European Journal of Pragmatism and American Philosophy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nominalism, Trivialism, Logicism
Nominalism, Trivialism, Logicism Agustín Rayo∗ May 1, 2014 This paper is an effort to extract some of the main theses in the philosophy of mathematics from my book, The Construction of Logical Space. I show that there are important limits to the availability of nominalistic paraphrase-functions for mathematical languages, and sug- gest a way around the problem by developing a method for specifying nominalistic contents without corresponding nominalistic paraphrases. Although much of the material in this paper is drawn from the book—and from an earlier paper (Rayo 2008)—I hope the present discussion will earn its keep by motivating the ideas in a new way, and by suggesting further applications. 1 Nominalism Mathematical Nominalism is the view that there are no mathematical objets. A standard problem for nominalists is that it is not obvious that they can explain what the point of a mathematical assertion would be. For it is natural to think that mathematical sentences like ‘the number of the dinosaurs is zero’ or ‘1 + 1 = 2’ can only be true if mathematical objects exist. But if this is right, the nominalist is committed to the view that such sentences are untrue. And if the sentences are untrue, it not immediately obvious why they would be worth asserting. ∗For their many helpful comments, I am indebted to Vann McGee, Kevin Richardson, Bernhard Salow and two anonymous referees for Philosophia Mathematica. I would also like to thank audiences at Smith College, the Università Vita-Salute San Raffaele, and MIT’s Logic, Langauge, Metaphysics and Mind Reading Group. Most of all, I would like to thank Steve Yablo. -
Biography Paper – Georg Cantor
Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies. -
Would ''Direct Realism'' Resolve the Classical Problem of Induction?
NOU^S 38:2 (2004) 197–232 Would ‘‘Direct Realism’’ Resolve the Classical Problem of Induction? MARC LANGE University of North Carolina at Chapel Hill I Recently, there has been a modest resurgence of interest in the ‘‘Humean’’ problem of induction. For several decades following the recognized failure of Strawsonian ‘‘ordinary-language’’ dissolutions and of Wesley Salmon’s elaboration of Reichenbach’s pragmatic vindication of induction, work on the problem of induction languished. Attention turned instead toward con- firmation theory, as philosophers sensibly tried to understand precisely what it is that a justification of induction should aim to justify. Now, however, in light of Bayesian confirmation theory and other developments in epistemology, several philosophers have begun to reconsider the classical problem of induction. In section 2, I shall review a few of these developments. Though some of them will turn out to be unilluminating, others will profitably suggest that we not meet inductive scepticism by trying to justify some alleged general principle of ampliative reasoning. Accordingly, in section 3, I shall examine how the problem of induction arises in the context of one particular ‘‘inductive leap’’: the confirmation, most famously by Henrietta Leavitt and Harlow Shapley about a century ago, that a period-luminosity relation governs all Cepheid variable stars. This is a good example for the inductive sceptic’s purposes, since it is difficult to see how the sparse background knowledge available at the time could have entitled stellar astronomers to regard their observations as justifying this grand inductive generalization. I shall argue that the observation reports that confirmed the Cepheid period- luminosity law were themselves ‘‘thick’’ with expectations regarding as yet unknown laws of nature. -
There Is No Pure Empirical Reasoning
There Is No Pure Empirical Reasoning 1. Empiricism and the Question of Empirical Reasons Empiricism may be defined as the view there is no a priori justification for any synthetic claim. Critics object that empiricism cannot account for all the kinds of knowledge we seem to possess, such as moral knowledge, metaphysical knowledge, mathematical knowledge, and modal knowledge.1 In some cases, empiricists try to account for these types of knowledge; in other cases, they shrug off the objections, happily concluding, for example, that there is no moral knowledge, or that there is no metaphysical knowledge.2 But empiricism cannot shrug off just any type of knowledge; to be minimally plausible, empiricism must, for example, at least be able to