Hempel and Confirmation Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Greek and Latin Roots, Prefixes, and Suffixes
GREEK AND LATIN ROOTS, PREFIXES, AND SUFFIXES This is a resource pack that I put together for myself to teach roots, prefixes, and suffixes as part of a separate vocabulary class (short weekly sessions). It is a combination of helpful resources that I have found on the web as well as some tips of my own (such as the simple lesson plan). Lesson Plan Ideas ........................................................................................................... 3 Simple Lesson Plan for Word Study: ........................................................................... 3 Lesson Plan Idea 2 ...................................................................................................... 3 Background Information .................................................................................................. 5 Why Study Word Roots, Prefixes, and Suffixes? ......................................................... 6 Latin and Greek Word Elements .............................................................................. 6 Latin Roots, Prefixes, and Suffixes .......................................................................... 6 Root, Prefix, and Suffix Lists ........................................................................................... 8 List 1: MEGA root list ................................................................................................... 9 List 2: Roots, Prefixes, and Suffixes .......................................................................... 32 List 3: Prefix List ...................................................................................................... -
The Intrinsic Probability of Grand Explanatory Theories
Faith and Philosophy: Journal of the Society of Christian Philosophers Volume 37 Issue 4 Article 3 10-1-2020 The Intrinsic Probability of Grand Explanatory Theories Ted Poston Follow this and additional works at: https://place.asburyseminary.edu/faithandphilosophy Recommended Citation Poston, Ted (2020) "The Intrinsic Probability of Grand Explanatory Theories," Faith and Philosophy: Journal of the Society of Christian Philosophers: Vol. 37 : Iss. 4 , Article 3. DOI: 10.37977/faithphil.2020.37.4.3 Available at: https://place.asburyseminary.edu/faithandphilosophy/vol37/iss4/3 This Article is brought to you for free and open access by the Journals at ePLACE: preserving, learning, and creative exchange. It has been accepted for inclusion in Faith and Philosophy: Journal of the Society of Christian Philosophers by an authorized editor of ePLACE: preserving, learning, and creative exchange. applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" AQ1–AQ5 THE INTRINSIC PROBABILITY OF GRAND EXPLANATORY THEORIES Ted Poston This paper articulates a way to ground a relatively high prior probability for grand explanatory theories apart from an appeal to simplicity. I explore the possibility of enumerating the space of plausible grand theories of the universe by using the explanatory properties of possible views to limit the number of plausible theories. I motivate this alternative grounding by showing that Swinburne’s appeal to simplicity is problematic along several dimensions. I then argue that there are three plausible grand views—theism, atheism, and axiarchism—which satisfy explanatory requirements for plau- sibility. Other possible views lack the explanatory virtue of these three theo- ries. Consequently, this explanatory grounding provides a way of securing a nontrivial prior probability for theism, atheism, and axiarchism. -
Evidential Relevance and the Grue Paradox
科 学 哲 学31-1(1998) Evidential Relevance and the Grue Paradox Robert T. Pennock Philosophy Department The University of Texas at Austin Abstract Goodman's Grue Paradox may be intransigent as a version of the problem of induction, but may be resolved within the more lim ited context of confirmation theory in which the task is to explicate the basic notion of evidential relevance. Although the green and grue hypotheses are equivalently confirmed if we follow Goodman's use of the Hempelian instance confirmation relation, there are asym metries than can be exploited if we adopt an "ontic" confirmation theory that uses a causal notion of evidential relevance. I sort out a variety of interpretive confusions about the intended content of the definition of grue and show how the causal approach resolves each in a way that is not paradoxical. 1. Introduction If we are to make progress in confirmation theory, we must distinguish local problems having to do with the nature of evidence from the global problem of induction. Nelson Goodman posed the Grue Paradox as "The New Riddle of In- duction," but his presentation set up the problem within a Hempelian model of confirmation. In what follows I do not address the aspect of the paradox that participates in the old problem of induction but focus upon the aspect that deals with the explication of the confirmation relation, that is, the relation having to do with what counts as evidence of what. In •˜2-•˜5 1 highlight features of the para- 101 dox that are problematic when viewed with this particular question of evidential relevance in mind and in •˜6 I show how we may avoid the problems by moving from a syntactic/semantic to an ontic/causal relevance relation.' 2. -
