Mathematics Education in East Asia from Antiquity to Modern Times

Total Page:16

File Type:pdf, Size:1020Kb

Mathematics Education in East Asia from Antiquity to Modern Times Mathematics education in East Asia from antiquity to modern times Man Keung SIU Department of Mathematics, The University of Hong Kong, Hong Kong SAR, China Abstract Since the early 1990s the learning process of Asian students brought up in the tradition of the Confucian heritage culture (CHC) has become a much discussed issue. As a consequence the teaching process of Asian teachers in CHC classrooms has attracted the same attention. These two related issues are brought into focus in the so-called “CHC Learner / Teacher Paradox”. It is therefore natural to look at the history of mathematics education in some Asian countries such as China, Japan and Korea. This paper attempts to give an account of this long episode from ancient to medieval to modern times with illustrative examples. Introduction In this paper the author attempts to discuss some aspects of mathematics education in East Asia from antiquity to modern times by addressing the following questions. (i) What were the main features of mathematics education in (ancient) China / East Asia? (ii) What were some factors that led to such features? (iii) What influence did such features exert upon the development of mathematics in (ancient) China / East Asia? (iv) What lesson in mathematics education do we learn from this study? The last question is of particular interest in view of the upsurge in the recent decade of the attention paid to the process of learning and teaching in a classroom environment dominated by the so-called Confucian heritage culture1 (CHC) [see (Stevenson & Stigler, 1992; Stigler & Hiebert, 1999; Watkins et al, 1996; 2001)]. These two issues are brought into focus in the form of two paradoxes, namely (1) The CHC Learner Paradox: CHC students are perceived as using low- level, rote-based strategies in a classroom environment which should not be conducive to high achievement, yet CHC students report a preference for high-level, meaning-based learning strategies and they achieve significantly better in international assessments! (2) The CHC Teacher Paradox: Teachers in CHC classrooms produce a positive learning outcome under substandard conditions that western educators would regard as most unpromising! 1 The nebulous term CHC is used here in a general sense to cover the cultural background of communities in mainland China, Hong Kong, Japan, Korea, Singapore, Taiwan and Vietnam. It is beyond the scope of this short paper as well as beyond the capacity of the author to elaborate on this term in depth. Bjarnadóttir, K., Furinghetti, F., & Schubring, G. (Eds.) (2009). “Dig where you stand”. Proceedings of the conference “On-going research in the History of Mathematics Education”. 197 Man Keung SIU A usual explanation of these paradoxes lies in a careful differentiation between repetitive learning and rote learning. Such a differentiation is succinctly captured in the writings of the leading neo-Confucian scholar Zhu Xi (1130-1200) who said (translation taken from (Gardner, 1990)): Generally speaking, in reading, we must first become intimately familiar with the text so that its words seem to come from our own mouths. We should then continue to reflect on it so that its ideas seem to come from our own minds. Only then can there be real understanding. Still, once our intimate reading of it and careful reflection on it have led to a clear understanding of it, we must continue to question. Then there might be additional progress. If we cease questioning, in the end there’ll be no additional progress. (Book 10, p.135) […] Learning is reciting. If we recite it then think it over, think it over then recite it, naturally it’ll become meaningful to us. If we recite it but don't think it over, we still won't appreciate its meaning. If we think it over but don't recite it, even though we might understand it, our understanding will be precarious. (…) Should we recite it to the point of intimate familiarity, and moreover think about it in detail, naturally our mind and principle will become one and never shall we forget what we have read. (Book 10, p.138) Still, it remains a fact that in CHC a strong tradition of examination prevails and that it is commonly believed that an examination-oriented culture will hinder the learning process. Is examination really that bad? Or is it a necessary evil? Or is it even beneficial to the learning process in some sense? It may be helpful to look at the issue from a historical perspective. Traditional mathematics education in China In China the school system in its formal setting began during the latter part of the Xia Dynasty (circa twenty-first century B.C. to sixteenth century B.C.), run by the state and intended as a training ground for youths and children of the aristocracy. The system became more institutionalized in subsequent dynasties, persisted and evolved up to the last imperial dynasty of Qing (1616-1911), with rise and decline in its strength along with events and happenings in different epochs of history. A long period spanning half a millennium (722 B.C. to 221 B.C.) beset with conflicts and unrest caused decline in state-run institutions of learning, but the decline was more than compensated for by the formation of private academies around some eminent scholars in the community. This dual system of learning, which comprised state-run institutions and private academies side by side, persisted in China for the next two millennia. Embedded within the general education system was that of mathematics. For details see (Siu, 1995; 2001; 2004; Siu & Volkov, 1999) plus its extensive bibliography. A summary is depicted in a time-line with certain important events added alongside (see Figure 1). 