JAXA's Vision

Total Page:16

File Type:pdf, Size:1020Kb

JAXA's Vision New Views of the Moon 2 – Asia 2018 (LPI Contrib. No. 2070) 6031.pdf JAXA’s Space Exploration Scenario Naoki Sato, Japan Aerospace Exploration Agency (JAXA), Sengen 2-1-1, Tsukuba-shi, Ibaraki Japan, [email protected] Japan Aerospace Exploration Agency (JAXA) has been studying space exploration scenario including Earth JAXA’s vision (20 years later) Far beyond (Mars, NEO, etc) human exploration for Japan since 2015, which en- Deep Space (2035~) Gateway compasses goals, knowledge gap assessment, architec- Large Human Rated Power Prop Bus(NASA) Rocket Crew Vehicle ture assessment, and technology roadmap. (NASA, Russia) (NASA, Russia) Logistics Module The overall goal of space exploration is divided in- Habitation Module (ESA, JAXA, etc.) to science and habitation. As for the habitation, the Fully Reusable Human Lunar Lander goal is assumed to stay 500 days on Mars utilizing lo- (JAXA, etc) cal resources. Science goal and roadmap is also inves- Lunar base Fuel tigated. Preliminary gap assessment shows that water Human Lunar Return Pressurized Rover (2030)(JAXA, etc.) Water ice prospecting Missions Lunar pole (JAXA, etc.) (2022)(JAXA, etc.) abundance on the moon is the critical knowledge gap Fuel Plant Construction (2030~) Scientific Lunar Exploration as well as radiation environment, and regolith charac- (Multiple Sites) teristics. Based on the overall architecture study, it was found that the transportation will become greatly effec- Fig. 1 JAXA proposed vision for space exploration tive if water abundance on the moon is more than a certain level. Also, the re-usability of the transportation Permanent capability on the Moon’s surface to enable system is the key enabler for the affordability and sus- sustainable space exploration with open partnership tainability of human space exploration. Such an archi- tecture study derived several key technology perfor- 2020 2025 2030 2035 2040 mance goals. Toward such a technology goals, we also Deep Space Gateway Add Fuel Depot Remote Remote Lander w Re-usable Fully sample developed technology roadmap. Through these activi- Ops Ops Ascender Ascender Re-Usable ISECG Lander Human Lunar ties, we created a proposal for Japan’s space explora- SPR Full-fledged HERACLES Trans Surface Moon Exploration tion strategy for the political discussion. portation Exploration Demonstrated Fuel Fig.1 shows the overall vision for space exploration Technologies Fuel Water ice Production Fuel Plant Construction after 20 years from now, which was proposed by JAXA Prospecting Demo Fully Re-usable Lander Development to the political discussion. Also, Fig. 2 shows the over- ESA/JAXA SELENE-R Joint WG all scenario for the vision. ESA’s Moon Village Because we believe the water abundance is critical for future overall space exploration architecture, the proposed first step is a water ice prospecting mission to Fig. 2 JAXA proposed space exploration scenario lunar pole. In parallel with that, along with the Global Exploration Roadmap (GER) 3rd edition developed by the International Space Exploration Coordination Group (ISECG), it is proposed to participate in the Deep Space Gateway and Robotic Demonstrator for Human Landing Mission (called HERACLES) planned in 2020’s. If enough abundant water was found, it is also proposed to develop fuel production capability and finally to construct fuel plan on the lunar pole. International Space Station (ISS) is also the key el- ement for the space exploration because it is the most suitable facility to demonstrate key technologies for space exploration such as Environment Control and Life Support System (ECLSS), human health care technologies, rendezvous and docking technologies and so on. JAXA is also planning to use the ISS as much as possible leveraging operation opportunity and the right of ISS utilization. .
Recommended publications
  • Global Exploration Roadmap
    The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System.