Principles of Scientific Inquiry
Chapter 2 PRINCIPLES OF SCIENTIFIC INQUIRY Introduction This chapter provides a summary of the principles of scientific inquiry. The purpose is to explain terminology, and introduce concepts, which are explained more completely in later chapters. Much of the content has been based on explanations and examples given by Wilson (1). The Scientific Method Although most of us have heard, at some time in our careers, that research must be carried out according to “the scientific method”, there is no single, scientific method. The term is usually used to mean a systematic approach to solving a problem in science. Three types of investigation, or method, can be recognized: · The Observational Method · The Experimental (and quasi-experimental) Methods, and · The Survey Method. The observational method is most common in the natural sciences, especially in fields such as biology, geology and environmental science. It involves recording observations according to a plan, which prescribes what information to collect, where it should be sought, and how it should be recorded. In the observational method, the researcher does not control any of the variables. In fact, it is important that the research be carried out in such a manner that the investigations do not change the behaviour of what is being observed. Errors introduced as a result of observing a phenomenon are known as systematic errors because they apply to all observations. Once a valid statistical sample (see Chapter Four) of observations has been recorded, the researcher analyzes and interprets the data, and develops a theory or hypothesis, which explains the observations. The experimental method begins with a hypothesis. -
Sacred Rhetorical Invention in the String Theory Movement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public. -
This Is Dr. Chumney. the Focus of This Lecture Is Hypothesis Testing –Both What It Is, How Hypothesis Tests Are Used, and How to Conduct Hypothesis Tests
TRANSCRIPT: This is Dr. Chumney. The focus of this lecture is hypothesis testing –both what it is, how hypothesis tests are used, and how to conduct hypothesis tests. 1 TRANSCRIPT: In this lecture, we will talk about both theoretical and applied concepts related to hypothesis testing. 2 TRANSCRIPT: Let’s being the lecture with a summary of the logic process that underlies hypothesis testing. 3 TRANSCRIPT: It is often impossible or otherwise not feasible to collect data on every individual within a population. Therefore, researchers rely on samples to help answer questions about populations. Hypothesis testing is a statistical procedure that allows researchers to use sample data to draw inferences about the population of interest. Hypothesis testing is one of the most commonly used inferential procedures. Hypothesis testing will combine many of the concepts we have already covered, including z‐scores, probability, and the distribution of sample means. To conduct a hypothesis test, we first state a hypothesis about a population, predict the characteristics of a sample of that population (that is, we predict that a sample will be representative of the population), obtain a sample, then collect data from that sample and analyze the data to see if it is consistent with our hypotheses. 4 TRANSCRIPT: The process of hypothesis testing begins by stating a hypothesis about the unknown population. Actually we state two opposing hypotheses. The first hypothesis we state –the most important one –is the null hypothesis. The null hypothesis states that the treatment has no effect. In general the null hypothesis states that there is no change, no difference, no effect, and otherwise no relationship between the independent and dependent variables. -
The Scientific Method: Hypothesis Testing and Experimental Design
