Proquest Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notices of the American Mathematical Society
ISSN 0002-9920 of the American Mathematical Society February 2006 Volume 53, Number 2 Math Circles and Olympiads MSRI Asks: Is the U.S. Coming of Age? page 200 A System of Axioms of Set Theory for the Rationalists page 206 Durham Meeting page 299 San Francisco Meeting page 302 ICM Madrid 2006 (see page 213) > To mak• an antmat•d tub• plot Animated Tube Plot 1 Type an expression in one or :;)~~~G~~~t;~~i~~~~~~~~~~~~~:rtwo ' 2 Wrth the insertion point in the 3 Open the Plot Properties dialog the same variables Tl'le next animation shows • knot Plot 30 Animated + Tube Scientific Word ... version 5.5 Scientific Word"' offers the same features as Scientific WorkPlace, without the computer algebra system. Editors INTERNATIONAL Morris Weisfeld Editor-in-Chief Enrico Arbarello MATHEMATICS Joseph Bernstein Enrico Bombieri Richard E. Borcherds Alexei Borodin RESEARCH PAPERS Jean Bourgain Marc Burger James W. Cogdell http://www.hindawi.com/journals/imrp/ Tobias Colding Corrado De Concini IMRP provides very fast publication of lengthy research articles of high current interest in Percy Deift all areas of mathematics. All articles are fully refereed and are judged by their contribution Robbert Dijkgraaf to the advancement of the state of the science of mathematics. Issues are published as S. K. Donaldson frequently as necessary. Each issue will contain only one article. IMRP is expected to publish 400± pages in 2006. Yakov Eliashberg Edward Frenkel Articles of at least 50 pages are welcome and all articles are refereed and judged for Emmanuel Hebey correctness, interest, originality, depth, and applicability. Submissions are made by e-mail to Dennis Hejhal [email protected]. -
Transnational Mathematics and Movements: Shiing- Shen Chern, Hua Luogeng, and the Princeton Institute for Advanced Study from World War II to the Cold War1
Chinese Annals of History of Science and Technology 3 (2), 118–165 (2019) doi: 10.3724/SP.J.1461.2019.02118 Transnational Mathematics and Movements: Shiing- shen Chern, Hua Luogeng, and the Princeton Institute for Advanced Study from World War II to the Cold War1 Zuoyue Wang 王作跃,2 Guo Jinhai 郭金海3 (California State Polytechnic University, Pomona 91768, US; Institute for the History of Natural Sciences, Chinese Academy of Sciences, Beijing 100190, China) Abstract: This paper reconstructs, based on American and Chinese primary sources, the visits of Chinese mathematicians Shiing-shen Chern 陈省身 (Chen Xingshen) and Hua Luogeng 华罗庚 (Loo-Keng Hua)4 to the Institute for Advanced Study in Princeton in the United States in the 1940s, especially their interactions with Oswald Veblen and Hermann Weyl, two leading mathematicians at the IAS. It argues that Chern’s and Hua’s motivations and choices in regard to their transnational movements between China and the US were more nuanced and multifaceted than what is presented in existing accounts, and that socio-political factors combined with professional-personal ones to shape their decisions. The paper further uses their experiences to demonstrate the importance of transnational scientific interactions for the development of science in China, the US, and elsewhere in the twentieth century. Keywords: Shiing-shen Chern, Chen Xingshen, Hua Luogeng, Loo-Keng Hua, Institute for 1 This article was copy-edited by Charlie Zaharoff. 2 Research interests: History of science and technology in the United States, China, and transnational contexts in the twentieth century. He is currently writing a book on the history of American-educated Chinese scientists and China-US scientific relations. -
Shaw' Preemia
