An Excursion in Ancient Chinese Mathematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proquest Dissertations
University of Alberta Qin Jiushao and His Mathematical Treatise in Nine Sections in Thirteenth-Century China by Ke-Xin Au Yong A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Arts in History History and Classics ©Ke-Xin Au Yong Fall 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de ('edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-81281-5 Our file Notre reference ISBN: 978-0-494-81281-5 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. -
OECD Reviews of Innovation Policy Synthesis Report
OECD Reviews of Innovation Policy CHINA Synthesis Report ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT in collaboration with THE MINISTRY OF SCIENCE AND TECHNOLOGY, CHINA ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 30 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where govern- ments can compare policy experiences, seek answers to common problems, identify good practice and work to co- ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The Commission of the European Communities takes part in the work of the OECD. OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members. © OECD 2007 No reproduction, copy, transmission or translation of this publication may be made without written permission. Applications should be sent to OECD Publishing: [email protected] 3 Foreword This synthesis report (August 2007 Beijing Conference version) summarises the main findings of the OECD review of the Chinese national innovation system (NIS) and policy. -
Science Without Modernization: China's First Encounter with Useful and Reliable Knowledge from Europe Harriet T
Science Without Modernization: China's First Encounter With Useful And Reliable Knowledge From Europe Harriet T. Zurndorfer Abstract This paper reviews how recent revisionist scholarship on the history of Chinese science and technology has recast the Jesuit enterprise in China. It argues that the Ming and Qing governments' efforts to control the Jesuit-transmitted knowledge in these fields stimulated ever-more interest among local scholars in Chinese traditions of mathematics and astronomy which culminated in the 18th century 'evidential research' movement. But because the scientific knowledge the Jesuits conveyed was already 'out-of-date' before their arrival in China, local scholars never had the possibility to make a complete reassessment of their own mathematical and astronomical practices. As the primary and -- at times the only -- translators of Western scientific thought to China, the Jesuits had an enormous historical impact on how Chinese scholars became trapped in a pre-Copernican universe where Chinese natural philosophy with its focus on metaphysical interpretations of the natural world remained entrenched until the 19th century. Introduction: The History of Chinese Science and Technology in Global Perspective and the 'Great Divergence' In 1603, the famous Chinese intellectual and Christian convert, Xu Guangqi (1562-1633) offered the local magistrate of his native Shanghai county a proposal outlining the methodology to measure the length, width, depth, and water flow of a river. Xu's document (later printed in his collection Nongzheng quanshu [Comprehensive Treatise on Agricultural Administration]; comp. 1639) 1 employed conventional surveying practices as well as calculating techniques based on the Pythagorean theorem. Although it is tempting to attribute Xu's achievement here as a direct consequence of his meeting the Jesuit Matteo Ricci (1552-1610) in Nanjing that same year, it is not certain from extant documentation that this encounter with the European was the defining influence on his water study. -
Astronomy and Calendars – the Other Chinese Mathematics Jean-Claude Martzloff
Astronomy and Calendars – The Other Chinese Mathematics Jean-Claude Martzloff Astronomy and Calendars – The Other Chinese Mathematics 104 BC–AD 1644 123 Jean-Claude Martzloff East Asian Civilisations Research Centre (CRCAO) UMR 8155 The National Center for Scientific Research (CNRS) Paris France The author is an honorary Director of Research. After the publication of the French version of the present book (2009), he has been awarded in 2010 the Ikuo Hirayama prize by the Académie des Inscriptions et Belles-Lettres for the totality of his work on Chinese mathematics. ISBN 978-3-662-49717-3 ISBN 978-3-662-49718-0 (eBook) DOI 10.1007/978-3-662-49718-0 Library of Congress Control Number: 2016939371 Mathematics Subject Classification (2010): 01A-xx, 97M50 © Springer-Verlag Berlin Heidelberg 2016 The work was first published in 2009 by Honoré Champion with the following title: Le calendrier chinois: structure et calculs (104 av. J.C. - 1644). This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Hong Jeongha's Tianyuanshu and Zhengcheng Kaifangfa
