: Traditional Hawaiian nose flute ‘ohe( hano ihu) made from Schizostachyum glaucifolium. Right: Traditional Hawaiian bamboo pattern stamps (‘ohe kapala) for decorating tapa cloth. Fibre and pulp Fodder Bamboo fibres are long and paper made from bamboo is Bamboo ��������������������������������������������������leaves make excellent fodder���������������������� for��������������������� �����������������livestock�������� includ- usually mixed with 20–30% softwood pulp to give extra ing cows, horses, and pigs. strength. The fibres may also be utilized to make high-value clothing fabrics, using processes similar to those used to Charcoal manufacture of rayon. The chemical composition of bam- Waste products, including branches and sawdust, can be boo culms is ���������������holocellulose (��–����������������������������%), lignin (20–30%), sili- used to produce charcoal and charcoal briquettes. These ca (0.5–4%), pentosans (��–2�%), and ash (�–5[9])%. burn hot and clean. Bamboo charcoal is also highly adsorp- tive and is often used in purification systems, particularly Extracts the sugar industry, and in household odour treatments. Bamboo tar-oil (also occasionally called bamboo vinegar) is used as a component of various medicines. Scale of commercial production worldwide The latest data indicates thatinternational trade in bamboo Medicinal uses products is worth US$2.5��������������������������������������������������������������������� billion per annum,��������������� t������������he major im- Tabasheer, a silicaceous concretion found in the internodes porters being the affluent nations, particularly the EU and of some species, is used medicinally, as is leaf sap which is the U.S. China is the major exporter. It is not known how sometimes used as an eye drop. There aremany other uses much is imported into or exported from various Pacific is- by indigenous peoples, but no commercialisation is known. lands, but the quantities are expected to be relatively small. Edible shoots BOTANICAL DESCRIPTION Bamboo shoots are usually harvested at 30–�0 cm tall, and are peeled before cooking. Shoots of many of the clump- Preferred scientific names forming tropical species contain high levels of cyanogens, See Tables � and 2. and must be boiled well prior to consumption. Family Poaceae Specialty Crops for Pacific Island Agroforestry (http://agroforestry.net/scps) 3 Subfamily Branch buds are borne only at the nodes and the number of Bambusae branches that emerge varies by species. Branches also have nodes and internodes, and can produce branchlets. Leaves Common names are borne in groups at the tips of the branchlets. The local names for Bambusa spp., the most common Bamboo flowers and seeds are rare. Individual flowers are bamboo of the Pacific, include (PEIR 20�0): small, but borne in longitudinal inflorescences, and seeds of Carolinian: bwai, bwai most bamboos are about the size of a grain of rice. Chamorro: pi‘ao, pi‘ao palaoan, piao paloan Chuukese: iich DISTRIBUTION English: bamboo Native range Fijian: mbitu vavalangi French: bambou Only one bamboo (Bambusa vulgaris) is pantropical and Hawaiian: ‘ohe may be regarded as naturalized in many parts of the Pacific. I-Kiribati: te kaibaba This species was introduced into Fiji in �8�0 and Hawai‘i in Kosraean: bambu the early part of the �9th century. Two other widely cultivated Maori (Cook Islands): koe, ko‘e, ko‘e papa‘?, ko‘e tinit? and naturalized bamboos in the Pacific islands are Bambusa Marshallese: bae, koba blumeana and B. multiplex. Schizostachyum glaucifolium is Nauruan: ebarabaratu indigenous (e.g., Fiji) or an ancient Polynesian introduction Niuean: kaho palangi, kaho papalangi (e.g., Hawai‘i, Samoa) in the Pacific islands. Palauan: bambuu, esel Native species recorded for PNG include Neololeba attra Pohnpeian: pehri, pehri en sapahn and Nastus elatus and for Solomon Islands Nastus obtusus Pukapukan: koe and Schizostachyum tessellatum. Rakahanga-Manihiki: kohe, kohe Samoan: ‘ofe, ‘ofe Fiti, ‘ofe palagi Current distribution worldwide Solomon Islands (Kwara‘ae): fi‘i kako Clump-forming bamboos are native to tropical and Spanish: caña amarilla, caña verde subtropical areas of Asia, Asia-Pacific, Africa, and Latin Tahitian: ‘ofe, ofe, ‘ohe America. Many species have been introduced to countries Tongan: kofe, pitu within Asia and Latin America, and to Africa, but less than Tuvaluan: kofe, pampu �00 species