Sacred Rhetorical Invention in the String Theory Movement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History of Science (HIST SCI) 1
History of Science (HIST SCI) 1 HIST SCI 133 — BIOLOGY AND SOCIETY, 1950 - TODAY HISTORY OF SCIENCE (HIST 3 credits. From medical advancements to environmental crises and global food SCI) shortages, the life sciences are implicated in some of the most pressing social issues of our time. This course explores events in the history of biology from the mid-twentieth century to today, and examines how HIST SCI/ENVIR ST/HISTORY 125 — GREEN SCREEN: ENVIRONMENTAL developments in this science have shaped and are shaped by society. In PERSPECTIVES THROUGH FILM the first unit, we investigate the origins of the institutions, technologies, 3 credits. and styles of practice that characterize contemporary biology, such From Teddy Roosevelt's 1909 African safari to the Hollywood blockbuster as the use of mice as "model organisms" for understanding human King Kong, from the world of Walt Disney to The March of the Penguins, diseases. The second unit examines biological controversies such as the cinema has been a powerful force in shaping public and scientific introduction of genetically modified plants into the food supply. The final understanding of nature throughout the twentieth and twenty-first unit asks how biological facts and theories have been and continue to be century. How can film shed light on changing environmental ideas and used as a source for understanding ourselves. Enroll Info: None beliefs in American thought, politics, and culture? And how can we come Requisites: None to see and appreciate contested issues of race, class, and gender in Course Designation: Breadth - Either Humanities or Social Science nature on screen? This course will explore such questions as we come Level - Elementary to understand the role of film in helping to define the contours of past, L&S Credit - Counts as Liberal Arts and Science credit in L&S present, and future environmental visions in the United States, and their Repeatable for Credit: No impact on the real world struggles of people and wildlife throughout the Last Taught: Spring 2021 world. -
Would ''Direct Realism'' Resolve the Classical Problem of Induction?
NOU^S 38:2 (2004) 197–232 Would ‘‘Direct Realism’’ Resolve the Classical Problem of Induction? MARC LANGE University of North Carolina at Chapel Hill I Recently, there has been a modest resurgence of interest in the ‘‘Humean’’ problem of induction. For several decades following the recognized failure of Strawsonian ‘‘ordinary-language’’ dissolutions and of Wesley Salmon’s elaboration of Reichenbach’s pragmatic vindication of induction, work on the problem of induction languished. Attention turned instead toward con- firmation theory, as philosophers sensibly tried to understand precisely what it is that a justification of induction should aim to justify. Now, however, in light of Bayesian confirmation theory and other developments in epistemology, several philosophers have begun to reconsider the classical problem of induction. In section 2, I shall review a few of these developments. Though some of them will turn out to be unilluminating, others will profitably suggest that we not meet inductive scepticism by trying to justify some alleged general principle of ampliative reasoning. Accordingly, in section 3, I shall examine how the problem of induction arises in the context of one particular ‘‘inductive leap’’: the confirmation, most famously by Henrietta Leavitt and Harlow Shapley about a century ago, that a period-luminosity relation governs all Cepheid variable stars. This is a good example for the inductive sceptic’s purposes, since it is difficult to see how the sparse background knowledge available at the time could have entitled stellar astronomers to regard their observations as justifying this grand inductive generalization. I shall argue that the observation reports that confirmed the Cepheid period- luminosity law were themselves ‘‘thick’’ with expectations regarding as yet unknown laws of nature. -
Judicial Review of Uncertain Risks in Scientific Research
Chapter 6 Judicial Review of Uncertain Risks in Scientific Research Eric E. Johnson Abstract It is difficult to neutrally evaluate the risks posed by large-scale leading- edge science experiments. Traditional risk assessment is problematic in this context for multiple reasons. Also, such experiments can be insulated from challenge by manipulating how questions of risk are framed. Yet courts can and must evaluate these risks. In this chapter, I suggest modes of qualitative reasoning to facilitate such evaluation. Keywords Risk · Risk scenarios · Law · Courts · Science · Scientific research · Particle physics · Black holes · LHC 6.1 Introduction In the world of engineering, uncertainty is anathema. Whether designing a nuclear power plant or planning a system of levees, engineers do not like surprises. Exper- imental scientific research, however, thrives on uncertainty. Reaching beyond the current state of knowledge is the whole point of the enterprise. Whether probing the planets or trying to create new particles, scientists would love to see a surprise around every corner. Uncertainty goes hand in hand with aspirations to explore and discover. This special role for uncertainty in scientific research makes questions of catastrophic risk from science experiments particularly interesting. What is more, 1See Hawai‘i County Green Party v. Clinton, 980 F. Supp. 1160, 1168-69 (D. Haw. 1997); Karl Grossman, The Risk of Cassini Probe Plutonium, The Christian Science Monitor (Oct. 10, 1997) http://www.csmonitor.com/1997/1010/101097.opin.opin.1.html; CNN, Cassini roars into space, CNN (Oct. 15, 1997) http://www.cnn.com/TECH/9710/15/cassini.launch/; Najmedin Meshkati, Probability, Plutonium Don’t Mix (op-ed), Los Angeles Times (Oct. -