Journal for History of Mathematics http://dx.doi.org/10.14477/jhm.2014.27.3.155 Vol. 27 No. 3 (June 2014), 155–164 Hong JeongHa’s Tianyuanshu and Zhengcheng Kaifangfa 洪正夏의 天元術과 增乘開方法 Hong Sung Sa 홍성사 Hong Young Hee 홍영희 Kim Young Wook* 김영욱 Tianyuanshu and Zengcheng Kaifangfa introduced in the Song–Yuan dynasties and their contribution to the theory of equations are one of the most important achieve- ments in the history of Chinese mathematics. Furthermore, they became the most fundamental subject in the history of East Asian mathematics as well. The opera- tions, or the mathematical structure of polynomials have been overlooked by tra- ditional mathematics books. Investigation of GuIlJib (九一集) of Joseon mathemati- cian Hong JeongHa reveals thatQ Hong’s approach to polynomials is highly struc- n tural. For the expansion of k=1(x + ak), Hong invented a new method which we name Hong JeongHa’s synthetic expansion. Using this, he reveals that the pro- cesses in Zhengcheng Kaifangfa is not synthetic division but synthetic expansion. Keywords: Hong JeongHa, GuIlJib, Hong JeongHa’s synthetic expansion, Tianyuan- shu, Structure of polynomials, Binomial coefficients, Zhengcheng Kaifangfa, Shisuo Kaifangfa; 洪正夏, 九一集, 洪正夏의 組立展開, 天元術, 多項式의 構造, 二項係數, 增乘開 方法, 釋鎖開方法. MSC: 01A13, 01A25, 01A45, 01A50, 12–03, 12E05, 12E12 1 Introduction The theory of equations in Eastern mathematics has as long a history as that in the West and divides into two parts, namely constructing equations and solving them. For the former, Tianyuanshu (天元術) was introduced in the early period of the Song dynasty (960–1279) and then extended up to Siyuanshu (四元術) to repre- sent polynomials of four indeterminates by Zhu Shijie (朱世傑) in his Siyuan Yujian (四元玉鑑, 1303). -
Papers Presented All Over World Inc
THE GREAT WALL OF CHINA: The World’s Greatest Boundary Monument! John F. Brock, Australia Keywords: Ancient China, surveyors, Pei Xiu, Liu Hui, The Haidao Suanjing, Great Wall(s) of China, Greatest Boundary Monument. ”… in the endeavors of mathematical surveying, China’s accomplishments exceeded those realized in the West by about one thousand years.” Frank Swetz – last line in The Sea Island Mathematical Manual: Surveying and Mathematics in Ancient China. ABSTRACT It is said that the Great Wall of China is the only manmade structure on Earth which is visible from space (not from the Moon)! The only natural feature similarly identifiable from the outer reaches past our atmospheric zone has been named as Australia’s Great Barrier Reef. This Fig. 1 The moon from The Great Wall instead of natural wonder of the sea is vice versa which cannot actually occur !!! continuous while the Great Wall of China is actually made up of a series of castellated walls mainly erected along ridge lines causing major variations in the levels of its trafficable upper surface. Some of the barriers built are not formed from stone but from rammed earth mounds. The purpose for these walls was primarily to facilitate protection from hostile adjoining tribes and marauding hordes of enemy armies intent on looting and pillaging the coffers of its neighbouring wealthier Chinese Dynasty of the time. As the need for larger numbers of military troops became required to defeat the stronger opponents, which may sometimes have formed alliances, the more astute provincial rulers saw a similar advantage in the unification of the disparate Chinese Provinces particularly during the Ming Dynasty (1368-1644). -
The Influence of Chinese Mathematical Arts on Seki Kowa
THE INFLUENCE OF CHINESE MATHEMATICAL ARTS ON SEKI KOWA b y SHIGERU JOCHI, M.A. (Tokai) Thesis submitted for the degree of Ph.D. School of Oriental and African Studies, University of London. 1 9 9 3 ProQuest Number: 10673061 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10673061 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT I will consider the influence of Chinese mathematics on Seki Kowa. For this purpose, my thesis is constructed in four parts, introduction, I the studies of editions; Shu Shn Jin Zhang and Yang Uni S u m Fa, II the conception and extension of method for making magic squares, and 1 the analysis for solving indeterminate equations. In the introduction, I will explain some similarities between Chinese mathematics in the Song dynasty and Seki Kowa's works. It will become clear that the latter was influenced by Chinese mathematics. Then I introduce some former opinions concerning which Chinese mathematical book influenced him. I shall show that two Chinese mathematical books, Shn Shn Jin Zhang and Yang Hni S u m Fa, are particularly important. -