198 Mathematics education in East Asia from antiquity to modern times Figure 1. A summary of the history of mathematics education in China. To address the question on examination-oriented culture, Siu and Volkov (1999) report their study of the state examination system in the Tang Dynasty (618-907), based on the detailed accounts recorded in official chronicles including (a) Jiu Tang Shu (Old History of the Tang Dynasty, c.941-945), (b) Xin Tang Shu (New History of the Tang Dynasty, c.1044-1058), (c) Tang Liu Dian (Six Codes of the Tang Dynasty, 738), (d) Tong Dian (Complete Structure of Government, c.770-801), (e) 199 Man Keung SIU Tang Hui Yao (Collection of Important Documents of the Tang Dynasty, 961). Furthermore, Siu even ventures to offer a (perhaps fictitious but with some partial evidence) “re-constructed” examination question to support his belief that candidates in ancient China did not just recite by heart mathematical texts in learning the subject at state-run institutions [see (Siu, 2001; 2004) for more details]. The “re-constructed” question is: Compute the volume of an ‘oblong pavilion’ of height h with top and bottom being rectangles of sides a1, a2 and b1, b2 respectively ( a1 ≠ b1,a2 ≠ b2 ) (see Figure 2). Figure 2. An ‘oblong pavilion’. A special case of the problem (when a1 = b1,a2 = b2 ) is indeed Problem 10 of Chapter 5 of the most famous ancient Chinese mathematical classics Jiu Zhang Suan Shu (Nine Chapters on the Mathematical Art) compiled between 100 B.C. and A.D. 100 (See Figure 3). Figure 3. Problem 10 of Chapter 5 of Jiu Zhang Suan Shu. It is not easy to hit upon the correct formula 1 1 V = [a a + b b + (a b + a b )]h 3 1 2 1 2 2 1 2 2 1 of the volume of an ‘oblong pavilion’ if one merely learns the formula of the pavilion (with square top and bottom) given in Jiu Zhang Suan Shu by rote. Besides, 200 Mathematics education in East Asia from antiquity to modern times the problem is of practical interest, because the candidates might well be facing in their subsequent career problems which were variations of those they learnt in the textbooks. By examining the content and style of mathematical classics in China we discern two main features of traditional Chinese mathematics: (1) It responded to demands on solving real world problems more than to demands on explicating problems created within the theory itself. (2) It was more inductive than deductive in nature. We can perhaps trace the root of these features to a basic tenet of traditional Chinese philosophy of life shared by the class of shi2 (intellectuals), namely, self-improvement and social interaction, leading to an aspiration for public service and inclination to pragmatism. Such an attitude is basically good and positive, but it also invites the possibility of exerting a negative influence on the study of certain disciplines, in this case mathematics. Mathematics is regarded primarily as a tool in dealing with practical matters, and that the worth of mathematics can only be so justified. As a result, mathematics did not play a role in traditional Chinese culture and thought as the role it played in western culture, for instance, as described in (Grabiner, 1988). These same features were reflected in mathematics education in China. Let us illustrate with one example. In the famous mathematical treatise Shu Shu Jiu Zhang (Mathematical Treatise in Nine Sections) written by QIN Jiushao (c.1202- 1261) in 1247, there appeared a problem (Problem 5 of Chapter 8) that says, “A circular castle has four gates to each direction. A tall tree stands 3 miles to the north. If one goes out by the South Gate and walks towards the east for 9 miles, one shall just see that tree. What is the circumference and diameter of the castle?” (See Figure 4). Figure 4. Problem 5 of Chapter 8 of Shu Shu Jiu Zhang.
Recommended publications
  • Proquest Dissertations
    University of Alberta Qin Jiushao and His Mathematical Treatise in Nine Sections in Thirteenth-Century China by Ke-Xin Au Yong A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Arts in History History and Classics ©Ke-Xin Au Yong Fall 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de ('edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-81281-5 Our file Notre reference ISBN: 978-0-494-81281-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats.