account for paradigm instances of empirical knowledge, including especially scientific knowledge. Empirical knowledge can be divided into three categories: (a) knowledge by direct observation; (b) knowledge that is deductively inferred from observations; and (c) knowledge that is non-deductively inferred from observations, including knowledge arrived at by induction and inference to the best explanation. Category (c) includes all scientific knowledge. This category is of particular import to empiricists, many of whom take scientific knowledge as a sort of paradigm for knowledge in general; indeed, this forms a central source of motivation for empiricism.3 Thus, if there is any kind of knowledge that empiricists need to be able to account for, it is knowledge of type (c). I use the term “empirical reasoning” to refer to the reasoning involved in acquiring this type of knowledge – that is, to any instance of reasoning in which (i) the premises are justified directly by observation, (ii) the reasoning is non- deductive, and (iii) the reasoning provides adequate justification for the conclusion. -
Statistics on Spotlight: World Statistics Day 2015
Statistics on Spotlight: World Statistics Day 2015 Shahjahan Khan Professor of Statistics School of Agricultural, Computational and Environmental Sciences University of Southern Queensland, Toowoomba, Queensland, AUSTRALIA Founding Chief Editor, Journal of Applied Probability and Statistics (JAPS), USA Email: [email protected] Abstract In the age of evidence based decision making and data science, statistics has become an integral part of almost all spheres of modern life. It is being increasingly applied for both private and public benefits including business and trade as well as various public sectors, not to mention its crucial role in research and innovative technologies. No modern government could conduct its normal functions and deliver its services and implement its development agenda without relying on good quality statistics. The key role of statistics is more visible and engraved in the planning and development of every successful nation state. In fact, the use of statistics is not only national but also regional, international and transnational for organisations and agencies that are driving social, economic, environmental, health, poverty elimination, education and other agendas for planned development. Starting from stocktaking of the state of the health of various sectors of the economy of any nation/region to setting development goals, assessment of progress, monitoring programs and undertaking follow-up initiatives depend heavily on relevant statistics. Only statistical methods are capable of determining indicators, comparing them, and help identify the ways to ensure balanced and equitable development. 1 Introduction The goals of the celebration of World Statistics Day 2015 is to highlight the fact that official statistics help decision makers develop informed policies that impact millions of people. -
Metaphysics Today and Tomorrow*
1 Metaphysics Today and Tomorrow* Raphaël Millière École normale supérieure, Paris – October 2011 Translated by Mark Ohm with the assistance of Leah Orth, Jon Cogburn, and Emily Beck Cogburn “By metaphysics, I do not mean those abstract considerations of certain imaginary properties, the principal use of which is to furnish the wherewithal for endless dispute to those who want to dispute. By this science I mean the general truths which can serve as principles for the particular sciences.” Malebranche Dialogues on Metaphysics and Religion 1. The interminable agony of metaphysics Throughout the twentieth century, numerous philosophers sounded the death knell of metaphysics. Ludwig Wittgenstein, Rudolf Carnap, Martin Heidegger, Gilbert Ryle, J. L. Austin, Jacques Derrida, Jürgen Habermas, Richard Rorty, and, henceforth, Hilary Putnam: a great many tutelary figures have extolled the rejection, the exceeding, the elimination, or the deconstruction of first philosophy. All these necrological chronicles do not have the same radiance, the same seriousness, nor the same motivations, but they all agree to dismiss the discipline, which in the past was considered “the queen of the sciences”, with a violence at times comparable to the prestige it commanded at the time of its impunity. Even today, certain philosophers hastily spread the tragic news with contempt for philosophical inquiry, as if its grave solemnity bestowed upon it some obviousness. Thus, Franco Volpi writes: ‘Grand metaphysics is dead!’ is the slogan which applies to the majority of contemporary philosophers, whether continentals or of analytic profession. They all treat metaphysics as a dead dog.1 In this way, the “path of modern thought” would declare itself vociferously “anti- metaphysical and finally post-metaphysical”. -