Appendix I The Scientific Method The study of science is different from other disciplines in many ways. Perhaps the most important aspect of “hard” science is its adherence to the principle of the scientific method: the posing of questions and the use of rigorous methods to answer those questions. I. Our Friend, the Null Hypothesis As a science major, you are probably no stranger to curiosity. It is the beginning of all scientific discovery. As you walk through the campus arboretum, you might wonder, “Why are trees green?” As you observe your peers in social groups at the cafeteria, you might ask yourself, “What subtle kinds of body language are those people using to communicate?” As you read an article about a new drug which promises to be an effective treatment for male pattern baldness, you think, “But how do they know it will work?” Asking such questions is the first step towards hypothesis formation. A scientific investigator does not begin the study of a biological phenomenon in a vacuum. If an investigator observes something interesting, s/he first asks a question about it, and then uses inductive reasoning (from the specific to the general) to generate an hypothesis based upon a logical set of expectations. To test the hypothesis, the investigator systematically collects data, either with field observations or a series of carefully designed experiments. By analyzing the data, the investigator uses deductive reasoning (from the general to the specific) to state a second hypothesis (it may be the same as or different from the original) about the observations. -
An Introduction to Philosophy
An Introduction to Philosophy W. Russ Payne Bellevue College Copyright (cc by nc 4.0) 2015 W. Russ Payne Permission is granted to copy, distribute and/or modify this document with attribution under the terms of Creative Commons: Attribution Noncommercial 4.0 International or any later version of this license. A copy of the license is found at http://creativecommons.org/licenses/by-nc/4.0/ 1 Contents Introduction ………………………………………………. 3 Chapter 1: What Philosophy Is ………………………….. 5 Chapter 2: How to do Philosophy ………………….……. 11 Chapter 3: Ancient Philosophy ………………….………. 23 Chapter 4: Rationalism ………….………………….……. 38 Chapter 5: Empiricism …………………………………… 50 Chapter 6: Philosophy of Science ………………….…..… 58 Chapter 7: Philosophy of Mind …………………….……. 72 Chapter 8: Love and Happiness …………………….……. 79 Chapter 9: Meta Ethics …………………………………… 94 Chapter 10: Right Action ……………………...…………. 108 Chapter 11: Social Justice …………………………...…… 120 2 Introduction The goal of this text is to present philosophy to newcomers as a living discipline with historical roots. While a few early chapters are historically organized, my goal in the historical chapters is to trace a developmental progression of thought that introduces basic philosophical methods and frames issues that remain relevant today. Later chapters are topically organized. These include philosophy of science and philosophy of mind, areas where philosophy has shown dramatic recent progress. This text concludes with four chapters on ethics, broadly construed. I cover traditional theories of right action in the third of these. Students are first invited first to think about what is good for themselves and their relationships in a chapter of love and happiness. Next a few meta-ethical issues are considered; namely, whether they are moral truths and if so what makes them so. -
Reza Negarestani – Glass Bead – 2017 1 Three Nightmares of The
Reza Negarestani – Glass Bead – 2017 1 Three Nightmares of the Inductive Mind Of all the disquieting riddles and paradoxes found in the arsenal of epistemological scepticism— understood as a systematic and piecemeal scrutiny into the methods and paradigms of the formation and justification of knowledge-claims—one problem has particularly proved, time and again, to be a never- ending source of cognitive vexation. With few notable exceptions, philosophers and philosophically- minded scientists and statisticians (e.g., Hume, Goodman, Putnam, Stegmüller, Boltzmann and De Finetti among others) have invariably either downplayed and deflected the seriousness of this problem and its variations, or have simply given up worrying about it in the hope that it may miraculously disappear. The said problem is nothing but David Hume’s strong version of the problem of induction which, unbeknownst to Hume himself, was destined to become the superacid of methodological scepticism capable, in the blink of an eye, of eating away the foundation of any epistemic project built on naïve forms of empiricism and rationalism. It is often the case that philosophers who pose sceptical problems recoil in fear once they realize the far- reaching implications of such problems, and Hume, with his problem of induction, is no exception. They rush into defusing their inadvertent exercise in scepticism. But systematic scepticism is something akin to an explosive chemical chain reaction. Once it is set off, with every passing minute it becomes more difficult to extinguish the flames. Pour on more water, and the fire spreads to areas you never imagined flammable. A genuine philosopher—regardless of her alliances—seeks to examine how far the fire spreads. -
Turns in the Evolution of the Problem of Induction*
