A History of Mathematics from Mesopotamia to Modernity

Total Page:16

File Type:pdf, Size:1020Kb

A History of Mathematics from Mesopotamia to Modernity A History of Mathematics This page intentionally left blank A History of Mathematics From Mesopotamia to Modernity Luke Hodgkin 1 3 Great Clarendon Street, Oxford OX2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford NewYork Auckland CapeTown Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © Oxford University Press, 2005 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2005 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose the same condition on any acquirer British Library Cataloguing in Publication Data Data available Library of Congress Cataloging in Publication Data Data available Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India Printed in Great Britain on acid-free paper by Antony Rowe Ltd., Chippenham, Wiltshire ISBN 0–19–852937–6 (Hbk) 978–0–19–852937–8 13579108642 Preface This book has its origin in notes which I compiled for a course on the history of mathematics at King’s College London, taught for many years before we parted company. My major change in outlook (which is responsible for its form) dates back to a day ten years ago at the University of Warwick, when I was comparing notes on teaching with the late David Fowler. He explained his own history of mathematics course to me; as one might expect, it was detailed, scholarly, and encouraged students to do research of their own, particularly on the Greeks. I told him that I gave what I hoped was a critical account of the whole history of mathematics in a series of lectures, trying to go beyond what they would find in a textbook. David was scornful. ‘What’, he said, ‘do you mean that you stand up in front of those students and tell stories?’ I had to acknowledge that I did. David’s approach meant that students should be taught from the start not to accept any story at face value, and to be interested in questions rather than narrative. It’s certainly desirable as regards the Greeks, and it’s a good approach in general, even if it may sometimes seem too difficult and too purist. I hope he would not be too hard on my attempts at a compromise. The aims of the book in this, its ultimate form, are set out in the introduction; briefly, I hope to introduce students to the history, or histories of mathematics as constructions which we make to explain the texts which we have, and to relate them to our own ideas. Such constructions are often controversial, and always provisional; but that is the nature of history. The original impulse to write came from David Robinson, my collaborator on the course at King’s, who suggested (unsuccessfully) that I should turn my course notes into a book; and providentially from Alison Jones of the Oxford University Press, who turned up at King’s when I was at a loose end and asked if I had a book to publish. I produced a proposal; she persuaded the press to accept it and kept me writing. Without her constant feedback and involvement it would never have been completed. I am grateful to a number of friends for advice and encouragement. Jeremy Gray read an early draft and promoted the project as a referee; the reader is indebted to him for the presence of exercises. Geoffrey Lloyd gave expert advice on the Greeks; I am grateful for all of it, even if I only paid attention to some. John Cairns, Felix Pirani and Gervase Fletcher read parts of the manuscript and made helpful comments; various friends and relations, most particularly Jack Goody, John Hope, Jessica Hines and Sam and Joe Gold Hodgkin expressed a wish to see the finished product. Finally, I’m deeply grateful to my wife Jean who has supported the project patiently through writing and revision. To her, and to my father Thomas who I hope would have approved, this book is dedicated. This page intentionally left blank Contents List of figures xi Picture Credits xiv Introduction 1 Why this book? 1 On texts, and on history 2 Examples 5 Historicism and ‘presentism’ 6 Revolutions, paradigms, and all that 8 External versus internal 10 Eurocentrism 12 1. Babylonian mathematics 14 1. On beginnings 14 2. Sources and selections 17 3. Discussion of the example 20 4. The importance of number-writing 21 5. Abstraction and uselessness 24 6. What went before 27 7. Some conclusions 30 Appendix A. Solution of the quadratic problem 30 Solutions to exercises 31 2. Greeks and ‘origins’ 33 1. Plato and the Meno 33 2. Literature 35 3. An example 36 4. The problem of material 39 5. The Greek miracle 42 6. Two revolutions? 