Our Conceptual Understanding of a Phenomenon, While the Logic of Induction Adds Quantitative Details to the Conceptual Knowledge
DOCUMENT RESUME ED 376 173 TM 021 982 AUTHOR Ho, Yu Chong TITLE Abduction? Deduction? Induction? Is There a Logic of Exploratory Data Analysis? PUB DATE Apr 94 NOTE 28p.; Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 4-8, 1994). PUB TYPE Reports Descriptive (141) Speeches/Conference Papers (150) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Comprehension; *Deduction; Hypothesis Testing; *Induction; *Logic IDENTIFIERS *Abductive Reasoning; *Exploratory Data Analysis; Peirce (Charles S) ABSTRACT The philosophical notions introduced by Charles Sanders Peirce (1839-1914) are helpfu: for researchers in understanding the nature of knowledge and reality. In the Peircean logical system, the logic of abduction and deduction contribute to our conceptual understanding of a phenomenon, while the logic of induction adds quantitative details to the conceptual knowledge. Although Peirce justified the validity of induction as a self-corrective process, he asserted that neither induction nor deduction can help us to unveil the internal structure of meaning. As exploratory data analysis performs the function of a model builder for confirmatory data analysis, abduction plays the role of explorer of viable paths to further inquiry. Thus, the logic of abduction fits well into exploratory data analysis. At the stage of abduction, the goal is to explore the data, find out a pattern, and suggest a plausible hypothesis; deduction is to refine the hypothesis based upon other plausible premises; and induction is the empirical substantiation. (Contains 55 references.) (Author) *********************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. is *********************************************************************** Abduction? Deduction? Induction? Is there a Logic of Exploratory Data Analysis? Yu Chong Ho University of Oklahoma Internet: [email protected] April 4, 1994 U S. -
Pragmatism Is As Pragmatism Does: of Posner, Public Policy, and Empirical Reality
Volume 31 Issue 3 Summer 2001 Summer 2001 Pragmatism Is as Pragmatism Does: Of Posner, Public Policy, and Empirical Reality Linda E. Fisher Recommended Citation Linda E. Fisher, Pragmatism Is as Pragmatism Does: Of Posner, Public Policy, and Empirical Reality, 31 N.M. L. Rev. 455 (2001). Available at: https://digitalrepository.unm.edu/nmlr/vol31/iss3/2 This Article is brought to you for free and open access by The University of New Mexico School of Law. For more information, please visit the New Mexico Law Review website: www.lawschool.unm.edu/nmlr PRAGMATISM IS AS PRAGMATISM DOES: OF POSNER, PUBLIC POLICY, AND EMPIRICAL REALITY LINDA E. FISHER* Stanley Fish believes that my judicial practice could not possibly be influenced by my pragmatic jurisprudence. Pragmatism is purely a method of description, so I am guilty of the "mistake of thinking that a description of a practice has cash value in a game other than the game of description." But he gives no indication that he has tested this assertion by reading my judicial opinions.' I. INTRODUCTION Richard Posner, until recently the Chief Judge of the United States Court of Appeals for the Seventh Circuit, has been much studied; he is frequently controversial, hugely prolific, candid, and often entertaining.2 Judge Posner is repeatedly in the news, most recently as a mediator in the Microsoft antitrust litigation3 and as a critic of President Clinton.4 Posner's shift over time, from a wealth-maximizing economist to a legal pragmatist (with wealth maximization as a prominent pragmatic goal), is by now well documented.' This shift has been set forth most clearly in The Problematics of Moral and Legal Theory,6 as well as Overcoming Law7 and The Problems of Jurisprudence.8 The main features of his pragmatism include a Holmesian emphasis on law as a prediction of how a judge will rule.9 An important feature of law, then, is its ability to provide clear, stable guidance to those affected by it. -
A WIN-WIN SOLUTION the Empirical Evidence on School Choice FOURTH EDITION Greg Forster, Ph.D