Shaw’ preemia 2002. a rajas Hongkongi ajakirjandusmagnaat ja tuntud filantroop sir Run Run Shaw (s 1907) omanimelise fondi, et anda v¨alja iga-aastast preemiat – Shaw’ preemiat. Preemiaga autasustatakse ”isikut, s˜oltumata rassist, rahvusest ja religioossest taustast, kes on saavutanud olulise l¨abimurde akadeemilises ja teaduslikus uuri- mist¨o¨os v˜oi rakendustes ning kelle t¨o¨o tulemuseks on positiivne ja sugav¨ m˜oju inimkonnale.” Preemiat antakse v¨alja kolmel alal – astronoomias, loodusteadustes ja meditsiinis ning matemaatikas. Preemia suurus 2009. a oli uks¨ miljon USA dollarit. Preemiaga kaas- neb ka medal (vt joonist). Esimesed preemiad omistati 2004. a. Ajakirjanikud on ristinud Shaw’ preemia Ida Nobeli preemiaks (the Nobel of the East). Shaw’ preemiaid aastail 2009–2011 matemaatika alal m¨a¨arab komisjon, kuhu kuuluvad: esimees: Sir Michael Atiyah (Edinburghi Ulikool,¨ UK) liikmed: David Kazhdan (Jeruusalemma Heebrea Ulikool,¨ Iisrael) Peter C. Sarnak (Princetoni Ulikool,¨ USA) Yum-Tong Siu (Harvardi Ulikool,¨ USA) Margaret H. Wright (New Yorgi Ulikool,¨ USA) 2009. a Shaw’ preemia matemaatika alal kuulutati v¨alja 16. juunil Hongkongis ja see anti v˜ordses osas kahele matemaatikule: 293 Eesti Matemaatika Selts Aastaraamat 2009 Autori~oigusEMS, 2010 294 Shaw’ preemia Simon K. Donaldsonile ja Clifford H. Taubesile s¨arava panuse eest kolme- ja neljam˜o˜otmeliste muutkondade geomeetria arengusse. Premeerimistseremoonia toimus 7. oktoobril 2009. Sellel osales ka sir Run Run Shaw. Siin pildil on sir Run Run Shaw 100-aastane. Simon K. Donaldson sundis¨ 1957. a Cambridge’is (UK) ja on Londonis Imperial College’i Puhta Matemaatika Instituudi direktor ja professor. Bakalaureusekraadi sai ta 1979. a Pembroke’i Kolled- ˇzistCambridge’s ja doktorikraadi 1983. -
Hong Jeongha's Tianyuanshu and Zhengcheng Kaifangfa
Journal for History of Mathematics http://dx.doi.org/10.14477/jhm.2014.27.3.155 Vol. 27 No. 3 (June 2014), 155–164 Hong JeongHa’s Tianyuanshu and Zhengcheng Kaifangfa 洪正夏의 天元術과 增乘開方法 Hong Sung Sa 홍성사 Hong Young Hee 홍영희 Kim Young Wook* 김영욱 Tianyuanshu and Zengcheng Kaifangfa introduced in the Song–Yuan dynasties and their contribution to the theory of equations are one of the most important achieve- ments in the history of Chinese mathematics. Furthermore, they became the most fundamental subject in the history of East Asian mathematics as well. The opera- tions, or the mathematical structure of polynomials have been overlooked by tra- ditional mathematics books. Investigation of GuIlJib (九一集) of Joseon mathemati- cian Hong JeongHa reveals thatQ Hong’s approach to polynomials is highly struc- n tural. For the expansion of k=1(x + ak), Hong invented a new method which we name Hong JeongHa’s synthetic expansion. Using this, he reveals that the pro- cesses in Zhengcheng Kaifangfa is not synthetic division but synthetic expansion. Keywords: Hong JeongHa, GuIlJib, Hong JeongHa’s synthetic expansion, Tianyuan- shu, Structure of polynomials, Binomial coefficients, Zhengcheng Kaifangfa, Shisuo Kaifangfa; 洪正夏, 九一集, 洪正夏의 組立展開, 天元術, 多項式의 構造, 二項係數, 增乘開 方法, 釋鎖開方法. MSC: 01A13, 01A25, 01A45, 01A50, 12–03, 12E05, 12E12 1 Introduction The theory of equations in Eastern mathematics has as long a history as that in the West and divides into two parts, namely constructing equations and solving them. For the former, Tianyuanshu (天元術) was introduced in the early period of the Song dynasty (960–1279) and then extended up to Siyuanshu (四元術) to repre- sent polynomials of four indeterminates by Zhu Shijie (朱世傑) in his Siyuan Yujian (四元玉鑑, 1303). -
The Influence of Chinese Mathematical Arts on Seki Kowa
THE INFLUENCE OF CHINESE MATHEMATICAL ARTS ON SEKI KOWA b y SHIGERU JOCHI, M.A. (Tokai) Thesis submitted for the degree of Ph.D. School of Oriental and African Studies, University of London. 1 9 9 3 ProQuest Number: 10673061 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10673061 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT I will consider the influence of Chinese mathematics on Seki Kowa. For this purpose, my thesis is constructed in four parts, introduction, I the studies of editions; Shu Shn Jin Zhang and Yang Uni S u m Fa, II the conception and extension of method for making magic squares, and 1 the analysis for solving indeterminate equations. In the introduction, I will explain some similarities between Chinese mathematics in the Song dynasty and Seki Kowa's works. It will become clear that the latter was influenced by Chinese mathematics. Then I introduce some former opinions concerning which Chinese mathematical book influenced him. I shall show that two Chinese mathematical books, Shn Shn Jin Zhang and Yang Hni S u m Fa, are particularly important. -