44 7. Drowning in the sea of Non-identity 45 8. On modernization and reconstruction 47 9. On ratios 49 Appendix A. From the Meno 51 Appendix B. On pentagons, golden sections, and irrationals 52 Solutions to exercises 54 viii Contents 3. Greeks, practical and theoretical 57 1. Introduction, and an example 57 2. Archimedes 60 3. Heron or Hero 63 4. Astronomy, and Ptolemy in particular 66 5. On the uncultured Romans 69 6. Hypatia 71 Appendix A. From Heron’s Metrics 73 Appendix B. From Ptolemy’s Almagest 75 Solutions to exercises 76 4. Chinese mathematics 78 1. Introduction 78 2. Sources 80 3. An instant history of early China 80 4. The Nine Chapters 82 5. Counting rods—who needs them? 85 6. Matrices 88 7. The Song dynasty and Qin Jiushao 90 8. On ‘transfers’—when, and how? 95 9. The later period 98 Solutions to exercises 99 5. Islam, neglect and discovery 101 1. Introduction 101 2. On access to the literature 103 3. Two texts 106 4. The golden age 108 5. Algebra—the origins 110 6. Algebra—the next steps 115 7. Al-Samaw’al and al-K¯ash¯i 117 8. The uses of religion 123 Appendix A. From al-Khw¯arizm¯i’s algebra 125 Appendix B. Th¯abit ibn Qurra 127 Appendix C. From al-K¯ash¯i, The Calculator’s Key, book 4, chapter 7 128 Solutions to exercises 130 6. Understanding the ‘scientific revolution’ 133 1. Introduction 133 2. Literature 134 3. Scholastics and scholasticism 135 4. Oresme and series 138 5. The calculating tradition 140 6. Tartaglia and his friends 143 7. On authority 146 Contents ix 8. Descartes 149 9. Infinities 151 10. Galileo 153 Appendix A 155 Appendix B 156 Appendix C 157 Appendix D 158 Solutions to exercises 159 7. The calculus 161 1. Introduction 161 2. Literature 163 3. The priority dispute 165 4. The Kerala connection 167 5. Newton, an unknown work 169 6. Leibniz, a confusing publication 172 7. The Principia and its problems 176 8. The arrival of the calculus 178 9. The calculus in practice 180 10. Afterword 182 Appendix A. Newton 183 Appendix B. Leibniz 185 Appendix C. From the Principia 186 Solutions to exercises 187 8. Geometries and space 189 1. Introduction 189 2. First problem: the postulate 194 3. Space and infinity 197 4. Spherical geometry 199 5. The new geometries 201 6. The ‘time-lag’ question 203 7. What revolution? 205 Appendix A. Euclid’s proposition I.16 207 Appendix B. The formulae of spherical and hyperbolic trigonometry 209 Appendix C. From Helmholtz’s 1876 paper 210 Solutions to exercises 210 9. Modernity and its anxieties 213 1. Introduction 213 2. Literature 214 3. New objects in mathematics 214 4. Crisis—what crisis? 217 5. Hilbert 221 6. Topology 223 x Contents 7. Outsiders 228 Appendix A. The cut definition 231 Appendix B. Intuitionism 231 Appendix C. Hilbert’s programme 232 Solutions to exercises 232 10. A chaotic end? 235 1. Introduction 235 2. Literature 236 3. The Second World War 238 4. Abstraction and ‘Bourbaki’ 240 5. The computer 243 6. Chaos: the less you know, the more you get 246 7. From topology to categories 249 8. Physics 251 9. Fermat’s Last Theorem 254 Appendix A. From Bourbaki, ‘Algebra’, Introduction 256 Appendix B. Turing on computable numbers 256 Solutions to exercises 258 Conclusion 260 Bibliography 263 Index 271 List of figures Introduction 1 1. Euclid’s proposition II.1 5 Chapter 1. Babylonian mathematics 14 1. A mathematical tablet 15 2. Tally of pigs 16 3. The ‘stone-weighing’ tablet YBC4652 18 4. Cuneiform numbers from 1 to 60 23 5. How larger cuneiform numbers are formed 23 6. The ‘square root of 2’ tablet 25 7. Ur III tablet (harvests from Lagash) 28 Chapter 2. Greeks and ‘origins’ 33 1.