    [Show full text]
  • Hong Jeongha's Tianyuanshu and Zhengcheng Kaifangfa
    Journal for History of Mathematics http://dx.doi.org/10.14477/jhm.2014.27.3.155 Vol. 27 No. 3 (June 2014), 155–164 Hong JeongHa’s Tianyuanshu and Zhengcheng Kaifangfa 洪正夏의 天元術과 增乘開方法 Hong Sung Sa 홍성사 Hong Young Hee 홍영희 Kim Young Wook* 김영욱 Tianyuanshu and Zengcheng Kaifangfa introduced in the Song–Yuan dynasties and their contribution to the theory of equations are one of the most important achieve- ments in the history of Chinese mathematics. Furthermore, they became the most fundamental subject in the history of East Asian mathematics as well. The opera- tions, or the mathematical structure of polynomials have been overlooked by tra- ditional mathematics books. Investigation of GuIlJib (九一集) of Joseon mathemati- cian Hong JeongHa reveals thatQ Hong’s approach to polynomials is highly struc- n tural. For the expansion of k=1(x + ak), Hong invented a new method which we name Hong JeongHa’s synthetic expansion. Using this, he reveals that the pro- cesses in Zhengcheng Kaifangfa is not synthetic division but synthetic expansion. Keywords: Hong JeongHa, GuIlJib, Hong JeongHa’s synthetic expansion, Tianyuan- shu, Structure of polynomials, Binomial coefficients, Zhengcheng Kaifangfa, Shisuo Kaifangfa; 洪正夏, 九一集, 洪正夏의 組立展開, 天元術, 多項式의 構造, 二項係數, 增乘開 方法, 釋鎖開方法. MSC: 01A13, 01A25, 01A45, 01A50, 12–03, 12E05, 12E12 1 Introduction The theory of equations in Eastern mathematics has as long a history as that in the West and divides into two parts, namely constructing equations and solving them. For the former, Tianyuanshu (天元術) was introduced in the early period of the Song dynasty (960–1279) and then extended up to Siyuanshu (四元術) to repre- sent polynomials of four indeterminates by Zhu Shijie (朱世傑) in his Siyuan Yujian (四元玉鑑, 1303).
    [Show full text]
  • The Influence of Chinese Mathematical Arts on Seki Kowa
    THE INFLUENCE OF CHINESE MATHEMATICAL ARTS ON SEKI KOWA b y SHIGERU JOCHI, M.A. (Tokai) Thesis submitted for the degree of Ph.D. School of Oriental and African Studies, University of London. 1 9 9 3 ProQuest Number: 10673061 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10673061 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT I will consider the influence of Chinese mathematics on Seki Kowa. For this purpose, my thesis is constructed in four parts, introduction, I the studies of editions; Shu Shn Jin Zhang and Yang Uni S u m Fa, II the conception and extension of method for making magic squares, and 1 the analysis for solving indeterminate equations. In the introduction, I will explain some similarities between Chinese mathematics in the Song dynasty and Seki Kowa's works. It will become clear that the latter was influenced by Chinese mathematics. Then I introduce some former opinions concerning which Chinese mathematical book influenced him. I shall show that two Chinese mathematical books, Shn Shn Jin Zhang and Yang Hni S u m Fa, are particularly important.
    [Show full text]
  • On Mathematical Symbols in China* by Fang Li and Yong Zhang†
    On Mathematical Symbols in China* by Fang Li and Yong Zhang† Abstract. When studying the history of mathemati- cal symbols, one finds that the development of mathematical symbols in China is a significant piece of Chinese history; however, between the beginning of mathematics and modern day mathematics in China, there exists a long blank period. Let us focus on the development of Chinese mathematical symbols, and find out the significance of their origin, evolution, rise and fall within Chinese mathematics. The Origin of the Mathematical Symbols Figure 1. The symbols for numerals are the earliest math- ematical symbols. Ancient civilizations in Babylonia, derived from the word “white” (ⱑ) which symbolizes Egypt and Rome, which each had distinct writing sys- the human’s head in hieroglyphics. Similarly, the Chi- tems, independently developed mathematical sym- nese word “ten thousand” (ϛ) in Oracle Bone Script bols. Naturally, China did not fall behind. In the 16th was derived from the symbol for scorpion, possibly century BC, symbols for numerals, called Shang Or- because it is a creature found throughout rocks “in acle Numerals because they were used in the Oracle the thousands”. In Oracle Script, the multiples of ten, Bone Script, appeared in China as a set of thirteen hundred, thousand and ten thousand can be denoted numbers, seen below. (The original can be found in in two ways: one is called co-digital or co-text, which reference [2].) combines two single figures; another one is called Oracle Bone Script is a branch of hieroglyphics. analysis-word or a sub-word, which uses two sepa- In Figure 1, it is obvious that 1 to 4 are the hiero- rate symbols to represent a single meaning (see [5]).
