See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340262362 Simulating galactical vorticity using a supersymmetric operator Technical Report · March 2020 DOI: 10.13140/RG.2.2.34254.00323 CITATIONS READS 0 16 2 authors: Sergio Manzetti Alexander Trunev Fjordforsk A/S Likalo LLC, Toronto, Canada 107 PUBLICATIONS 1,125 CITATIONS 101 PUBLICATIONS 109 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Halogenated silica nanoparticles for solar cell technologies. View project Wavefunction studies of molecules and oligomers. View project All content following this page was uploaded by Sergio Manzetti on 29 March 2020. The user has requested enhancement of the downloaded file. Simulating galactical vorticity using a supersymmetric operator. Sergio Manzetti 1;2∗ and Alexander Trounev 1;3 1. Fjordforsk A/S, Midtun, 6894 Vangsnes, Norway. Email:
[email protected] 2.Uppsala University, BMC, Dept Mol. Cell Biol, Box 596, SE-75124 Uppsala, Sweden. 3. A & E Trounev IT Consulting, Toronto, Canada. March 29, 2020 1 Abstract 1 Simulations of galactic vorticity require the development of complex systems of equations to generate models that account for the gravity, mass, kinetic, and electromagnetic effects which govern cluster behaviour. In this study, a rela- tionship is outlined through a series of steps, between the Einstein equations, the Ricci equations and the gravitational model of comoslogical bodies. This series of steps are then followed by the generation of a group of equations, in- cluding a supersymmetric equation which describes vorticity under the presence of an electromagnetic field for quantized systems.