are grown on a commercial scale worldwide. Yapese: moor Clumping species brought into Fiji (Nadurulolo) in the See Table � for local common names of other indigenous �950s included Bambusa tuldoides, Dendrocalamus gigan- bamboos of the Pacific. teus, and Gigantochloa apus, but these species remain rare and localized. Species introduced into Fiji in recent times Brief botanical description (200�) in several locations (Pacific Harbour and Colo-I- Bamboos are woody grasses that range in height from 0.5 m Suva) include Bambusa lako, B. malingensis, B. oldhamii, B. to 40 m. The main structural component is the underground textilis, B. vulgaris cvs. Vittata and Wamin, Dendrocalamus rhizome system from which the above ground stems (called latiflorus, and Gigantochloa atter. Some of these same spe- “culms”) emerge. There are two major types of bamboos, cies and varieties have also been introduced into Kiribati, based on the type of rhizome they possess. Those with short Niue, Samoa, and Tonga. For a comprehensive compilation bulbous rhizomes that turn upwards to produce culms from of nomenclature and distribution see Ohrnberger (�999). their apical buds produce bamboos with culms growing Lists of species growing in and recommended for Pacific in closely-packed clumps are called “sympodial” bamboos. islands are given in Tables � and 2. Note that of the most Those with long rhizomes that grow horizontally through the useful genera, experience in the Pacificindicates that Gi- soil and produce culms from lateral buds in widely-spaced gantochloa spp. seems to be adaptable over a wider range groves are called “monopodial” bamboos. There are a few of environments than Dendrocalamus spp. (which gener- exceptions: invasive sympodial bamboos that form huge ally require more water) and can grow in soils of higher pH. groves and monopodial bamboos that form open clumps, Bambusa vulgaris may be regarded as naturalized throu�����������gh-h- and even a few bamboos with both types of rhizome. out the PacifiPacific c,,������������������������������������������������ asas indicatedindicated byby thethe extensiveextensive listlist ofof itsits comcom-- Culms are woody but hollow, except at the nodes, which mon names presented above. are periodic ring-like thickenings all the way up the culm. The distance between nodes varies with species.
Recommended publications
  • New Species of Schizostachyum (Poaceae–Bambusoideae) from the Andaman Islands, India
    BLUMEA 48: 187–192 Published on 7 April 2003 doi: 10.3767/000651903X686169 NEW SPECIES OF SCHIZOSTACHYUM (POACEAE–BAMBUSOIDEAE) FROM THE ANDAMAN ISLANDS, INDIA MUKTESH KUMAR & M. REMESH Botany Division, Kerala Forest Research Institute, Peechi 680-653, Trichur, Kerala, India SUMMARY Two new species of Schizostachyum Nees: S. andamanicum and S. kalpongianum, are described and illustrated. Key words: Schizostachyum, Andaman Islands, India. INTRODUCTION During the revisionary studies on Indian bamboos the authors could undertake a survey in the Andaman Islands. Five species of bamboos, namely Bambusa atra, Dinochloa an- damanica, Gigantochloa andamanica, Bambusa schizostachyoides, and Schizostachyum rogersii have so far been reported from the Andaman Islands (Munro, 1868; Gamble, 1896; Brandis, 1906; Parkinson, 1921). As a result of exploring different parts of the is lands two interesting bamboos were collected. Critical examination revealed that they belonged to the genus Schizostachyum Nees and hitherto undescribed. The genus Schizostachyum was described by Nees in 1829 based on Schizostachyum blumei. This genus is represented by about 45–50 species distributed in tropical and sub- tropical Asia from southern China throughout the Malaysian region, extending to the Pacific islands with the majority of species in Malaysia (Dransfield, 1983, 2000; Ohrnberger, 1999; Wong, 1995). The genus is characterised by sympodial rhizomes; erect or straggling thin-walled culms; many branches of the same length arising from the node; indeterminate inflores­ cence; absence of glumes in the spikelets; presence of lodicules; slender ovary with long, glabrous stiff style which is hollow around a central strand of tissue; anthers usu- ally with blunt apex. The bamboos collected from the Andaman Islands have straggling culms and are similar to Schizostachyum gracile (Munro) Holttum in certain characters but differ in several other characters.