    [Show full text]
  • Ancient Chinese Mathematics (A Very Short Summary)
    Ancient Chinese Mathematics (a very short summary) • Documented civilization in China from c.3000 BCE. Un- til c.200 CE, ‘China’ refers to roughly to the area shown in the map: north of the Yangtze and around the Yellow rivers. • Earliest known method of enumeration dates from the Shang dynasty (c.1600–1046 BCE) commensurate with the earliest known oracle bone script for Chinese char- acters. Most information on the Shang dynsaty comes from commentaries by later scholars, though many orig- inal oracle bones have been excavated, particularly from Anyang, its capital. • During the Zhou dynasty (c.1046–256 BCE) and especially towards the end in the Warring States period (c.475–221 BCE) a number of mathematical texts were written. Most have been lost but much content can be ascertained from later commentaries. • The warring states period is an excellent example of the idea that wars lead to progress. Rapid change created pressure for new systems of thought and technology. Feudal lords employed itinerant philosophers1) The use of iron in China expanded enormously, leading to major changes in warfare2 and commerce, both of which created an increased need for mathematics. Indeed the astronomy, the calendar and trade were the dominant drivers of Chinese mathematics for many centuries. • The warring states period ended in 221 BCE with the victory of victory of the Qin Emperor Shi Huang Di: famous for commanding that books be burned, rebuilding the great walls and for being buried with the Terracotta Army in Xi’an. China was subsequently ruled by a succession of dynasties until the abolition of the monarchy in 1912.
    [Show full text]
  • One Quadratic Equation, Different Understandings: the 13Th Century Interpretations by Li Ye and Later Commentaries in the 18Th and 19Th Centuries
    Journal for History of Mathematics http://dx.doi.org/10.14477/jhm.2017.30.3.137 Vol. 30 No. 3 (Jun. 2017), 137–162 One Quadratic Equation, Different Understandings: the 13th Century Interpretations by Li Ye and Later Commentaries in the 18th and 19th Centuries Charlotte Pollet Ying Jia-Ming* The Chinese algebraic method, the tian yuan shu, was developed during Song pe- riod (960–1279), of which Li Ye’s works contain the earliest testimony. Two 18th century editors commentated on his works: the editor of the Siku quanshu and Li Rui, the latter responding to the former. Korean scholar Nam Byeong-gil added an- other response in 1855. Differences can be found in the way these commentators considered mathematical objects and procedures. The conflicting nature of these commentaries shows that the same object, the quadratic equation, can beget differ- ent interpretations, either a procedure or an assertion of equality. Textual elements in this paper help modern readers reconstruct different authors’ understandings and reconsider the evolution of the definition of the object we now call ‘equation’. Keywords: algebra, quadratic equation, Song China, Qing China, Joseon Korea MSC: 01A13, 01A25, 01A35, 01A50, 01A55, 12–03 1 Introduction It is well-known to sinologists that our present knowledge of Song dynasty (960– 1279) mathematics derives from reconstructions made by Qing dynasty editors [24]. This time period is known for its evidential studies particularly in the fields of philol- ogy, phonology and exegesis, and for the editions of Classics in order to republish ancient Chinese texts. Some editors, convinced of the Chinese origin of algebra, used philological techniques to recover lost materials and restore the roots of ‘Chi- nese mathematics’ [15, 30].
