OPEN ACCESS www.sciforum.net/conference/ecea-2 Conference Proceedings Paper – Entropy Entropy, Decoherence and Spacetime Splitting Rodolfo A. Fiorini Politecnico di Milano, Department of Electronics, Information and Bioengineering (DEIB), Milano, Italy; E-Mail:
[email protected]; Tel.: +039-02-2399-3350; Fax: +039-02-2399-3360. Published: Abstract: The "Science 2.0" paradigm has not yet been completely grasped by many contemporary scientific disciplines and current researchers, so that not all the implications of this big change have been realized hitherto, even less their related, vital applications. Thus, one of the key questions in understanding the quantum-classical transition is what happens to the superpositions as you go up that atoms-to-apple scale. Exactly when and how does "both/and" become "either/or"? As an example, we present and discuss the observer space-time splitting case. In other words, we discuss spacetime mapping to classical system additive representation with entropy generation. We argue that it is exactly at this point that "both/and" becomes "either/or" representation by usual Science 1.0 approach. CICT new awareness of a discrete HG (hyperbolic geometry) subspace (reciprocal space) of coded heterogeneous hyperbolic structures, underlying the familiar Q Euclidean (direct space) surface representation can open the way to holographic information geometry (HIG) to recover system lost coherence and to overall system entropy minimization. CICT can help us to develop strategies to gather much more reliable experimental information from single experimentation and to keep overall system information coherence. This paper is a relevant contribution towards an effective and convenient "Science 2.0" universal framework to develop more effective physics modeling and simulation for innovative application and beyond.