There Is No Pure Empirical Reasoning
There Is No Pure Empirical Reasoning 1. Empiricism and the Question of Empirical Reasons Empiricism may be defined as the view there is no a priori justification for any synthetic claim. Critics object that empiricism cannot account for all the kinds of knowledge we seem to possess, such as moral knowledge, metaphysical knowledge, mathematical knowledge, and modal knowledge.1 In some cases, empiricists try to account for these types of knowledge; in other cases, they shrug off the objections, happily concluding, for example, that there is no moral knowledge, or that there is no metaphysical knowledge.2 But empiricism cannot shrug off just any type of knowledge; to be minimally plausible, empiricism must, for example, at least be able to account for paradigm instances of empirical knowledge, including especially scientific knowledge. Empirical knowledge can be divided into three categories: (a) knowledge by direct observation; (b) knowledge that is deductively inferred from observations; and (c) knowledge that is non-deductively inferred from observations, including knowledge arrived at by induction and inference to the best explanation. Category (c) includes all scientific knowledge. This category is of particular import to empiricists, many of whom take scientific knowledge as a sort of paradigm for knowledge in general; indeed, this forms a central source of motivation for empiricism.3 Thus, if there is any kind of knowledge that empiricists need to be able to account for, it is knowledge of type (c). I use the term “empirical reasoning” to refer to the reasoning involved in acquiring this type of knowledge – that is, to any instance of reasoning in which (i) the premises are justified directly by observation, (ii) the reasoning is non- deductive, and (iii) the reasoning provides adequate justification for the conclusion. -
Thomas Kuhn on Paradigms
Vol. 29, No. 7, July 2020, pp. 1650–1657 DOI 10.1111/poms.13188 ISSN 1059-1478|EISSN 1937-5956|20|2907|1650 © 2020 Production and Operations Management Society Thomas Kuhn on Paradigms Gopesh Anand Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 469 Wohlers Hall, 1206 South Sixth Street, Champaign, Illinois 61820, USA, [email protected] Eric C. Larson Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 8 Wohlers Hall, 1206 S. Sixth, Champaign, Illinois 61820, USA, [email protected] Joseph T. Mahoney* Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 140C Wohlers Hall, 1206 South Sixth Street, Champaign, Illinois 61820, USA, [email protected] his study provides key arguments and contributions of Kuhn (1970) concerning paradigms, paradigm shifts, and sci- T entific revolutions. We provide interpretations of Kuhn’s (1970) key ideas and concepts, especially as they relate to business management research. We conclude by considering the practical implications of paradigms and paradigm shifts for contemporary business management researchers and suggest that ethical rules of conversation are at least as critical for the health of a scientific community as methodological rules (e.g., the rules of logical positivism) derived from the phi- losophy of science. Key words: Paradigms; paradigm shifts; scientific revolutions; normal science History: Received: February 2019; Accepted: March 2020 by Kalyan Singhal, after 3 revisions. The Structure of Scientific Revolutions the rich descriptions of the process of advancing this theory. SSR showed that science primarily advances Thomas S. -
Greek and Latin Roots, Prefixes, and Suffixes
GREEK AND LATIN ROOTS, PREFIXES, AND SUFFIXES This is a resource pack that I put together for myself to teach roots, prefixes, and suffixes as part of a separate vocabulary class (short weekly sessions). It is a combination of helpful resources that I have found on the web as well as some tips of my own (such as the simple lesson plan). Lesson Plan Ideas ........................................................................................................... 3 Simple Lesson Plan for Word Study: ........................................................................... 3 Lesson Plan Idea 2 ...................................................................................................... 3 Background Information .................................................................................................. 5 Why Study Word Roots, Prefixes, and Suffixes? ......................................................... 6 Latin and Greek Word Elements .............................................................................. 6 Latin Roots, Prefixes, and Suffixes .......................................................................... 6 Root, Prefix, and Suffix Lists ........................................................................................... 8 List 1: MEGA root list ................................................................................................... 9 List 2: Roots, Prefixes, and Suffixes .......................................................................... 32 List 3: Prefix List ...................................................................................................... -
