Evaluation of Irvingia Kernels Extract As Biobased Wood Adhesive A

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Irvingia Kernels Extract As Biobased Wood Adhesive A Alawode et al. J Wood Sci (2020) 66:12 https://doi.org/10.1186/s10086-020-01860-9 Journal of Wood Science ORIGINAL ARTICLE Open Access Evaluation of Irvingia kernels extract as biobased wood adhesive A. O. Alawode1, P. S. Eselem‑Bungu2, S. O. Amiandamhen1, M. Meincken1 and L. Tyhoda1* Abstract Irvingia tree species have been earmarked for domestication in many countries due to their potential as raw materials for various applications, which include biodiesel, cosmetics, perfume, soap, etc. Presently, there is no information on the utilization of kernel seed extract as a potential source of green wood adhesive. This study is focused on investigat‑ ing the properties of adhesives produced from kernel seeds of two Irvingia wood species i.e. Irvingia gabonensis (IG) and Irvingia wombolu (IW), as well as investigating the improved properties derived from the efect of modifcation using a few selected modifying agents including glutaraldehyde, glyoxal, epichlorohydrin (EPI) and an acid/base type process modifcation. Polyethylene (PE) was used along with the glutaraldehyde, glyoxal and epichlorohydrin modifers in the modifcation process. Fourier transform infrared spectroscopy (FTIR), diferential scanning calorimetry (DSC), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were conducted to study the efect of modifcation on adhesive properties. The glycosidic carbon of the unmodifed extracts and that of the EPI modi‑ fed sample were not sensitive to chain conformations. Principal components (PC) 1 and 2 explained 85.19 and 9.54%, respectively, of the total variability in FTIR spectra among the modifed and unmodifed adhesives. The unmodifed samples for IG and IW exhibited one peak with crystallization temperatures of 18.7 and 14.4 °C, respectively, indicating only one component exhibits some low degree crystallinity. The adhesive properties of the modifed extracts were tested on wood veneers according to ASTM standard. The shear strength of the modifed adhesives ranged from 1.5 to 3.93 MPa and 1.7 to 4.05 MPa for IG and IW, respectively. The modifed samples containing PE showed marked improvement in the shear strength. The highest values were about 63% higher than the shear strength of unmodifed samples with least shear strength. The results indicated that the modifcation of Irvingia‑based adhesives had a great contribution to their performance as natural wood adhesives. Keywords: Irvingia gabonensis, Irvingia kernel extracts, Irvingia wombolu, Natural wood adhesive, Wood adhesive modifcation, Wood composites Introduction harmful to humans and the environment [2]. Te role of It is well established that the global demand for wood com- adhesives cannot be overemphasized for the efcient uti- posites has increased tremendously over the last two dec- lization of wood and other lignocellulosic resources in the ades [1]. With increasing awareness of the impact of the manufacturing of wood products [3]. Products from wood hazardous levels of volatile organic compounds’ emission, composite industries such as particleboard, oriented strand especially formaldehyde from wood composite products board, plywood and laminated timber are essential, and bonded with formaldehyde-based adhesives, it is becom- they are being used for the production of wooden trusses, ing imperative to fnd viable alternatives, which are less kitchen cabinets, wardrobes, bookshelves, etc. Formalde- hyde-based adhesives, which include urea formaldehyde, *Correspondence: [email protected] phenol formaldehyde, melamine formaldehyde and res- 1 Department of Forest and Wood Science, Stellenbosch University, orcinol are the most commonly used adhesives because of Stellenbosch, South Africa their excellent performance, which includes good adhesion Full list of author information is available at the end of the article © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea‑ tivecommons.org/licenses/by/4.0/. Alawode et al. J Wood Sci (2020) 66:12 Page 2 of 13 to diferent lignocellulosic substrates, high water resist- Many studies have been carried out on the modifcation ance (except for urea formaldehyde), low initial viscosity, of numerous potential wood adhesives developed from resistance to environmental degradation, and excellent diferent natural sources such as tannins, lignin, citric thermal stability [4]. Tese formaldehyde-based adhesives acid, carbohydrate, unsaturated oils, liquefed wood, rice are produced from petroleum and natural gas which are bran, and soybean proteins [5, 