Recommended publications
  • Euler's Square Root Laws for Negative Numbers
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Complex Numbers Mathematics via Primary Historical Sources (TRIUMPHS) Winter 2020 Euler's Square Root Laws for Negative Numbers Dave Ruch Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_complex Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Euler’sSquare Root Laws for Negative Numbers David Ruch December 17, 2019 1 Introduction We learn in elementary algebra that the square root product law pa pb = pab (1) · is valid for any positive real numbers a, b. For example, p2 p3 = p6. An important question · for the study of complex variables is this: will this product law be valid when a and b are complex numbers? The great Leonard Euler discussed some aspects of this question in his 1770 book Elements of Algebra, which was written as a textbook [Euler, 1770]. However, some of his statements drew criticism [Martinez, 2007], as we shall see in the next section. 2 Euler’sIntroduction to Imaginary Numbers In the following passage with excerpts from Sections 139—148of Chapter XIII, entitled Of Impossible or Imaginary Quantities, Euler meant the quantity a to be a positive number. 1111111111111111111111111111111111111111 The squares of numbers, negative as well as positive, are always positive. ...To extract the root of a negative number, a great diffi culty arises; since there is no assignable number, the square of which would be a negative quantity. Suppose, for example, that we wished to extract the root of 4; we here require such as number as, when multiplied by itself, would produce 4; now, this number is neither +2 nor 2, because the square both of 2 and of 2 is +4, and not 4.
    [Show full text]
  • "Computers" Abacus—The First Calculator
    Component 4: Introduction to Information and Computer Science Unit 1: Basic Computing Concepts, Including History Lecture 4 BMI540/640 Week 1 This material was developed by Oregon Health & Science University, funded by the Department of Health and Human Services, Office of the National Coordinator for Health Information Technology under Award Number IU24OC000015. The First "Computers" • The word "computer" was first recorded in 1613 • Referred to a person who performed calculations • Evidence of counting is traced to at least 35,000 BC Ishango Bone Tally Stick: Science Museum of Brussels Component 4/Unit 1-4 Health IT Workforce Curriculum 2 Version 2.0/Spring 2011 Abacus—The First Calculator • Invented by Babylonians in 2400 BC — many subsequent versions • Used for counting before there were written numbers • Still used today The Chinese Lee Abacus http://www.ee.ryerson.ca/~elf/abacus/ Component 4/Unit 1-4 Health IT Workforce Curriculum 3 Version 2.0/Spring 2011 1 Slide Rules John Napier William Oughtred • By the Middle Ages, number systems were developed • John Napier discovered/developed logarithms at the turn of the 17 th century • William Oughtred used logarithms to invent the slide rude in 1621 in England • Used for multiplication, division, logarithms, roots, trigonometric functions • Used until early 70s when electronic calculators became available Component 4/Unit 1-4 Health IT Workforce Curriculum 4 Version 2.0/Spring 2011 Mechanical Computers • Use mechanical parts to automate calculations • Limited operations • First one was the ancient Antikythera computer from 150 BC Used gears to calculate position of sun and moon Fragment of Antikythera mechanism Component 4/Unit 1-4 Health IT Workforce Curriculum 5 Version 2.0/Spring 2011 Leonardo da Vinci 1452-1519, Italy Leonardo da Vinci • Two notebooks discovered in 1967 showed drawings for a mechanical calculator • A replica was built soon after Leonardo da Vinci's notes and the replica The Controversial Replica of Leonardo da Vinci's Adding Machine .