CARL G. HEMPEL TURNS IN THE EVOLUTION OF THE PROBLEM OF INDUCTION* 1. THE STANDARD CONCEPTION: INDUCTIVE "INFERENCE" Since the days of Hume's skeptical doubt, philosophical conceptions of the problem of induction and of ways in which it might be properly solved or dissolved have undergone a series of striking metamor- phoses. In my paper, I propose to examine some of those turnings, which seem to me to raise particularly important questions about the nature of empirical knowledge and especially scientific knowledge. Many, but by no means all, of the statements asserted by empirical science at a given time are accepted on the basis of previously established evidence sentences. Hume's skeptical doubt reflects the realization that most of those indirectly, or inferentially, accepted assertions rest on evidence that gives them no complete, no logically conclusive, support. This is, of course, the point of Hume's obser- vation that even if we have examined many occurrences of A and have found them all to be accompanied by B, it is quite conceivable, or logically possible, that some future occurrence of A might not be accompanied by B. Nor, we might add, does our evidence guarantee that past or present occurrences of A that we have not observed were- or are- accompanied by B, let alone that all occurrences ever of A are, without exception, accompanied by B. Yet, in our everyday pursuits as well as in scientific research we constantly rely on what I will call the method of inductive ac- ceptance, or MIA for short: we adopt beliefs, or expectations, about empirical matters on logically incomplete evidence, and we even base our actions on such beliefs- to the point of staking our lives on some of them. -
PHIL 110A Introduction to Philosophy: Knowledge and Reality Syllabus
PHIL 110A Introduction to Philosophy: Knowledge and Reality Fall 2015 Syllabus Instructor: Prof. Doreen Fraser E-mail (for quick questions): [email protected] Office Hours (for substantive questions): Tuesdays 1-2p.m. and Thursdays 11:30a.m.-12:30p.m. Office: HH 330 Teaching assistant: Phillipe Beriault E-mail (for quick questions): [email protected] Office Hours (for substantive questions): See the Calendar on LEARN Office: HH 337 Course Meeting Time and Location: Mondays, Tuesdays and Thursdays 10:30-11:20p.m. in AL 124 Course Description This course provides an introduction to some central questions about knowledge and reality. What is knowledge? What are our best sources of knowledge? What are the distinguishing features of our best sources of knowledge? What sorts of things exist? How do we know? What is the relationship between our minds and our brains? We will study answers to these questions offered by a selection of philosophers past and present, including Descartes, Berkeley, Hume, Russell, P.S. Churchland, Thagard, and Searle. Methods for analyzing and assessing arguments will be an important focus of the course. Readings All of the texts for the course are available free of charge online from either the LEARN course web site or the library e-reserves web site. Required readings for each class are listed on the attached course schedule. All of the readings listed on the course schedule are required. Students are expected to read each assigned text prior to the class for which it is assigned. The assigned texts should be brought to class. You will probably find that it is necessary to re- read the texts at least once after they are discussed in class. -
'Grue' Problem Really Show? Re-Reading of Frank Jackson, 'Grue', Journal of Philosophy 5 (1975), Pp.113-131
Okasha, S. (2007). What does Goodman's 'Grue' Problem Really Show? re-reading of Frank Jackson, 'Grue', Journal of Philosophy 5 (1975), pp.113-131. Philosophical Papers, 36(3), 483-502. https://doi.org/10.1080/05568640709485211 Peer reviewed version Link to published version (if available): 10.1080/05568640709485211 Link to publication record in Explore Bristol Research PDF-document This is an author's accepted manuscript of an article published in Philosophical Papers, Volume 36, Issue 3, 2007, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/05568640709485211 University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Philosophical Papers Vol. 36, N o. 3 (N ovem ber 2007): 483-502 W hat Does Goodm an’s ‘Grue’ Problem Really Show? Samir Okasha Re-reading of Frank Jackson, ‘Grue’, Journal of Philosophy 5 (1975), pp.113-131.∗ Introduction N elson Goodm an devised his fam ous ‘grue’ exam ple in order to show that the sim ple ‘straight rule’ of induction leads to inconsistency unless restricted to the so-called ‘projectible’ predicates. In his searching critique of Goodm an’s discussion, Frank Jackson (1975) argued that on careful exam ination, Goodm an’s alleged paradox dissolves—the naïve straight rule does not lead to inconsistency, and does not need to be restricted to predicates of any particular type. Jackson’s article seem s to have been overlooked by m uch of the subsequent literature on ‘grue’; indicative of this is that virtually all philosophers today believe that Goodm an did show what, according to Jackson, he did not show.1 The structure of this paper is as follows.