14–17]. Imam et al. [18] non-renewable resources [5]. Furthermore, the emission successfully developed wood adhesive by blending starch of hazardous compounds from composite products manu- polymers with polyvinyl alcohol (PVOH), hexamine, cit- factured with these adhesives is of great concern because of ric acid and latex. In another report, oxidized starch their efect on health-related issues. As a consequence, they adhesives were modifed to improve their performance were categorised among the carcinogenic materials by the by incorporating sodium dodecyl sulfate, urea, silane World Health Organisation (WHO) in 2004 [5]. Terefore, couplings and olefns. Te authors reported that bond- recent studies have focused on the development of wood ing strength and water resistance of the adhesive were adhesives from renewable sources, which are environmen- signifcantly improved [19]. Umemura et al. [20] investi- tally safe and able to compete with conventional adhesives gated the properties of boards manufactured from citric with regards to performance properties [6]. acid and sucrose adhesive, and reported excellent physical Irvingia species belong to the family Irvingiaceae. Te properties. Particleboards have also been manufactured species include I. gabonensis (IG), I. wombolu (IW), from sweet sorghum bagasse and citric acid adhesive [21]. I. smithii (IS), I. grandifora (IGF), I. robur (IR) and I. Polyethylene (PE) is well known for its high mechani- malayana (IM). I. malayana is usually found in South- cal and impact strength and is widely used in day-to-day east Asia [7]. IG and IW are the most commonly found life applications such as insulation cable and construction in Africa. Tese two species are very similar and difcult materials. PE has chemically inert surfaces with low sur- to distinguish. Te distinction between the two species is face energy. Tis makes them difcult to bond with other that IG has sweet edible fruit pulp, while IW has bitter, substrates. Tese materials are highly chemically robust inedible fruit pulp. In West Africa, they are commonly and exhibit very poor adhesive properties on their own. In known as Dika nut, bush mango or wild mango. Irvingia this study, we provided information on the modifcation of prefers undisturbed low land tropical forest as their habi- IG and IW kernel extract as an adhesive from a renewable tat and the species is well adapted to Ultisol soils in high source (wood) using diferent hardeners as crosslinking rainfall areas. Tese forest fruit trees are widely available agents as well as blending these modifed extracts with PE in western and central African countries. Tey are now to produce wood adhesives of greater mechanical strength. being domesticated in many countries because of their For the frst time, the efective use of modifed kernel seed numerous potential uses [8]. Irvingia trees usually reach extracts/PE blend as potential wood binder was demon- maturity and begin fowering at 10–15 years of age. How- strated. Te extract was modifed chemically with some ever, much earlier fruiting has been reported. Ladipo [9] selected hardeners, which was followed by blending of the described trees that produced fruit at age six. modifed extract with PE. Te chemical and thermal prop- Several studies have shown that various products, such erties of the product were analysed using fourier transform as fuel (bio-diesel), cooking oil, cosmetics, margarine, infrared spectroscopy (FTIR), solid-state nuclear magnetic season cubes, confectionaries and soaps, can be produced resonance (NMR), thermogravimetric analyser (TGA) and from the oil (fat content) from Irvingia kernels [10, 11]. diferential scanning calorimetry (DSC). Te efect of gly- However, limited information is available on the potential oxal/PE, epichlorohydrin/PE, glutaraldehyde/PE, acid/base application of the residues (mucilage). Some researchers modifcation on composition and functional groups of have used mucilage to formulate drug binders in medi- Irvingia wood adhesives was also investigated. cal formulations. Tis mucilage is starch based. Tere was also an attempt by Ikechukwu and Salome [12] to Materials and methods evaluate the possibility of using gum from IW kernels in IG and IW kernels were purchased from a local market
Recommended publications
  • Irvingia Gabonensis) 150 Mg ** Store Tightly Closed in a Cool, Dry Place