    [Show full text]
  • Poaceae: Bambusoideae) Lynn G
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 26 2007 Phylogenetic Relationships Among the One- Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae) Lynn G. Clark Iowa State University, Ames Soejatmi Dransfield Royal Botanic Gardens, Kew, UK Jimmy Triplett Iowa State University, Ames J. Gabriel Sánchez-Ken Iowa State University, Ames Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Clark, Lynn G.; Dransfield, Soejatmi; Triplett, Jimmy; and Sánchez-Ken, J. Gabriel (2007) "Phylogenetic Relationships Among the One-Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 26. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/26 Aliso 23, pp. 315–332 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENETIC RELATIONSHIPS AMONG THE ONE-FLOWERED, DETERMINATE GENERA OF BAMBUSEAE (POACEAE: BAMBUSOIDEAE) LYNN G. CLARK,1,3 SOEJATMI DRANSFIELD,2 JIMMY TRIPLETT,1 AND J. GABRIEL SA´ NCHEZ-KEN1,4 1Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020, USA; 2Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK 3Corresponding author ([email protected]) ABSTRACT Bambuseae (woody bamboos), one of two tribes recognized within Bambusoideae (true bamboos), comprise over 90% of the diversity of the subfamily, yet monophyly of
    [Show full text]
  • Drepanostachyum Falcatum (Nees) Keng F
    10th World Bamboo Congress, Korea 2015 Genetic Diversity and Phylogenetic relationship among accessions of Drepanostachyum falcatum (Nees) Keng f. from the Garhwal Himalayas Chandrakant Tiwari* and Meena Bakshi Plant Physiology Discipline, Botany Division, Forest Research Institute, Dehradun-248006 (Uttarakhand), India Email: [email protected] * corresponding author Abstract:. This study assessed the genetic diversity of 10 accessions of Drepanostachyum falcatum collected from different localities in the Garhwal Himalayas, Uttarakhand, India , in the Hill bamboo germplasm collectionin Khirsu , using isozyme markers with four enzyme system (peroxidase, esterase, malate dehydrogenase and malic enzyme). Isozymatic analyses were performed with polyacrylamide gels (one system), bands were scored as binary data. Cluster analyses were conducted, using Jaccard´s similarity coefficient and UPGMA method. Very high degree of similarity was reported i.e. 63- 94% among different accessions. Dendrogram revealed two major clusters with three (A8- A10) and seven (A1- A7) accessions respectively. The results obtained suggested low genetic diversity in the species and urgent need of the in situ conservation of the natural genetic resources of the D. falcatum species. Key words: Genetic diversity; isozymes; polyacrylamide; Jaccard’s coefficient Introduction: Genetic conservation programmes are directed towards the long-term preservation of genetic resources either in situ or ex situ so that the potential for continuing evolution or improvement could be sustained. In situ conservation includes the organization and/ or servicing of natural supplies where species are permitted to stay in maximum environments with the lowest of management. On the other hand, ex situ conservation includes the use of botanic landscapes, field farms, seeds shops and gene banks and germplasm.
    [Show full text]
  • Bambusa Sp.) SEBAGAI SENYAWA ANTIMALARIA
    BIOEDUKASI Jurnal Pendidikan Biologi e ISSN 2442-9805 Universitas Muhammadiyah Metro p ISSN 2086-4701 IDENTIFIKASI JENIS DAN POTENSI BAMBU (Bambusa sp.) SEBAGAI SENYAWA ANTIMALARIA Agus Sujarwanta1 Suharno Zen2 1, Pascasarjana Pendidikan Biologi Universitas Muhammadiyah Metro 2, Pendidikan Biologi Universitas Muhammadiyah Metro E-mail: [email protected], [email protected] Abstract: Malaria is still a health problem in Indonesia caused by the protozoan genus Plasmodium through the bite of the Anopheles mosquito. One of the plants that can also be used to treat fever caused by parasitic diseases is bamboo (Bambusa sp.). The purpose of this research is to identify the type and potential of bamboo as an antimalarial compound in Lampung Province. This research be able to provide an overview of the diversity of bamboo species and their potential as an antimalaria compound in Lampung Province in May-July 2020. Primary data collection methods were obtained directly in the field including bamboo stands, both growing wild and cultivating, and describing them. Morphological observations for identification such as rhizome root types; bamboo shoots; branching; culm; leaf; stem; and segments refer to the criteria used by Widjaja (1997). The data is analyzed descriptively and tabulated. The results obtained 14 species of bamboo consisting of 5 genera with 14 species: Gigantochloa robusta, Schizostachyum brachycladum (Kurz), Schizostachyum blumei, Gigantochloa atroviolacea, Gigantochloa pseudoarundinacea (Steud.), Bambusa vulgaris var. striata (Lodd.ex Lindl.), Gigantochloa apus (Kurz), Dendrocalamus strictus, Bambusa maculate (Widjaja), Bambusa glaucophylla (Widjaja), Dendrocalamus asper (Backer ex K. Heyne), Dinochloa scandens (Blume ex Nees Kuntze), Bambusa glaucophylla (Widjaja), Dendrocalamus asper (Backer ex K. Heey), Dinochloa scandens (Blume ex Nees Kuntze), Bambusa multiplex (Lour.) Raeusch.