    [Show full text]
  • KUIL, Vol. 26, 2003, 429-474 the HISTORY of CHINESE
    KUIL, vol. 26, 2003, 429-474 THE HISTORY OF CHINESE MATHEMATICS: THE PAST 25 YEARS ANDREA EBERHARD-BRÉARD REHSEIS (CNRS), France • Ph. D. Program in History • The Graduate Center, CUNY JOSEPH W. DAUBEN Ph. D. Program in History • The Graduate Center, CUNY XU YIBAO Ph.D. Program in History • The Graduate Center, CUNY RESUMEN ABSTRACT El presente artículo presenta los más This paper presents the major accom- importantes logros de la investigacián plishments of research over the past quar- sobre historia de las matemáticas chinas en ter century in the field of Chinese mathe- el ŭltimo cuarto del siglo XX. Comienza matics and its history. We begin with a con una breve panordmica sobre el estado brief overview of the progress of our de conocimientos y las principales figuras knowledge of that history, and the major que realizaron las prirneras contribuciones figures who contributed the fundamental fundamentales antes de 1975 para después early works prior to 1975, and then exam- examinar más detenidamente las aporta- ine more carefully the achievements of the ciones Ilevadas a cabo durante el ŭltimo past quarter century, beginning with a cuarto de siglo: autores europeos, publica- general overview of the subject before ciones en inglés y, finalmente, la extraor- surveying in more detail the contributions dinaria produccián en chino, en su mayor made in the past twenty-five years, first parte tras la Revolución Cultural. by Europeans, then by scholars publishing in English, after which this survey turns to examine the extraordinary production of scholarship written in Chinese, most of it since the end of the Cultural Revolution.
    [Show full text]
  • The Nine Chapters on the History of Chinese Mathematics
    The Nine Chapters on the History of Chinese Mathematics Rik Brandenburg¤ Keimpe Nevenzeely 15 July 2007 Abstract This article explores Chinese mathematics from the ¯rst archeological evidence of numbers on oracle bones (14th century BC) to the time Chi- nese mathematics became a part universal mathematics (halfway the 19th century AD). First a concise overview of Chinese history and in philosophy is given. The ethical oriented Confucianism was the dominant philosophy and con- sequently little attention was given to the natural world, hindering the development of natural sciences and mathematics. Due to historical and philosophical reasons, Chinese mathematics took quite a di®erent path than its Western counterpart: Chinese mathematics was focused on alge- bra and practical applications instead of geometry and theoretical reason- ing. The Nine Chapters on the Mathematical Art (ca. 1st century AD) is by far the most influential work: it would shape Chinese mathematics for centuries to come. Between the 3rd and the 11th century AD, Bud- dhist and Indian ideas got a ¯rm grip on China, yet curiously Chinese mathematics is barely influenced. In the `Chinese Renaissance' and the subsequent Mongol occupation between the 12th and 14th century Chinese mathematics will reach its zenith. In the 15th and 16th centuries mathematical development waned and important achievements were forgotten. Only after the arrival of Eu- ropean missionary-scientists at the end of the 16th and during the 17th century mathematics made progress again. The Opium Wars of the 19th century mark the end of the classical China and the indigenous Chinese mathematics would be assimilated by universal mathematics.
    [Show full text]
  • HISTORY of MATH CONCEPTS Essentials, Images and Memes
    HISTORY OF MATH CONCEPTS Essentials, Images and Memes Sergey Finashin Modern Mathematics having roots in ancient Egypt and Babylonia, really flourished in ancient Greece. It is remarkable in Arithmetic (Number theory) and Deductive Geometry. Mathematics written in ancient Greek was translated into Arabic, together with some mathematics of India. Mathematicians of Islamic Middle East significantly developed Algebra. Later some of this mathematics was translated into Latin and became the mathematics of Western Europe. Over a period of several hundred years, it became the mathematics of the world. Some significant mathematics was also developed in other regions, such as China, southern India, and other places, but it had no such a great influence on the international mathematics. The most significant for development in mathematics was giving it firm logical foundations in ancient Greece which was culminated in Euclid’s Elements, a masterpiece establishing standards of rigorous presentation of proofs that influenced mathematics for many centuries till 19th. Content 1. Prehistory: from primitive counting to numeral systems 2. Archaic mathematics in Mesopotamia (Babylonia) and Egypt 3. Birth of Mathematics as a deductive science in Greece: Thales and Pythagoras 4. Important developments of ideas in the classical period, paradoxes of Zeno 5. Academy of Plato and his circle, development of Logic by Aristotle 6. Hellenistic Golden Age period, Euclid of Alexandria 7. Euclid’s Elements and its role in the history of Mathematics 8. Archimedes, Eratosthenes 9. Curves in the Greek Geometry, Apollonius the Great Geometer 10. Trigonometry and astronomy: Hipparchus and Ptolemy 11. Mathematics in the late Hellenistic period 12. Mathematics in China and India 13.