On Mathematical Symbols in China* by Fang Li and Yong Zhang†
On Mathematical Symbols in China* by Fang Li and Yong Zhang† Abstract. When studying the history of mathemati- cal symbols, one finds that the development of mathematical symbols in China is a significant piece of Chinese history; however, between the beginning of mathematics and modern day mathematics in China, there exists a long blank period. Let us focus on the development of Chinese mathematical symbols, and find out the significance of their origin, evolution, rise and fall within Chinese mathematics. The Origin of the Mathematical Symbols Figure 1. The symbols for numerals are the earliest math- ematical symbols. Ancient civilizations in Babylonia, derived from the word “white” (ⱑ) which symbolizes Egypt and Rome, which each had distinct writing sys- the human’s head in hieroglyphics. Similarly, the Chi- tems, independently developed mathematical sym- nese word “ten thousand” (ϛ) in Oracle Bone Script bols. Naturally, China did not fall behind. In the 16th was derived from the symbol for scorpion, possibly century BC, symbols for numerals, called Shang Or- because it is a creature found throughout rocks “in acle Numerals because they were used in the Oracle the thousands”. In Oracle Script, the multiples of ten, Bone Script, appeared in China as a set of thirteen hundred, thousand and ten thousand can be denoted numbers, seen below. (The original can be found in in two ways: one is called co-digital or co-text, which reference [2].) combines two single figures; another one is called Oracle Bone Script is a branch of hieroglyphics. analysis-word or a sub-word, which uses two sepa- In Figure 1, it is obvious that 1 to 4 are the hiero- rate symbols to represent a single meaning (see [5]). -
Science & Technology in China • Status • National 15Y Plan
DEMOS Conference The Atlas of Ideas: Mapping the new geography of science ScienceScience && TechnologyTechnology inin ChinaChina •• StatusStatus •• NationalNational 15y15y PlanPlan •• CollaborationCollaboration OpportunityOpportunity ZHANG Xian -En (((张先恩))) Ministry of Science & Technology P R China London, 16 -18 January 2007 1 ScienceScience && CivilisationCivilisation inin ChinaChina 7 vol , 1954 -, Cambridge Uni. Exp. Dr.Joseph Needham (1900 -1995) http:// www.nri.org.uk/joseph.html2 The Four Great Inventions in ancient China Gunpowder (AD 900) 司南,Sinan - The oldest compass ( bc ) 蔡伦 Cai Lun Paper (AD 105) 毕升, Bi Sheng Printing with movable typeset 3 (AD 1041 -1048) http:// telecenter.mmit.stc.sh.cn/fourinventions/index.htm written in the 16 th 本 century, lists over 草 1,800 different medical remedies 纲 and over 10,000 目 prescriptions. 祖冲之 祖冲之 ZU Chongzhi (429 -500) Dr. LI Shizhen 李时珍 (AD 1518 -1593 ) π = 3.1415926 & 3.1415927 Compendium of Materia Medica the first person in the world to accurately determine the value of π to seven decimal places. 浑天仪 celestial globe used to study star -related phenomena 地动仪 seismograph used to measure seismic activity China ‘s first complete star chart which recorded 2,500 fixed stars, their brightness and their time of appearance and disappearance. 张衡 ZHANG Heng (AD 78 -139) 4 The first synthesized crystalline bovine insulin, also the first synthesized 5 crystalline bioactive protein, Sept 17, 1965. 李四光 Li Siguang (1889 -1971 ) The founder of China ’s geomechanics , He changed the 吴文俊 WU Wenjun , 1919 - situation of “oil -deficiency ” in the The founder of mathematical mechanization, country by his “Land facies whose theory Wu ’s method has greatly facilitated deposition ” theory. -
Mathematics Education in East Asia from Antiquity to Modern Times