On Mathematical Symbols in China* by Fang Li and Yong Zhang†
On Mathematical Symbols in China* by Fang Li and Yong Zhang† Abstract. When studying the history of mathemati- cal symbols, one finds that the development of mathematical symbols in China is a significant piece of Chinese history; however, between the beginning of mathematics and modern day mathematics in China, there exists a long blank period. Let us focus on the development of Chinese mathematical symbols, and find out the significance of their origin, evolution, rise and fall within Chinese mathematics. The Origin of the Mathematical Symbols Figure 1. The symbols for numerals are the earliest math- ematical symbols. Ancient civilizations in Babylonia, derived from the word “white” (ⱑ) which symbolizes Egypt and Rome, which each had distinct writing sys- the human’s head in hieroglyphics. Similarly, the Chi- tems, independently developed mathematical sym- nese word “ten thousand” (ϛ) in Oracle Bone Script bols. Naturally, China did not fall behind. In the 16th was derived from the symbol for scorpion, possibly century BC, symbols for numerals, called Shang Or- because it is a creature found throughout rocks “in acle Numerals because they were used in the Oracle the thousands”. In Oracle Script, the multiples of ten, Bone Script, appeared in China as a set of thirteen hundred, thousand and ten thousand can be denoted numbers, seen below. (The original can be found in in two ways: one is called co-digital or co-text, which reference [2].) combines two single figures; another one is called Oracle Bone Script is a branch of hieroglyphics. analysis-word or a sub-word, which uses two sepa- In Figure 1, it is obvious that 1 to 4 are the hiero- rate symbols to represent a single meaning (see [5]). -
The Fundamental Cartographical Technology of Ancient China ─ Forward Intersection
THE FUNDAMENTAL CARTOGRAPHICAL TECHNOLOGY OF ANCIENT CHINA ─ FORWARD INTERSECTION Zilan WANG1 Keling WANG Institute of History and Philosophy of Science University of Wuhan P.R.China Email: [email protected] Institute of Historical Geography University of Wuhan P.R.China Most available ancient Chinese maps were not based on field survey but were compiled indoor using direct or indirect travel and exploration records. The map preparation process can be roughly divided into the following steps. Firstly, the position of a geographical object is marked on the sketch map using its orientation and distance. The orientation data is based on the 8-orientation system in which the circumference is divided into 8 parts. The distance data is mainly based on the Chinese distance unit “Li”, but a smaller unit “Bu” will be used for detailed description. Secondly, the rectification by “intersection” method is carried out in order to minimize the errors in the relative positions of a geographical object caused by the intrinsic “roughness” of the aforementioned spatial model. This “intersection” rectification method, which is similar to the “forward intersection” in modern survey technology, was analyzed in this article from three angles: (1) the simulation study of the 2nd century B.C. survey map “Mawang Dui Map”, (2) the analysis of the traditional survey theory recorded in Zhou Bi Suan Jing and Jiu Zhang Suan Shu (including Liu Hui’s annotation of the latter), and (3) the new interpretation of the Fei Niao model proposed by Shen Kuo. In addition, travel records of “intersection” observation and the technique and historical background of forward intersection were found in related historical and geographical documents. -
Absence of Geometric Models in Medieval Chinese Astronomy