    [Show full text]
  • American Bamboo Society
    $5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No. 34 Spring 2014 This is the thirty-fourth year that the American Bamboo Several existing cultivar names are not fully in accord with Society (ABS) has compiled a Source List of bamboo plants requirements for naming cultivars. In the interests of and products. The List includes more than 510 kinds nomenclature stability, conflicts such as these are overlooked (species, subspecies, varieties, and cultivars) of bamboo to allow continued use of familiar names rather than the available in the US and Canada, and many bamboo-related creation of new ones. The Source List editors reserve the products. right to continue recognizing widely used names that may not be fully in accord with the International Code of The ABS produces the Source List as a public service. It is Nomenclature for Cultivated Plants (ICNCP) and to published on the ABS website: www.Bamboo.org . Copies are recognize identical cultivar names in different species of the sent to all ABS members and can also be ordered from ABS same genus as long as the species is stated. for $5.00 postpaid. Some ABS chapters and listed vendors also sell the Source List. Please see page 3 for ordering Many new bamboo cultivars still require naming, description, information and pages 50 and following for more information and formal publication. Growers with new cultivars should about the American Bamboo Society, its chapters, and consider publishing articles in the ABS magazine, membership application. “Bamboo.” Among other requirements, keep in mind that new cultivars must satisfy three criteria: distinctiveness, The vendor sources for plants, products, and services are uniformity, and stability.
    [Show full text]
  • Allometric Derivation and Estimation of Guadua Weberbaueri and G. Sarcocarpa Biomass in the Bamboo-Dominated Forests of SW Amazonia
    bioRxiv preprint doi: https://doi.org/10.1101/129262; this version posted April 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Allometric derivation and estimation of Guadua weberbaueri and G. sarcocarpa biomass in the bamboo-dominated forests of SW Amazonia Noah Yavit 10103 Farrcroft Drive Fairfax, VA 22030 Direct all correspondence to: [email protected] (571) 213-7571* bioRxiv preprint doi: https://doi.org/10.1101/129262; this version posted April 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Bamboo-dominated forests in Southwestern Amazonia encompass an estimated 180,000 km2 of nearly contiguous primary, tropical lowland forest. This area, largely composed of two bamboo species, Guadua weberbaueri Pilger and G. sarcocarpa Londoño & Peterson, comprises a significant portion of the Amazon Basin and has a potentially important effect on regional carbon storage. Numerous local REDD(+) projects would benefit from the development of allometric models for these species, although there has been just one effort to do so. The aim of this research was to create a set of improved allometric equations relating the above and belowground biomass to the full range of natural size and growth patterns observed. Four variables (DBH, stem length, small branch number and branch number ≥ 2cm diameter) were highly significant predictors of stem biomass (N≤ 278, p< 0.0001 for all predictors, complete model R2=0.93).