    [Show full text]
  • Two Editions of Ibn Al-Haytham's Completion of the Conics
    Historia Mathematica 29 (2002), 247–265 doi:10.1006/hmat.2002.2352 Two Editions of Ibn al-Haytham’s Completion of the Conics View metadata, citation and similar papers at core.ac.uk brought to you by CORE Jan P. Hogendijk provided by Elsevier - Publisher Connector Mathematics Department, University of Utrecht, P.O. Box 80.010, 3508 TA Utrecht, Netherlands E-mail: [email protected] The lost Book VIII of the Conics of Apollonius of Perga (ca. 200 B.C.) was reconstructed by the Islamic mathematician Ibn al-Haytham (ca. A.D. 965–1041) in his Completion of the Conics. The Arabic text of this reconstruction with English translation and commentary was published as J. P. Hogendijk, Ibn al-Haytham’s Completion of the Conics (New York: Springer-Verlag, 1985). In a new Arabic edition with French translation and commentary (R. Rashed, Les mathematiques´ infinitesimales´ du IXe au XIe siecle.´ Vol. 3., London: Al-Furqan Foundation, 2000), it was claimed that my edition is faulty. In this paper the similarities and differences between the two editions, translations, and commentaries are discussed, with due consideration for readers who do not know Arabic. The facts will speak for themselves. C 2002 Elsevier Science (USA) C 2002 Elsevier Science (USA) C 2002 Elsevier Science (USA) 247 0315-0860/02 $35.00 C 2002 Elsevier Science (USA) All rights reserved. 248 JAN P. HOGENDIJK HMAT 29 AMS subject classifications: 01A20, 01A30. Key Words: Ibn al-Haytham; conic sections; multiple editions; Rashed. 1. INTRODUCTION The Conics of Apollonius of Perga (ca. 200 B.C.) is one of the fundamental texts of ancient Greek geometry.
    [Show full text]
  • The Geometry of René Descartes
    BOOK FIRST The Geometry of René Descartes BOOK I PROBLEMS THE CONSTRUCTION OF WHICH REQUIRES ONLY STRAIGHT LINES AND CIRCLES ANY problem in geometry can easily be reduced to such terms that a knowledge of the lengths of certain straight lines is sufficient for its construction.1 Just as arithmetic consists of only four or five operations, namely, addition, subtraction, multiplication, division and the extraction of roots, which may be considered a kind of division, so in geometry, to find required lines it is merely necessary to add or subtract ther lines; or else, taking one line which I shall call unity in order to relate it as closely as possible to numbers,2 and which can in general be chosen arbitrarily, and having given two other lines, to find a fourth line which shall be to one of the given lines as the other is to unity (which is the same as multiplication) ; or, again, to find a fourth line which is to one of the given lines as unity is to the other (which is equivalent to division) ; or, finally, to find one, two, or several mean proportionals between unity and some other line (which is the same as extracting the square root, cube root, etc., of the given line.3 And I shall not hesitate to introduce these arithmetical terms into geometry, for the sake of greater clearness. For example, let AB be taken as unity, and let it be required to multiply BD by BC. I have only to join the points A and C, and draw DE parallel to CA ; then BE is the product of BD and BC.