    Scan for Read the entire label and follow the directions carefully prior to use. product info DIRECTIONS: Take two (2) capsules twice daily 15 minutes before meals. Best if taken before meals containing carbohydrates or Supplement Facts starches, or as recommended by a healthcare practitioner. Serving Size 2 Vegetarian Capsules • Servings Per Container: 60 CAUTION: If you are taking blood glucose lowering medication, Amount Per Serving % Daily Value consult with your healthcare provider before taking this product. † Iodine (typical value naturally occurring from 25 mcg 17% This supplement should be taken in conjunction with a healthy diet kelp and bladderwrack) and regular exercise program. Results may vary. Chromium (as Chromium GlycoProtein Matrix) 100 mcg 83% Integra-Lean® African Mango (Irvingia gabonensis) 150 mg ** Store tightly closed in a cool, dry place. Optimized African Mango proprietary extract (seed) Calorie Control Complex providing: WARNINGS: InSea2® [proprietary composition of demineralized 125 mg ** polyphenols from brown seaweeds kelp • KEEP OUT OF REACH OF CHILDREN. and bladderwrack] • DO NOT EXCEED RECOMMENDED DOSE. Irvingia TeaSlenderTM Green Tea Phytosome 150 mg ** • Do not purchase if outer seal is broken or damaged. • When using nutritional supplements, please consult with your physician ™ Green Tea Phytosome decaffeinated if you are undergoing treatment for a medical condition or if you are with Phase 3 Calorie Control Complex extract (leaf) containing standardized green tea extract pregnant or lactating. bound to phosphatidylcholine (from lecithin) Phase 2® white kidney (bean) extract 445 mg ** * These statements have not been evaluated by the Food and Drug Phase 3TM Sucrase Inhibitor L-Arabinose and Chromium 550 mg ** Administration.
    [Show full text]
  • Diversification of Tree Crops: Domestication of Companion Crops for Poverty Reduction and Environmental Services
    Expl Agric. (2001), volume 37, pp. 279±296 Printed in Great Britain Copyright # 2001 Cambridge University Press REVIEW PAPER DIVERSIFICATION OF TREE CROPS: DOMESTICATION OF COMPANION CROPS FOR POVERTY REDUCTION AND ENVIRONMENTAL SERVICES By R. R. B. LEAKEY{ and Z. TCHOUNDJEU{ {Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, Scotland, UK and {International Centre for Research in Agroforestry, PO Box 2067, YaoundeÂ, Cameroon (Accepted 19 January 2001) SUMMARY New initiatives in agroforestry are seeking to integrate indigenous trees, whose products have traditionally been gathered from natural forests, into tropical farming systems such as cacao farms. This is being done to provide from farms, marketable timber and non-timber forest products that will enhance rural livelihoods by generating cash for resource-poor rural and peri-urban households. There are many potential candidate species for domestication that have commercial potential in local, regional or even international markets. Little or no formal research has been carried out on many of these hitherto wild species to assess potential for genetic improvement, reproductive biology or suitability for cultivation. With the participation of subsistence farmers a number of projects to bring candidate species into cultivation are in progress, however. This paper describes some tree domestication activities being carried out in southern Cameroon, especially with Irvingia gabonensis (bush mango; dika nut) and Dacryodes edulis (African plum; safoutier). As part of this, fruits and kernels from 300 D. edulis and 150 I. gabonensis trees in six villages of Cameroon and Nigeria have been quantitatively characterized for 11 traits to determine combinations de®ning multi-trait ideotypes for a genetic selection programme.
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Extreme Ecological Specialization in a Rainforest Mammal, the Bornean
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.233999; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 Extreme ecological specialization in a rainforest mammal, 5 the Bornean tufted ground squirrel, Rheithrosciurus macrotis 6 7 8 Andrew J. Marshall1*, Erik Meijaard2, and Mark Leighton3 9 10 1Department of Anthropology, Department of Ecology and Evolutionary Biology, Program in the 11 Environment, and School for Environment and Sustainability, 101 West Hall, 1085 S. University 12 Ave, Ann Arbor, Michigan, 48109 USA. 13 2Borneo Futures, Block C, Unit C8, Second Floor, Lot 51461, Kg Kota Batu, Mukim Kota Batu, 14 BA 2711, Brunei Darussalam. 15 3Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, U.S.A. 16 17 * Corresponding author 18 E-mail: [email protected] (AJM) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.233999; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The endemic Bornean tufted ground squirrel, Rheithrosciurus macrotis, has attracted great 21 interest among biologists and the public recently. Nevertheless, we lack information on the most 22 basic aspects of its biology.