ABSENCE OF GEOMETRIC MODELS IN MEDIEVAL CHINESE ASTRONOMY JAYANT SHAH Abstract. In 718 A.D., Ch’¨ut’an Hsi-ta (Gautama Siddh¯artha), an Indian astronomer who was appointed an“astronomer royal” in the T’ang court compiled a compendium of omens and divina- tions, called K’aiy¨uan Chan-ching, analogous to Varahamihira’s Br. hatsam. hita. The 104th volume of this work, Chiu-chih li (Nine Upholders Calendrical System) on astronomy was entirely based on the Indian astronomy of the 7th century which in turn was based on the geometric astronomy of the Greeks. A few years later, the emperor asked I-hsing (Yixing in pinyin), a buddhist monk, an as- tronomer and a mathematician, to overhaul the traditional Chinese astronomy. He submitted an astronomical system, called Ta-yen li (Grand Expansion Calendrical System, Dayan li in pinyin) in 727 A.D. Only Ta-yen li was officially adopted. In the 13th century, a Persian astronomer submitted to Khubi- lai Khan an astronomical system, Myriad Year Calendrical System, based on the geometric Islamic astronomy. This too was not of- ficially adopted. Instead, Khubilai Khan ordered a major reform of the traditional Chinese system. The result was Shou-shih li (Granting the Seasons Calendrical System) which held sway over the Chinese astronomy until the arrival of the Jesuits in the 17th century. An analysis of the motion of the Sun and and the lunar paral- lax in Ta-yen li and Shou-shih li shows how little impact foreign imports had on Chinese astronomy. Geometric methods began to make inroads in Chinese astronomy only after the arrival of the Jesuits in the 17th century. -
Mathematics Education in East Asia from Antiquity to Modern Times
Mathematics education in East Asia from antiquity to modern times Man Keung SIU Department of Mathematics, The University of Hong Kong, Hong Kong SAR, China Abstract Since the early 1990s the learning process of Asian students brought up in the tradition of the Confucian heritage culture (CHC) has become a much discussed issue. As a consequence the teaching process of Asian teachers in CHC classrooms has attracted the same attention. These two related issues are brought into focus in the so-called “CHC Learner / Teacher Paradox”. It is therefore natural to look at the history of mathematics education in some Asian countries such as China, Japan and Korea. This paper attempts to give an account of this long episode from ancient to medieval to modern times with illustrative examples. Introduction In this paper the author attempts to discuss some aspects of mathematics education in East Asia from antiquity to modern times by addressing the following questions. (i) What were the main features of mathematics education in (ancient) China / East Asia? (ii) What were some factors that led to such features? (iii) What influence did such features exert upon the development of mathematics in (ancient) China / East Asia? (iv) What lesson in mathematics education do we learn from this study? The last question is of particular interest in view of the upsurge in the recent decade of the attention paid to the process of learning and teaching in a classroom environment dominated by the so-called Confucian heritage culture1 (CHC) [see (Stevenson & Stigler, 1992; Stigler & Hiebert, 1999; Watkins et al, 1996; 2001)]. -
Chinese Mathematics and ICCM
COMMUNICATION Chinese Mathematics and ICCM Editor’s Note: Notices invites occasional contributions, such as this piece, from its sister publications. Lizhen Ji Introduction distinguished Western math- China is big and growing, and Chinese mathematics is also ematicians such as Wiener, expanding and merging with world mathematics. What is Hadamard, Blaschke, and Os- special about the community of Chinese mathematicians? good were crucial for their How has Chinese mathematics evolved and interacted success. with the outside world? How will it impact the future of Modern Chinese math- mathematics and the global mathematics community in ematics reached another the world? minor golden age in the Though these questions are complex, one good way to 1950s and early 1960s. Then understand them is to take a look at an organization which political turmoil settled in. represents Chinese mathematicians and their friends and collaborators around the world: the International The History of ICCM Congress of Chinese Mathematicians (ICCM), which holds With the open door policy its seventh international conference this August in Beijing. in the 1980s, the Chinese economy and hence Chinese Chern in the early 1990s. A Glimpse at the History of Chinese Mathematics mathematics and sciences China has a long history, and Chinese mathematics also developed rapidly. By the has a long history. Though Chinese mathematics was di- 1990s the time was ripe rectly motivated by applications in astronomy, agriculture, to establish an international platform for mathemati- and commerce, there were systematic expositions of the- cians of Chinese descent and their friends to share and ories and results developed by Chinese people.