    [Show full text]
  • Calculating Numerical Roots = = 1.37480222744
    #10 in Fundamentals of Applied Math Series Calculating Numerical Roots Richard J. Nelson Introduction – What is a root? Do you recognize this number(1)? 1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37694 80731 76679 73799 07324 78462 10703 88503 87534 32764 15727 35013 84623 09122 97024 92483 60558 50737 21264 41214 97099 93583 14132 22665 92750 55927 55799 95050 11527 82060 57147 01095 59971 60597 02745 34596 86201 47285 17418 64088 91986 09552 32923 04843 08714 32145 08397 62603 62799 52514 07989 68725 33965 46331 80882 96406 20615 25835 Fig. 1 - HP35s √ key. 23950 54745 75028 77599 61729 83557 52203 37531 85701 13543 74603 40849 … If you have had any math classes you have probably run into this number and you should recognize it as the square root of two, . The square root of a number, n, is that value when multiplied by itself equals n. 2 x 2 = 4 and = 2. Calculating the square root of the number is the inverse operation of squaring that number = n. The "√" symbol is called the "radical" symbol or "check mark." MS Word has the radical symbol, √, but we often use it with a line across the top. This is called the "vinculum" circa 12th century. The expression " (2)" is read as "root n", "radical n", or "the square root of n". The vinculum extends over the number to make it inclusive e.g. Most HP calculators have the square root key as a primary key as shown in Fig. 1 because it is used so much. Roots and Powers Numbers may be raised to any power (y, multiplied by itself x times) and the inverse operation, taking the root, may be expressed as shown below.
    [Show full text]
  • History of Mathematics in Mathematics Education. Recent Developments Kathy Clark, Tinne Kjeldsen, Sebastian Schorcht, Constantinos Tzanakis, Xiaoqin Wang
    History of mathematics in mathematics education. Recent developments Kathy Clark, Tinne Kjeldsen, Sebastian Schorcht, Constantinos Tzanakis, Xiaoqin Wang To cite this version: Kathy Clark, Tinne Kjeldsen, Sebastian Schorcht, Constantinos Tzanakis, Xiaoqin Wang. History of mathematics in mathematics education. Recent developments. History and Pedagogy of Mathematics, Jul 2016, Montpellier, France. hal-01349230 HAL Id: hal-01349230 https://hal.archives-ouvertes.fr/hal-01349230 Submitted on 27 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HISTORY OF MATHEMATICS IN MATHEMATICS EDUCATION Recent developments Kathleen CLARK, Tinne Hoff KJELDSEN, Sebastian SCHORCHT, Constantinos TZANAKIS, Xiaoqin WANG School of Teacher Education, Florida State University, Tallahassee, FL 32306-4459, USA [email protected] Department of Mathematical Sciences, University of Copenhagen, Denmark [email protected] Justus Liebig University Giessen, Germany [email protected] Department of Education, University of Crete, Rethymnon 74100, Greece [email protected] Department of Mathematics, East China Normal University, China [email protected] ABSTRACT This is a survey on the recent developments (since 2000) concerning research on the relations between History and Pedagogy of Mathematics (the HPM domain). Section 1 explains the rationale of the study and formulates the key issues.
    [Show full text]
  • Suanpan” in Chinese)
    Math Exercise on the Abacus (“Suanpan” in Chinese) • Teachers’ Introduction • Student Materials Introduction Cards 1-7 Practicing Basics Cards 8-11 Exercises Cards 12, 14, 16 Answer keys Cards 13, 15, 17 Learning: Card 18 “Up,” “Down,” “Rid,” “Advance” Exercises: Addition (the numbers 1-9) Cards 18-28 Advanced Addition Cards 29-30 Exercises: Subtraction Cards 31-39 (the numbers 1-9) Acknowledgment: This unit is adapted from A Children’s Palace, by Michele Shoresman and Roberta Gumport, with illustrations by Elizabeth Chang (University of Illinois Urbana-Champagne, Center for Asian Studies, Outreach Office, 3rd ed., 1986. Print edition, now out of print.) 1 Teachers’ Introduction: Level: This unit is designed for students who understand p1ace value and know the basic addition and subtraction facts. Goals: 1. The students will learn to manipulate one form of ca1cu1ator used in many Asian countries. 2. The concept of p1ace value will be reinforced. 3. The students will learn another method of adding and subtracting. Instructions • The following student sheets may be copied so that your students have individual sets. • Individual suanpan for your students can be ordered from China Sprout: http://www.chinasprout.com/shop/ Product # A948 or ATG022 Evaluation The students will be able to manipulate a suanpan to set numbers, and to do simple addition and subtraction problems. Vocabulary suanpan set beam rod c1ear ones rod tens rod hundreds rod 2 Card 1 Suanpan – Abacus The abacus is an ancient calculator still used in China and other Asian countries. In Chinese it is called a “Suanpan.” It is a frame divided into an upper and lower section by a bar called the “beam.” The abacus can be used for addition, subtraction, multiplication, and division.