    [Show full text]
  • JAXA's Space Exploration Activities
    JAXA’s Space Exploration Activities Jun Gomi, Deputy Director General, JAXA Hayabusa 2 ✓ Asteroid Explorer of the C-type asteroid ✓ Launched in December, 2014 ✓ Reached target asteroid “Ryugu” in 2018 ✓ First successful touchdown to Ryugu on February 22, 2019 ✓ Return to Earth in 2020 (162173) Ryugu 2 Hayabusa 2 (c) JAXA, University of Tokyo, Kochi University, Rikkyo University, (c) JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu and AIST. University of Aizu, AIST Asteroid Ryugu photographed from a Asteroid Ryugu from an altitude of 6km. distance of about 20 km. The image Image was captured with the Optical was taken on June 30, 2018. Navigation Camera on July 20, 2018. Hayabusa 2 4 JAXA’s Plan for Space Exploration International • Utilization of ISS/Kibo • Cis-Lunar Platform (Gateway) Cooperation • Lunar exploration and beyond Industry & • JAXA Space Exploration Innovation Academia Hub Partnerships • Science Community discussions JAXA’s Overall Scenario for International Space Exploration Mars, others ★ Initial Exploration ★ Full Fledge Exploration MMX: JFY2024 • Science and search for life • Utilization feasibility exam. Kaguya Moon ©JAXA ©JAXA ©JAXA ©JAXA ©JAXA Full-fledged Exploration & SLIM Traversing exploration(2023- ) Sample Return(2026- ) Utilization (JFY2021) • Science exploration • S/R from far side • Cooperative science/resource • Water prospecting • Technology demo for human mission exploration by robotic and human HTV-X der.(2026- ) • Small probe deploy, data relay etc. Gateway Phase 1 Gateway (2022-) Phase 2 • Support for Lunar science Earth • Science using deep space Promote Commercialization International Space Station 6 SLIM (Smart Lander for Investigating Moon) ✓ Demonstrate pin-point landing on the moon.
    [Show full text]
  • Initial Analysis Team Introduction
    Summary and contents of the press conference Overview • Since the return of the sample in December of last year, curation activities have been conducted for the initial analysis of the sample. • Curation activities are aimed at cataloguing the sample without compromising the scientific value in order to provide information that contributes to further detailed scientific analysis. • Today’s report is that part of the catalogued sample is ready for delivery. Contents 1. Report from the curation team (T. Usui, E. Nakamura, M. Ito) 2. Report from the initial analysis teamS. TachibanaH. YurimotoT. Nakamura T. NoguchiR. OkazakiH. YabutaH. Naraoka 2021/6/17 Hayabusa2 reporter briefing 2 Report from the curation team Tomohiro USUIJAXA Eizo NAKAMURAOkayama University Motoo ITOJAMSTEC Ryugu sample curation work The initial description of the Ryugu sample was performed without removing the sample from the clean chamber, in order to avoid contamination from the global environment CC3-1 Opening the sample container under vacuum environment CC3-2 Sample collection under vacuum CC3-3 Transition from vacuum to nitrogen environment CC4-1 Handling of submillimeter-sized particles CC4-2 Handling / observation / sorting of relatively large particles (> mm) 2021/6/17 Hayabusa2 reporter briefing 4 Achievement of the world’s first sample collection and storage of asteroid samples under vacuum conditions Samples collected under vacuum on December 15, 2020 will not be distributed at this time, but continued to be stored under vacuum (CC3-2) for future
    [Show full text]
  • Tuesday, March 2, 2010 POSTER SESSION I: MISSION PLANS and CONCEPTS 7:00 P.M