    [Show full text]
  • Download Bamboo Records (Public Information)
    Status Date Accession Number Names::PlantName Names::CommonName Names::Synonym Names::Family No. Remaining Garden Area ###########2012.0256P Sirochloa parvifolia Poaceae 1 African Garden ###########1989.0217P Thamnocalamus tessellatus mountain BamBoo; "BergBamBoes" in South Africa Poaceae 1 African Garden ###########2000.0025P Aulonemia fulgor Poaceae BamBoo Garden ###########1983.0072P BamBusa Beecheyana Beechy BamBoo Sinocalamus Beechyana Poaceae 1 BamBoo Garden ###########2003.1070P BamBusa Burmanica Poaceae 1 BamBoo Garden ###########2013.0144P BamBusa chungii White BamBoo, Tropical Blue BamBoo Poaceae 1 BamBoo Garden ###########2007.0019P BamBusa chungii var. BarBelatta BarBie BamBoo Poaceae 1 BamBoo Garden ###########1981.0471P BamBusa dolichoclada 'Stripe' Poaceae 2 BamBoo Garden ###########2001.0163D BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########2012.0069P BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########1981.0079P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########1981.0084P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########2000.0297P BamBusa dolichomerithalla 'Silverstripe' Blowpipe BamBoo 'Silverstripe' Poaceae 1 BamBoo Garden ###########2013.0090P BamBusa emeiensis 'Flavidovirens' Poaceae 1 BamBoo Garden ###########2011.0124P BamBusa emeiensis 'Viridiflavus' Poaceae 1 BamBoo Garden ###########1997.0152P BamBusa eutuldoides Poaceae 1 BamBoo Garden ###########2003.0158P BamBusa eutuldoides
    [Show full text]
  • Ornamental Grasses for the Midsouth Landscape
    Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential.
    [Show full text]
  • Pi-Aa6- 745" 12
    AGENCY FOR INTERNATIONAL DEVELOPMENT ONLY WASHINGTON 0. C. 20523& BIBLIOGRAPHIC INPUT SHEET _ A. PIOAASR'f 1. URjECT Science and technology TCOO-0000-0000 CL ASSI- FICATION * (IfAv I Applications 2. TITLE AND SUBTITLE Bamboo as a building material 3. AUTIfOR(S) McClure,F.A. 4. DOCUMNT DATE 5. NUMBER OF PAGES I). ARC NUMBER 1953 55p._ s7 ARC 7. REFERENCE ORGANIZATION NAME AND ADDRESS AID/TA/OST S. SUPPLEMENTARY NOT ES (Sponsoring Organizatlon, Publishers, A vailabllily) 9. ABSTRACT 10. CONTROL NUMBER I1. PRICE OF DOCUMENT PI-AA6- 745" 12. DESIPTORS 13. PROJECT NUMBER Bamboo Construction materials 14. CONTRACT NUMBER AID/TA/OST 15. TYPE OF DOCUMENT AID 590-1 (4-74) BAMBOO AS A BUILDING MATERIAL by F. A. McClure formerly Field Service Consultant Foreign Agricultural Service presently Research Associate in Botany Smithsonian Institution Reprinted by the Department of Housing and Urban Development Office of International Affairs with the permission of Foreign Agricultural Service United States Department of Agriculture Washington, D. C. May 1953 Reprinted July, 1963 Reprinted June, 1967 R eprinted June 1972 FOR EWORD This publication was originally prepared and published at the request of the Department of Housing and Urban Development (HUD) by the U.S. Department of Agriculture under the Point Four Program for the use of those actively engaged or interested in the development or improvement of the use of bamboo. It is not an exhaustive treatment of the subject; but it does present critical features and principles. J. Robert Dodge, formerly of the HUD staff and Harold R. Hay and Stephen Arneson former IIUD staff members supplied information and suggestions that contributed to the development of the subj&ct.
    [Show full text]
  • Comparative Study of the Resistance of Six Hawaii-Grown Bamboo
    Insects 2011, 2, 475-485; doi:10.3390/insects2040475 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Comparative Study of the Resistance of Six Hawaii-Grown Bamboo Species to Attack by the Subterranean Termites Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae) Nirmala K. Hapukotuwa * and J. Kenneth Grace College of Tropical Agriculture & Human Resources, University of Hawaii at Manoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-808-956-2462; Fax: +1-808-956-2460. Received: 13 October 2011; in revised form: 25 October 2011 / Accepted: 26 October 2011 / Published: 3 November 2011 Abstract: Bamboo is widely grown and utilized as a construction material around the world, particularly in the tropics. At present, there are about 70 bamboo species and varieties recorded from Hawaii. The objective of our study was to determine the relative resistance of six Hawaii-grown bamboo species to attack by Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann). Four-week laboratory feeding trials were performed as described in standard E1-09 of the American Wood Protection Association (AWPA 2009). Samples of each of the six bamboo species were individually exposed to 200 termites (with 10% soldiers); and termite mortality, wood mass loss, and visual appearance of the samples (on a scale of 0–10) were recorded at the conclusion of the trail. Mean mass losses of the six species as a result of termite feeding ranged from 13–29%; with the two most resistant bamboo species, Gigantocholoa pseudoarundinacea and Bambusa oldhamii, demonstrating significantly greater resistance to termite attack than the most susceptible bamboo species, Guadua anguistifolia, with both termite species.