    [Show full text]
  • UNDERSTANDING MATHEMATICS to UNDERSTAND PLATO -THEAETEUS (147D-148B Salomon Ofman
    UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO -THEAETEUS (147d-148b Salomon Ofman To cite this version: Salomon Ofman. UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO -THEAETEUS (147d-148b. Lato Sensu, revue de la Société de philosophie des sciences, Société de philosophie des sciences, 2014, 1 (1). hal-01305361 HAL Id: hal-01305361 https://hal.archives-ouvertes.fr/hal-01305361 Submitted on 20 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO - THEAETEUS (147d-148b) COMPRENDRE LES MATHÉMATIQUES POUR COMPRENDRE PLATON - THÉÉTÈTE (147d-148b) Salomon OFMAN Institut mathématique de Jussieu-PRG Histoire des Sciences mathématiques 4 Place Jussieu 75005 Paris [email protected] Abstract. This paper is an updated translation of an article published in French in the Journal Lato Sensu (I, 2014, p. 70-80). We study here the so- called ‘Mathematical part’ of Plato’s Theaetetus. Its subject concerns the incommensurability of certain magnitudes, in modern terms the question of the rationality or irrationality of the square roots of integers. As the most ancient text on the subject, and on Greek mathematics and mathematicians as well, its historical importance is enormous.
    [Show full text]
  • Useful Relations in Permutations and Combination 1. Useful Relations
    Useful Relations in Permutations and Combination 1. Useful Relations - Factorial n! = n.(n-1)! 2. n퐶푟= n푃푟/r! n n-1 3. Pr = n( Pr-1) 4. Useful Relations - Combinations n n 1. Cr = C(n - r) Example 8 8 C6 = C2 = 8×72×1 = 28 n 2. Cn = 1 n 3. C0 = 1 n n n n n 4. C0 + C1 + C2 + ... + Cn = 2 Example 4 4 4 4 4 4 C0 + C1 + C2 + C3+ C4 = (1 + 4 + 6 + 4 + 1) = 16 = 2 n n (n+1) Cr-1 + Cr = Cr (Pascal's Law) n퐶푟 =n/퐶푟−1=n-r+1/r n n If Cx = Cy then either x = y or (n-x) = y. 5. Selection from identical objects: Some Basic Facts The number of selections of r objects out of n identical objects is 1. Total number of selections of zero or more objects from n identical objects is n+1. 6. Permutations of Objects when All Objects are Not Distinct The number of ways in which n things can be arranged taking them all at a time, when st nd 푃1 of the things are exactly alike of 1 type, 푃2 of them are exactly alike of a 2 type, and th 푃푟of them are exactly alike of r type and the rest of all are distinct is n!/ 푃1! 푃2! ... 푃푟! 1 Example: how many ways can you arrange the letters in the word THESE? 5!/2!=120/2=60 Example: how many ways can you arrange the letters in the word REFERENCE? 9!/2!.4!=362880/2*24=7560 7.Circular Permutations: Case 1: when clockwise and anticlockwise arrangements are different Number of circular permutations (arrangements) of n different things is (n-1)! 1.