    [Show full text]
  • Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
    Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S.
    [Show full text]
  • Isolation and Identification of Fungi Associated with Irvingia Species Kernels from Some Markets Within Zaria Metropolis and Their Aflatoxin Content
    ISOLATION AND IDENTIFICATION OF FUNGI ASSOCIATED WITH IRVINGIA SPECIES KERNELS FROM SOME MARKETS WITHIN ZARIA METROPOLIS AND THEIR AFLATOXIN CONTENT BY GoddyChibuezeONUOHA ,B.Sc Botany(A. B. U) 2002 M.Sc/Scie/02872/09 – 10 A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, AHMADU BELLO UNIVERSITY, ZARIA, IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARDOF A MASTER OF SCIENCE DEGREE IN BOTANY DEPARTMENT OF BIOLOGICAL SCIENCES, FACULTY OF SCIENCE, AHMADU BELLO UNIVERSITY, ZARIA NIGERIA. OCTOBER,2016 DECLARATION The research work in this dissertationentitled “ISOLATION AND IDENTIFICATION OF FUNGI ASSOCIATED WITH IRVINGIA SPECIES KERNELS FROM SOME MARKETS WITHIN ZARIA METROPOLIS AND THEIR AFLATOXIN CONTENT”has been performed by me in the Department of Biological Sciences, Ahmadu Bello University, Zaria, under the supervision of Prof. S.O. Alonge and Prof. A. B. Zarafi.The information derived from the literature has been duly acknowledged in the text and the list of references provided. No part of this dissertation was previously presented for another degree or diploma at any university. ________________________ ________________ ONUOHA, GoddyChibueze Date M.Sc/Scie/02872/09-10 ii CERTIFICATION This dissertationentitled “ISOLATION AND IDENTIFICATION OF FUNGI ASSOCIATED WITH IRVINGIA SPECIES KERNELS FROM SOME MARKETS WITHIN ZARIA METROPOLIS AND THEIR AFLATOXIN CONTENT” by ONUOHA, GODDY CHIBUEZEmeets the regulations governing the award of the degree of Master of Science at Ahmadu Bello University, Zaria, and is approved for its contribution to knowledge and literary presentation. Prof. S. O. Alonge _____________________ ______________ Chairman, Supervisory Committee Signature Date Prof. A. B. Zarafi _____________________ ______________ Member, Supervisory Committee Signature Date Prof. A. K.