    [Show full text]
  • Aerides Odorata
    Research Collection Report Improving livelihoods through market assessment and sustainable development of non-timber forest products (NTFPs) in two selected villages in the northern uplands of Vietnam Author(s): Hilfiker, Karin Publication Date: 2005 Permanent Link: https://doi.org/10.3929/ethz-a-004999400 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Zurich, 28 February 2005 Internship report Improving livelihoods through market assessment and sustainable development of non-timber forest products (NTFPs) in two selected villages in the northern uplands of Vietnam. Karin Hilfiker Dipl. Forest Engineer ETH Zurich, Switzerland January 2004 – February 2005 Author: Karin Hilfiker, Dipl. Forest Engineer ETH Zurich, Switzerland Assistant cum interpreter: Nguyen Trung Thong, Forester Xuan Mai University, Vietnam Internship tutor: Ruedi Lüthi, Technical Advisor of Extension and Training Support Project (ETSP) in Hanoi, Vietnam Scientific support: Dr. phil. Claudia Zingerli, Chair of Forest Policy and Forest Economics, Department of Environmental Sciences, ETH Zurich, Switzerland Dr. sc. nat. Jean-Pierre Sorg, Chair of Silviculture, Department of Environmental Sciences, ETH Zurich, Switzerland Implementation and funding: HELVETAS Switzerland, Zurich mandated by the Swiss Agency for Development and Cooperation (SDC), Berne Helvetas Vietnam – Swiss Association for International Cooperation ETSP – Extension and Training Support Project for Forestry and Agriculture in the Uplands 218 Doi Can Street, GPO Box 81, Hanoi, Vietnam; phone: +84 4 832 98 33, fax: +84 4 832 98 34 e-mail: [email protected] web site ETSP: http://www.etsp.org.vn, web site Helvetas Vietnam: http://www.helvetas.org.vn i Table of contents Summary.................................................................................................................................
    [Show full text]
  • Bambusa Lako Question Number Question Answer Score 1.01 Is the Species Highly Domesticated? N 0
    Australia/New Zealand Weed Risk Assessment adapted for United States. Data used for analysis published in: Gordon, D.R. and C.A. Gantz. 2008. Potential impacts on the horticultural industry of screening new plants for invasiveness. Conservation Letters 1: 227-235. Available at: http://www3.interscience.wiley.com/cgi-bin/fulltext/121448369/PDFSTART Bambusa lako Question number Question Answer Score 1.01 Is the species highly domesticated? n 0 1.02 Has the species become naturalised where grown? 1.03 Does the species have weedy races? 2.01 Species suited to U.S. climates (USDA hardiness zones; 0-low, 1- 1 intermediate, 2-high) 2.02 Quality of climate match data (0-low; 1-intermediate; 2-high) 2 2.03 Broad climate suitability (environmental versatility) n 0 2.04 Native or naturalized in regions with an average of 11-60 inches of annual n 0 precipitation 2.05 Does the species have a history of repeated introductions outside its y natural range? 3.01 Naturalized beyond native range n -2 3.02 Garden/amenity/disturbance weed n 0 3.03 Weed of agriculture n 0 3.04 Environmental weed n 0 3.05 Congeneric weed n 0 4.01 Produces spines, thorns or burrs ? 4.02 Allelopathic 4.03 Parasitic n 0 4.04 Unpalatable to grazing animals 4.05 Toxic to animals n 0 4.06 Host for recognised pests and pathogens 4.07 Causes allergies or is otherwise toxic to humans n 0 4.08 Creates a fire hazard in natural ecosystems 4.09 Is a shade tolerant plant at some stage of its life cycle n 0 4.1 Grows on one or more of the following soil types: alfisols, entisols, or y 1 mollisols
    [Show full text]