    [Show full text]
  • Algorithmic Factorization of Polynomials Over Number Fields
    Rose-Hulman Institute of Technology Rose-Hulman Scholar Mathematical Sciences Technical Reports (MSTR) Mathematics 5-18-2017 Algorithmic Factorization of Polynomials over Number Fields Christian Schulz Rose-Hulman Institute of Technology Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr Part of the Number Theory Commons, and the Theory and Algorithms Commons Recommended Citation Schulz, Christian, "Algorithmic Factorization of Polynomials over Number Fields" (2017). Mathematical Sciences Technical Reports (MSTR). 163. https://scholar.rose-hulman.edu/math_mstr/163 This Dissertation is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact [email protected]. Algorithmic Factorization of Polynomials over Number Fields Christian Schulz May 18, 2017 Abstract The problem of exact polynomial factorization, in other words expressing a poly- nomial as a product of irreducible polynomials over some field, has applications in algebraic number theory. Although some algorithms for factorization over algebraic number fields are known, few are taught such general algorithms, as their use is mainly as part of the code of various computer algebra systems. This thesis provides a summary of one such algorithm, which the author has also fully implemented at https://github.com/Whirligig231/number-field-factorization, along with an analysis of the runtime of this algorithm. Let k be the product of the degrees of the adjoined elements used to form the algebraic number field in question, let s be the sum of the squares of these degrees, and let d be the degree of the polynomial to be factored; then the runtime of this algorithm is found to be O(d4sk2 + 2dd3).
    [Show full text]
  • The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes
    Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 3-2018 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hu Sun University of Macau Christine Chambris Université de Cergy-Pontoise Judy Sayers Stockholm University Man Keung Siu University of Hong Kong Jason Cooper Weizmann Institute of Science SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/mth_fac Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Citation Details Sun X.H. et al. (2018) The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes. In: Bartolini Bussi M., Sun X. (eds) Building the Foundation: Whole Numbers in the Primary Grades. New ICMI Study Series. Springer, Cham This Book Chapter is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Xu Hu Sun, Christine Chambris, Judy Sayers, Man Keung Siu, Jason Cooper, Jean-Luc Dorier, Sarah Inés González de Lora Sued, Eva Thanheiser, Nadia Azrou, Lynn McGarvey, Catherine Houdement, and Lisser Rye Ejersbo This book chapter is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/253 Chapter 5 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hua Sun , Christine Chambris Judy Sayers, Man Keung Siu, Jason Cooper , Jean-Luc Dorier , Sarah Inés González de Lora Sued , Eva Thanheiser , Nadia Azrou , Lynn McGarvey , Catherine Houdement , and Lisser Rye Ejersbo 5.1 Introduction Mathematics learning and teaching are deeply embedded in history, language and culture (e.g.
    [Show full text]
  • “A Translation and Historical Commentary of Book One and Book Two of the Historia of Geōrgios Pachymerēs” 2004
    “A Translation and Historical Commentary of Book One and Book Two of the Historia of Geōrgios Pachymerēs” Nathan John Cassidy, BA(Hons) (Canterbury) This thesis is presented for the degree of Doctor of Philosophy of the University of Western Australia. School of Humanities Classics and Ancient History 2004 ii iii Abstract A summary of what a historical commentary should aim to do is provided by Gomme and Walbank in the introductions to their famous and magisterial commentaries on Thoukydidēs and Polybios. From Gomme: A historical commentary on an historian must necessarily derive from two sources, a proper understanding of his own words, and what we can learn from other authorities . To see what gaps there are in his narrative [and to] examine the means of filling these gaps. (A. Gomme A Historical Commentary on Thucydides vol. 1 (London, 1959) 1) And from Walbank: I have tried to give full references to other relevant ancient authorities, and where the text raises problems, to define these, even if they could not always be solved. Primarily my concern has been with whatever might help elucidate what Polybius thought and said, and only secondarily with the language in which he said it, and the question whether others subsequently said something identical or similar. (F. Walbank A Historical Commentary on Polybius vol. 1 (London, 1957) vii) Both scholars go on to stress the need for the commentator to stick with the points raised by the text and to avoid the temptation to turn the commentary into a rival narrative. These are the principles which I have endeavoured to follow in my Historical Commentary on Books One and Two of Pachymerēs’ Historia.
    [Show full text]