The Demarcation Problem
Part I The Demarcation Problem 25 Chapter 1 Popper’s Falsifiability Criterion 1.1 Popper’s Falsifiability Popper’s Problem : To distinguish between science and pseudo-science (astronomy vs astrology) - Important distinction: truth is not the issue – some theories are sci- entific and false, and some may be unscientific but true. - Traditional but unsatisfactory answers: empirical method - Popper’s targets: Marx, Freud, Adler Popper’s thesis : Falsifiability – the theory contains claims which could be proved to be false. Characteristics of Pseudo-Science : unfalsifiable - Any phenomenon can be interpreted in terms of the pseudo-scientific theory “Whatever happened always confirmed it” (5) - Example: man drowning vs saving a child Characteristics of Science : falsifiability - A scientific theory is always takes risks concerning the empirical ob- servations. It contains the possibility of being falsified. There is con- firmation only when there is failure to refute. 27 28 CHAPTER 1. POPPER’S FALSIFIABILITY CRITERION “The theory is incompatible with certain possible results of observation” (6) - Example: Einstein 1919 1.2 Kuhn’s criticism of Popper Kuhn’s Criticism of Popper : Popper’s falsifiability criterion fails to char- acterize science as it is actually practiced. His criticism at best applies to revolutionary periods of the history of science. Another criterion must be given for normal science. Kuhn’s argument : - Kuhn’s distinction between normal science and revolutionary science - A lesson from the history of science: most science is normal science. Accordingly, philosophy of science should focus on normal science. And any satisfactory demarcation criterion must apply to normal science. - Popper’s falsifiability criterion at best only applies to revolutionary science, not to normal science. -
8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics
8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics Lectures by: Alan Guth Notes by: Andrew P. Turner May 26, 2017 1 Lecture 1 (Feb. 8, 2017) 1.1 Why general relativity? Why should we be interested in general relativity? (a) General relativity is the uniquely greatest triumph of analytic reasoning in all of science. Simultaneity is not well-defined in special relativity, and so Newton's laws of gravity become Ill-defined. Using only special relativity and the fact that Newton's theory of gravity works terrestrially, Einstein was able to produce what we now know as general relativity. (b) Understanding gravity has now become an important part of most considerations in funda- mental physics. Historically, it was easy to leave gravity out phenomenologically, because it is a factor of 1038 weaker than the other forces. If one tries to build a quantum field theory from general relativity, it fails to be renormalizable, unlike the quantum field theories for the other fundamental forces. Nowadays, gravity has become an integral part of attempts to extend the standard model. Gravity is also important in the field of cosmology, which became more prominent after the discovery of the cosmic microwave background, progress on calculations of big bang nucleosynthesis, and the introduction of inflationary cosmology. 1.2 Review of Special Relativity The basic assumption of special relativity is as follows: All laws of physics, including the statement that light travels at speed c, hold in any inertial coordinate system. Fur- thermore, any coordinate system that is moving at fixed velocity with respect to an inertial coordinate system is also inertial. -
The Historical Turn in the Philosophy of Science
THE HISTORICAL TURN IN THE PHILOSOPHY OF SCIENCE 1 Developments in the History of Science The history of science has a long history. Aristotle’s scientific works are prefaced by historical account of those sciences, and this model persisted through medieval times until and including the rise of modern science in the era of the scientific revolution. Joseph Priestley, for example, entitled two of his books of pioneering research The History and Present State of Electricity and The History and Present State of Discov- eries Relating to Vision, Light, and Colours. For many such early modern authors the history of science serves as a propaedeutic. William Whewell’s A History of the Induc- tive Sciences (1857) is regarded as the first genuinely modern work of the history of science. Even so, Whewell’s scholarship has an extra-historical purpose, which was to furnish the materials against which a satisfactory philosophy of science could be con- structed. While Whewell rejected a Leibnizian logic of discovery, he did nonetheless believe that general principles of scientific inference could be uncovered by careful consideration of the history of scientific research. Whewell’s approach was followed by several early positivists, notably, Mach, Ostwald, and Duhem. Nonetheless, as positivism developed philosophically it also became more ahis- torical. Carnap’s programme of a priori inductive logic was premised on a distinction between a context of discovery and a context of justification. The former concerned the process of coming up with an hypothesis, whereas the latter concerns its justification relative to the evidence. The former would be the province of psychology, although it may depend so much on details of individual biography that few general principles may be derived even a posteriori. -
Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics, with an Afterword by Roy Kerr / Fulvio Melia
CRA C K I N G T H E E INSTEIN CODE @SZObWdWbgO\RbVS0W`bV]T0ZOQY6]ZS>VgaWQa eWbVO\/TbS`e]`RPg@]gS`` fulvio melia The University of Chicago Press chicago and london fulvio melia is a professor in the departments of physics and astronomy at the University of Arizona. He is the author of The Galactic Supermassive Black Hole; The Black Hole at the Center of Our Galaxy; The Edge of Infinity; and Electrodynamics, and he is series editor of the book series Theoretical Astrophysics published by the University of Chicago Press. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2009 by The University of Chicago All rights reserved. Published 2009 Printed in the United States of America 18 17 16 15 14 13 12 11 10 09 1 2 3 4 5 isbn-13: 978-0-226-51951-7 (cloth) isbn-10: 0-226-51951-1 (cloth) Library of Congress Cataloging-in-Publication Data Melia, Fulvio. Cracking the Einstein code: relativity and the birth of black hole physics, with an afterword by Roy Kerr / Fulvio Melia. p. cm. Includes bibliographical references and index. isbn-13: 978-0-226-51951-7 (cloth: alk. paper) isbn-10: 0-226-51951-1 (cloth: alk. paper) 1. Einstein field equations. 2. Kerr, R. P. (Roy P.). 3. Kerr black holes—Mathematical models. 4. Black holes (Astronomy)—Mathematical models. I. Title. qc173.6.m434 2009 530.11—dc22 2008044006 To natalina panaia and cesare melia, in loving memory CONTENTS preface ix 1 Einstein’s Code 1 2 Space and Time 5 3 Gravity 15 4 Four Pillars and a Prayer 24 5 An Unbreakable Code 39 6 Roy Kerr 54 7 The Kerr Solution 69 8 Black Hole 82 9 The Tower 100 10 New Zealand 105 11 Kerr in the Cosmos 111 12 Future Breakthrough 121 afterword 125 references 129 index 133 PREFACE Something quite remarkable arrived in my mail during the summer of 2004. -
Heterotic String Compactification with a View Towards Cosmology
Heterotic String Compactification with a View Towards Cosmology by Jørgen Olsen Lye Thesis for the degree Master of Science (Master i fysikk) Department of Physics Faculty of Mathematics and Natural Sciences University of Oslo May 2014 Abstract The goal is to look at what constraints there are for the internal manifold in phe- nomenologically viable Heterotic string compactification. Basic string theory, cosmology, and string compactification is sketched. I go through the require- ments imposed on the internal manifold in Heterotic string compactification when assuming vanishing 3-form flux, no warping, and maximally symmetric 4-dimensional spacetime with unbroken N = 1 supersymmetry. I review the current state of affairs in Heterotic moduli stabilisation and discuss merging cosmology and particle physics in this setup. In particular I ask what additional requirements this leads to for the internal manifold. I conclude that realistic manifolds on which to compactify in this setup are severely constrained. An extensive mathematics appendix is provided in an attempt to make the thesis more self-contained. Acknowledgements I would like to start by thanking my supervier Øyvind Grøn for condoning my hubris and for giving me free rein to delve into string theory as I saw fit. It has lead to a period of intense study and immense pleasure. Next up is my brother Kjetil, who has always been a good friend and who has been constantly looking out for me. It is a source of comfort knowing that I can always turn to him for help. Mentioning friends in such an acknowledgement is nearly mandatory. At least they try to give me that impression. -
John Ellis Sergerudaz
SLAC-PUB-3101 April 1983 (T/E) SEARCH FOR SUPERSYMMETRY IN TOPONIUM DECAYS* JOHN ELLIS Stanjord Linear Accelerator Center Stanford Uniueraity, Stanford, California 9@05 and SERGERUDAZ School of Physics and Astronomy University of Minnesota, Minneapolis, Minnesota 55455 ABSTRACT Although cosmology and unification suggest that the mass of the gluino is larger than about 14 GeV, in many theories of broken supersymmetry the photino 5, gluino S and one of the spin-zero partners i of the t quark can be lighter than mt. We calculate Z-T- the decay rates for toponium + 5 S, r 5 and t t and show that in many models they can be as large as, or larger than, the rate for toponium ---, e+e- decay. If it is kinematically accessible, the decay t --* t+q dominates the decays of toponium as well as those of naked top states. Submitted to Physics Letters B * Work supported by the Department of Energy, contracts DEAC03-76SF00515 and DEAC02-83ER40051. One obstacle to the experimental search [l] for supersymmetry (susy) is our the- oretical ignorance about the likely masses of supersymmetric particles. This means that we cannot be sure where susy will first appear, and must plan a broad-band search. The production and detection of supersymmetric particles in hadron-hadron collisions (21, lepton-hadron collisions [3,4] and e+e- annihilation [3,5,6] have been extensively discussed. In the case of e+e- annihilation, there have been discussions of the production of squarks and gluinos in the continuum and of gluinos in heavy quarkonium decays [3,5,6].