Mathematics education in East Asia from antiquity to modern times Man Keung SIU Department of Mathematics, The University of Hong Kong, Hong Kong SAR, China Abstract Since the early 1990s the learning process of Asian students brought up in the tradition of the Confucian heritage culture (CHC) has become a much discussed issue. As a consequence the teaching process of Asian teachers in CHC classrooms has attracted the same attention. These two related issues are brought into focus in the so-called “CHC Learner / Teacher Paradox”. It is therefore natural to look at the history of mathematics education in some Asian countries such as China, Japan and Korea. This paper attempts to give an account of this long episode from ancient to medieval to modern times with illustrative examples. Introduction In this paper the author attempts to discuss some aspects of mathematics education in East Asia from antiquity to modern times by addressing the following questions. (i) What were the main features of mathematics education in (ancient) China / East Asia? (ii) What were some factors that led to such features? (iii) What influence did such features exert upon the development of mathematics in (ancient) China / East Asia? (iv) What lesson in mathematics education do we learn from this study? The last question is of particular interest in view of the upsurge in the recent decade of the attention paid to the process of learning and teaching in a classroom environment dominated by the so-called Confucian heritage culture1 (CHC) [see (Stevenson & Stigler, 1992; Stigler & Hiebert, 1999; Watkins et al, 1996; 2001)]. -
Ubc Virtual Graduation Fall 2020 November 25 Dear Graduate
ubc virtual graduation fall 2020 november 25 Dear Graduate, Today’s virtual ceremony celebrates your very real accomplishment. Your graduation began long before this day. It began when you made the choice to study that extra hour, dedicate yourself more deeply and strive to reach for the degree you had chosen to fully commit your life to pursuing. Many of the people that helped you arrive here today— family, friends, classmates—are watching this ceremony with you. While they may not be physically next to you, they stand with you in spirit, take pride in your achievement and share your joy. We are honoured to have given you a place to discover, inspire others and be challenged beyond what you thought was possible. Yours, UBC TABLE OF CONTENTS The Graduation Journey 2 Lists of Fall 2020 Graduating Students Graduation Traditions 4 The Faculty of Graduate and Chancellor’s Welcome 6 Postdoctoral Studies 17 President’s Welcome 8 The Faculty of Applied Science 27 Musqueam Welcome 10 The Faculty of Arts 28 The Board of Governors & Senate 12 The Faculty of Commerce and Business Administration 30 Scholarships, Medals & Prizes 14 The Faculty of Dentistry 31 The Program of Ceremony 16 The Faculty of Education 32 The Faculty of Forestry 36 The Faculty of Land and Food Systems 36 The Peter A. Allard School of Law 37 The Faculty of Medicine 37 The Faculty of Pharmaceutical Sciences 37 The Faculty of Science 38 Acknowledgements 40 O Canada 40 Alumni Welcome 41 1 FALL GRADUATION 2020 THE GRADUATION JOURNEY The UBC graduation journey has been forged by the spirit of the university’s motto, Tuum Est, (meaning ‘it is yours’) since 1915. -
Ancient Chinese Mathematics (A Very Short Summary)
Ancient Chinese Mathematics (a very short summary) • Documented civilization in China from c.3000 BCE. Un- til c.200 CE, ‘China’ refers to roughly to the area shown in the map: north of the Yangtze and around the Yellow rivers. • Earliest known method of enumeration dates from the Shang dynasty (c.1600–1046 BCE) commensurate with the earliest known oracle bone script for Chinese char- acters. Most information on the Shang dynsaty comes from commentaries by later scholars, though many orig- inal oracle bones have been excavated, particularly from Anyang, its capital. • During the Zhou dynasty (c.1046–256 BCE) and especially towards the end in the Warring States period (c.475–221 BCE) a number of mathematical texts were written. Most have been lost but much content can be ascertained from later commentaries. • The warring states period is an excellent example of the idea that wars lead to progress. Rapid change created pressure for new systems of thought and technology. Feudal lords employed itinerant philosophers1) The use of iron in China expanded enormously, leading to major changes in warfare2 and commerce, both of which created an increased need for mathematics. Indeed the astronomy, the calendar and trade were the dominant drivers of Chinese mathematics for many centuries. • The warring states period ended in 221 BCE with the victory of victory of the Qin Emperor Shi Huang Di: famous for commanding that books be burned, rebuilding the great walls and for being buried with the Terracotta Army in Xi’an. China was subsequently ruled by a succession of dynasties until the abolition of the monarchy in 1912. -