A WIN-WIN SOLUTION The Empirical Evidence on School Choice FOURTH EDITION Greg Forster, Ph.D. MAY 2016 About the Friedman Foundation for Educational Choice The Friedman Foundation for Educational Choice is a 501(c)(3) nonprofit and nonpartisan organization, solely dedicated to advancing Milton and Rose Friedman’s vision of school choice for all children. First established as the Milton and Rose D. Friedman Foundation in 1996, the Foundation promotes school choice as the most effective and equitable way to improve the quality of K–12 education in America. The Friedman Foundation is dedicated to research, education, and outreach on the vital issues and implications related to school choice. A WIN-WIN SOLUTION The Empirical Evidence on School Choice FOURTH EDITION Greg Forster, Ph.D. MAY 2016 Table of Contents Executive Summary .......................................................................................................................1 Introduction ....................................................................................................................................3 Choice in Education .................................................................................................................3 Why Science Matters—the “Gold Standard” and Other Methods ....................................4 The Method of This Report .....................................................................................................6 Criteria for Study Inclusion or Exclusion .......................................................................6 -
Sacred Rhetorical Invention in the String Theory Movement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public. -
Minutes of the 2013 Business Meeting
Minutes of the Business Meeting Charles Sanders Peirce Society 21 February 2013 Following the annual scholarly meeting, with papers by President Claudine Tiercelin ( “The Relevance of Peirce’s Scientific Metaphysics”) and Essay Contest winner Masato Ishida ( “Revisiting Convergence: A Peircean Reply to Quine’s Two Problems”), President Tiercelin called the meeting to order at 7:00 pm at the New Orleans Hilton Riverside. 1. Claudine Tiercelin asked for approval of the minutes of the 2010-11 business meeting. The minutes were approved. (Moved by Robert Lane, seconded by Cornelis de Waal.) 2. Claudine Tiercelin delivered the following report from the President and the Executive Committee: The committee met from 10:00am until about 11:30 am on the morning of Thursday February 21. Presentweree Robert Lane, Cornelis de Waal, Richard Atkins, Claudine Tiercelin (President), James Liszka (Vice-President), Shannon Dea (Secretary-Treasurer). We received regrets from Daniel Campos and Giovanni Maddalena, who were unable to attend. Chief among the issues discussed by the Executive Committee were the following. a) Bob Lane raised an issue brought to his attention by an electronic subscriber. It turns out that JSTOR only allows electronic subscribers access to 75 back issue articles per year. More seriously, these articles must be viewed as html files; they cannot be downloaded as pdfs. This is highly inconvenient, and may serve as a disincentive to our electronic subscribers. At a minimum, this limitation on electronic subscriptions should be made clear to people at the time they subscribe. Ideally, though, we would persuade IU Press/JSTOR to change this practice. -
Explanations
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. CHAPTER 1 Explanations 1.1 SALLIES Language is an instrument of Logic, but not an indispensable instrument. Boole 1847a, 118 We know that mathematicians care no more for logic than logicians for mathematics. The two eyes of exact science are mathematics and logic; the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two. De Morgan 1868a,71 That which is provable, ought not to be believed in science without proof. Dedekind 1888a, preface If I compare arithmetic with a tree that unfolds upwards in a multitude of techniques and theorems whilst the root drives into the depthswx . Frege 1893a, xiii Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians. Russell 1903a, 451 1.2 SCOPE AND LIMITS OF THE BOOK 1.2.1 An outline history. The story told here from §3 onwards is re- garded as well known. It begins with the emergence of set theory in the 1870s under the inspiration of Georg Cantor, and the contemporary development of mathematical logic by Gottlob Frege andŽ. especially Giuseppe Peano. A cumulation of these and some related movements was achieved in the 1900s with the philosophy of mathematics proposed by Alfred North Whitehead and Bertrand Russell.