    [Show full text]
  • Irvingia Gabonensis Irvingiaceae (Aubrey-Lecomte Ex O. Rorke) Baill
    Irvingia gabonensis (Aubrey-Lecomte ex O. Rorke) Baill. Irvingiaceae dika nut LOCAL NAMES English (wild mango,native mango,duiker nut,bush mango,bread tree,African mango tree); French (manguier sauvage,bobo); Hausa (goron,biri); Igbo (obono); Trade name (dika nut); Yoruba (oro) BOTANIC DESCRIPTION Irvingia gabonensis grows to a height of 15-40 m, bole slightly buttressed. It has a dense, compact crown, branchlets ending in a narrow, curved, stipular sheath covering the leaf bud. Bark greyish, smooth or very slightly scaly; slash yellowish-brown to light yellow, brittle. Fruit on three-year-old trees in Onne, Nigeria (Anthony Simons) Leaves 5-15 x 2.5-6 cm, elliptic to slightly obovate, 1 margin often a little more rounded than the other, acute or shortly acuminate, cuneate or slightly rounded at the base; leathery dark green and glossy above; with 5- 10 pairs of irregular lateral veins, the lower ones running out nearly to the margin. Flowers yellowish to greenish-white, in slender, clustered racemes or small panicles above the leaves and about as long as them, or on the branchlets and younger branchlets; individual flower stalks slender, about 6 mm long, petals bent right back and soon falling off, disc bright yellow. Tree in degraded forest near Port Harcourt, Fruits yellowish when ripe, broadly ellipsoid and variable in size between Nigeria. (Anthony Simons) varieties, 5-7.5 cm with a yellow, fibrous pulp surrounding a large seed. The genus name commemorates E.G. Irving, 1816-1855, a Scots botanist. BIOLOGY I. gabonensis is hermaphroditic, with flowers being pollinated by Coleoptera, Diptera, Hymenoptera and Lepidoptera.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Federal Register/Vol. 77, No. 163/Wednesday
    50622 Federal Register / Vol. 77, No. 163 / Wednesday, August 22, 2012 / Rules and Regulations CROP GROUP 14–12: TREE NUT GROUP—Continued Bur oak (Quercus macrocarpa Michx.) Butternut (Juglans cinerea L.) Cajou nut (Anacardium giganteum Hance ex Engl.) Candlenut (Aleurites moluccanus (L.) Willd.) Cashew (Anacardium occidentale L.) Chestnut (Castanea crenata Siebold & Zucc.; C. dentata (Marshall) Borkh.; C. mollissima Blume; C. sativa Mill.) Chinquapin (Castaneapumila (L.) Mill.) Coconut (Cocos nucifera L.) Coquito nut (Jubaea chilensis (Molina) Baill.) Dika nut (Irvingia gabonensis (Aubry-Lecomte ex O’Rorke) Baill.) Ginkgo (Ginkgo biloba L.) Guiana chestnut (Pachira aquatica Aubl.) Hazelnut (Filbert) (Corylus americana Marshall; C. avellana L.; C. californica (A. DC.) Rose; C. chinensis Franch.) Heartnut (Juglans ailantifolia Carrie`re var. cordiformis (Makino) Rehder) Hickory nut (Carya cathayensis Sarg.; C. glabra (Mill.) Sweet; C. laciniosa (F. Michx.) W. P. C. Barton; C. myristiciformis (F. Michx.) Elliott; C. ovata (Mill.) K. Koch; C. tomentosa (Lam.) Nutt.) Japanese horse-chestnut (Aesculus turbinate Blume) Macadamia nut (Macadamia integrifolia Maiden & Betche; M. tetraphylla L.A.S. Johnson) Mongongo nut (Schinziophyton rautanenii (Schinz) Radcl.-Sm.) Monkey-pot (Lecythis pisonis Cambess.) Monkey puzzle nut (Araucaria araucana (Molina) K. Koch) Okari nut (Terminalia kaernbachii Warb.) Pachira nut (Pachira insignis (Sw.) Savigny) Peach palm nut (Bactris gasipaes Kunth var. gasipaes) Pecan (Carya illinoinensis (Wangenh.) K. Koch) Pequi (Caryocar brasiliense Cambess.; C. villosum (Aubl.) Pers; C. nuciferum L.) Pili nut (Canarium ovatum Engl.; C. vulgare Leenh.) Pine nut (Pinus edulis Engelm.; P. koraiensis Siebold & Zucc.; P. sibirica Du Tour; P. pumila (Pall.) Regel; P. gerardiana Wall. ex D. Don; P. monophylla Torr. & Fre´m.; P.
    [Show full text]
  • The Evolutionary Fate of Rpl32 and Rps16 Losses in the Euphorbia Schimperi (Euphorbiaceae) Plastome Aldanah A
    www.nature.com/scientificreports OPEN The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome Aldanah A. Alqahtani1,2* & Robert K. Jansen1,3 Gene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was assembled and three major genomic changes were detected, the complete loss of rpl32 and pseudogenization of rps16 and infA. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identifed previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passiforaceae. An E. schimperi transcript of pt SOD-1- RPL32 confrmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passiforaceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passiforaceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence within Malpighiales.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]