    [Show full text]
  • The Development of Polynomial Equations in Traditional China(Lam
    THE DEVELOPMENT OF POLYNOMIAL EQUATIONS * IN TRADITIONAL CHINA Lam Lay Yong National University of Singapore When we use the term "polynomial equation", our mind conditioned with sets of mathematical notations will immediately conceptualize an equation of the form In the ancient world, where mathematical symbols were non­ existent and mathematical expressions were in a verbalized form, how was, for instance, a quadratic equation initially conceptualized? And after the equation was formed, how was it solved? In this lecture, I shall be giving you a general survey of the development of such equations in China from antiquity to the early 14th century. Square roots and quadratic equations Among the existing texts on Chinese mathematics, the two earliest are the Zhou bi suanjing [a] (The arithmetic classic of the gnomon and the circular paths of heaven) and the Jiu zhang suanshu [b] (Nine chapters on the mathematical art). A conservative dating of the former would be around 100 BC while the latter is generally placed between 100 BC and 100 AD. It is well known that the Zhou bi suanjing contains a description of the hypotenuse diagram or xian tu [c] (see Fig. 1) which depicts * Text of Presidential Address deliverd at the Annual General Meeting of the Singapore Mathematical Society on 19 March 1986. 9 Fig. 1 K ~ ,I ...... J I " ' G J ~ A v H I // r. J r / b "" " .... ~ "" ~ r 1 8 c 0 a~E Fig. 2 10 one of the earliest proofs of Pythagoras theorem. However, it is not so well known that this diagram also provides one of the earliest examples in Chinese mathematics on the formulation and concept of a quadratic equation.
    [Show full text]
  • Mathematics Development in China
    Pasundan Journal of Mathematics Education (PJME) DOI 10.5035/pjme.v10i2.2434 Vol. 10 No. 2, November 2020, hal. 1-22 https://journal.unpas.ac.id/index.php/pjme Mathematics Development in China Ade Nandang Mustafa Beijing Normal University [email protected] Abstract China has a very long history of contributing to human civilisation, including its contribution to mathematics development. The Chinese had discovered many essential theories and concepts in mathematics long before the more famous Western mathematicians. Many of China's theories and concepts thousands of years ago have become references to many Western mathematicians. This paper traces the development of mathematics in China from all the dynasties in its history, including the development of mathematical theory, mathematical texts, and the famous mathematical figures of his time. Keywords: Ancient China, Mathematics Development Abstrak Cina memiliki sejarah yang sangat panjang dalam berkontribusi pada peradaban manusia, termasuk kontribusinya terhadap pengembangan matematika. Cina telah menemukan banyak teori dan konsep penting dalam matematika jauh sebelum matematikawan Barat yang lebih terkenal. Banyak teori dan konsep yang dikembangkan oleh Cina ribuan tahun yang lalu menjadi referensi bagi banyak ahli matematika Barat. Makalah ini melacak perkembangan matematika di Cina dari semua dinasti dalam sejarahnya. Termasuk teori matematika yang berkembang, catatan yang dibukukan, dan tokoh matematika yang terkenal di zamannya. Kata kunci: Cina, Perkembangan matematika Introduction In China, mathematics was seen as a necessity and a utility. The mathematics education practice in China has attracted much attention not only from educational communities but also from society. The long history of Chinese civilisation has had an impact on how Chinese people think.
    [Show full text]
  • V Chinese Mathematics
    V Chinese Mathematics The ancient record of civilization in China began in the more northern Yellow River Valley where the Yangshao culture existed from about 5,000 to 2700 B.C.E. These people lived in the middle and lower parts of the river valley. They cultivated rice and millet, kept pigs, wove baskets and made pottery without a wheel. Their pottery was dyed red with black geometric designs painted on it, and also pictures of fish and human faces. Archeologists have found pottery from these people with the symbols for 1, 2, 5, and 7 painted on the dishes. The next culture, one which evolved from the Yangshao, was the Longshan culture, which thrived from 3,000 to 2,000 B.C.E., approximately. This culture domesticated the water buffalo, sheep and cattle. They made black pottery on a wheel. The pottery was not painted but decorated with grooved or raised rings. From about 2100 to 1600 B.C.E. the Xia (or Hsia) dynasty controlled the Yellow River Valley. Recent discoveries have unearthed a large city with a wall and a moat for defensive purposes surrounding the city. This city has been dated to the early Xia dynasty. It is in Henan Province in today’s China. From about 1500 to 1000 B.C.E the Shang dynasty controlled the area with a capital city at Anyang, also in current day Henan province, just north of the southern bend in the Yellow River. They also used the walled and moated city of the Xia, mentioned above. By 1300 B.C.E.
    [Show full text]