One Quadratic Equation, Different Understandings: the 13Th Century Interpretations by Li Ye and Later Commentaries in the 18Th and 19Th Centuries
Journal for History of Mathematics http://dx.doi.org/10.14477/jhm.2017.30.3.137 Vol. 30 No. 3 (Jun. 2017), 137–162 One Quadratic Equation, Different Understandings: the 13th Century Interpretations by Li Ye and Later Commentaries in the 18th and 19th Centuries Charlotte Pollet Ying Jia-Ming* The Chinese algebraic method, the tian yuan shu, was developed during Song pe- riod (960–1279), of which Li Ye’s works contain the earliest testimony. Two 18th century editors commentated on his works: the editor of the Siku quanshu and Li Rui, the latter responding to the former. Korean scholar Nam Byeong-gil added an- other response in 1855. Differences can be found in the way these commentators considered mathematical objects and procedures. The conflicting nature of these commentaries shows that the same object, the quadratic equation, can beget differ- ent interpretations, either a procedure or an assertion of equality. Textual elements in this paper help modern readers reconstruct different authors’ understandings and reconsider the evolution of the definition of the object we now call ‘equation’. Keywords: algebra, quadratic equation, Song China, Qing China, Joseon Korea MSC: 01A13, 01A25, 01A35, 01A50, 01A55, 12–03 1 Introduction It is well-known to sinologists that our present knowledge of Song dynasty (960– 1279) mathematics derives from reconstructions made by Qing dynasty editors [24]. This time period is known for its evidential studies particularly in the fields of philol- ogy, phonology and exegesis, and for the editions of Classics in order to republish ancient Chinese texts. Some editors, convinced of the Chinese origin of algebra, used philological techniques to recover lost materials and restore the roots of ‘Chi- nese mathematics’ [15, 30]. -
KUIL, Vol. 26, 2003, 429-474 the HISTORY of CHINESE
KUIL, vol. 26, 2003, 429-474 THE HISTORY OF CHINESE MATHEMATICS: THE PAST 25 YEARS ANDREA EBERHARD-BRÉARD REHSEIS (CNRS), France • Ph. D. Program in History • The Graduate Center, CUNY JOSEPH W. DAUBEN Ph. D. Program in History • The Graduate Center, CUNY XU YIBAO Ph.D. Program in History • The Graduate Center, CUNY RESUMEN ABSTRACT El presente artículo presenta los más This paper presents the major accom- importantes logros de la investigacián plishments of research over the past quar- sobre historia de las matemáticas chinas en ter century in the field of Chinese mathe- el ŭltimo cuarto del siglo XX. Comienza matics and its history. We begin with a con una breve panordmica sobre el estado brief overview of the progress of our de conocimientos y las principales figuras knowledge of that history, and the major que realizaron las prirneras contribuciones figures who contributed the fundamental fundamentales antes de 1975 para después early works prior to 1975, and then exam- examinar más detenidamente las aporta- ine more carefully the achievements of the ciones Ilevadas a cabo durante el ŭltimo past quarter century, beginning with a cuarto de siglo: autores europeos, publica- general overview of the subject before ciones en inglés y, finalmente, la extraor- surveying in more detail the contributions dinaria produccián en chino, en su mayor made in the past twenty-five years, first parte tras la Revolución Cultural. by Europeans, then by scholars publishing in English, after which this survey turns to examine the extraordinary production of scholarship written in Chinese, most of it since the end of the Cultural Revolution.