    41st Lunar and Planetary Science Conference (2010) sess336.pdf Tuesday, March 2, 2010 POSTER SESSION I: MISSION PLANS AND CONCEPTS 7:00 p.m. Town Center Exhibit Area Benkhoff J. The BepiColombo Mission to Explore Mercury [#1743] BepiColombo is an ESA, JAXA interdisciplinary mission to explore the planet Mercury. Two spacecrafts, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO), will be studying the planet and its environment and launched together in July 2014. Balint T. S. Kerzhanovich V. V. Hall J. L. Baines K. H. Stephens S. K. Four Aspects of a Venus Balloon Mission Concept [#1301] Our poster explores four aspects of a typical Venus balloon mission concept using information design techniques, including a typical timeline; the atmospheric entry sequence; maps of the balloon’s traverse path; and the material selection challenges. Klaus K. Cook T. S. Smith D. B. Small Body Landers for Near Earth Object Missions [#1077] We are developing a small body lander product line that leverages the significant investments that have been made in the highly successful DARPA Orbital Express program. Smith D. B. Klaus K. Caplin G. Elsperman M. S. Horsewood J. Low Cost Multiple Near Earth Object Missions [#1464] Our Commercial spacecraft are available with efficient high power solar arrays and hybrid propulsion systems (Chemical and Solar Electric) that make possible multiple Near Earth Object Missions within Discovery budget limits. Ping J. S. Qian Z. H. Hong X. Y. Zheng W. M. Fung L. W. Liu Q. H. Zhang S. J. Shang K. Jian N. C. Shi X. Wang M.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • JAXA's Lunar Exploration Activities
    June 17th 2019, 62nd Session of COPUOS, Vienna JAXA’s Lunar Exploration Activities Hiroshi Sasaki Director, JAXA Space Exploration Center (JSEC) Japan Aerospace Exploration Agency 1 JAXA’s Space Exploration Scenario Mars, others Activities on/beyond Mars ©JAXA MMX JFY2024 Kaguya ©JAXA ©JAXA ©JAXA ©JAXA Moon SLIM Lunar Polar Exploration Robotic Sample Return Pinpoint Landing Water Prospecting Sustainable JFY2021 (HERACLES) prox.2023- Technology Demo Exploration/Utilization Approx.2026- HTV-X derivatives Gateway Approx. 2026- Operation OMOTENASHI EQUULEUS CubeSat Innovative launched by small mission Gateway (construction phase) SLS/EM1 2022- Earth Promote Commercialization International Space Station 2 ©NASA International Space Exploration Coordination Group (ISECG): • ISECG is a non-political agency coordination forum of space organization from 18 countries and regions. • JAXA is currently the chair of ISECG. • ISECG agencies work collectively in a non-binding, consensus-driven manner towards advancing the Global Exploration Strategy. The Global Exploration Roadmap (GER3) recognizes the importance of increasing synergies with robotic missions while demonstrating the role humans play in realizing societal benefits. GER3, released in January 2018 3 Significance of Lunar Exploration Expand Human Activities Gain Knowledge International Cooperation ©NASA Promote Industry Inspire Young Generation 4 JAXA’s Lunar Exploration Roadmap (Long-Team) Lunar Base (International Space Agency, Private Sector) 2060- Sustainable Exploration (Private Utilization)
    [Show full text]
  • JAXA's Planetary Exploration Plan
    Planetary Exploration and International Collaboration Institute of Space and Astronautical Science Japan Aerospace Exploration Agency Yoshio Toukaku, Director for International Strategy and Coordination Naoya Ozaki, Assistant Professor, Dept of Spacecraft Engineering ISAS/JAXA September, 2019 The Path Japanese Planetary Exploration 1985 1995 2010 2018 Sakigake/ Nozomi Akatsuki BepiColombo Suisei MMO/MPO Comet flyby Planned and Venus Climate Mercury Orbiter launched Mars Orbiter orbiter Asteroid Sample Asteroid Sample Martian Moons Lunar probe Return Mission Return Mission explorer Hiten Hayabusa Hayabusa2 MMX 1992 2003 2014 2020s (TBD) Recent Science Missions HAYABUSA 2003-2010 HINODE(SOLAR-B)2006- KAGUYASELENE)2007-2009 Asteroid Explorer SolAr OBservAtion Lunar Exploration AKATSUKI 2010- Venus Meteorology IKAROS 2010 HisAki 2013 SolAr SAil PlAnetary atmosphere HAYABUSA2 2014-2020 Hitomi(ASTRO-H) 2016 ArAse (ERG) 2016 Asteroid Explorer X-Ray Astronomy Van Allen Belt proBe Hayabusa & Hayabusa 2 Asteroid Sample Return Missions “Hayabusa” spacecraft brought back the material of Asteroid Itokawa while establishing innovative ion engines. “Hayabusa2”, while utilizing the experience cultivated in “Hayabusa”, has arrived at the C type Asteroid Ryugu in order to elucidate the origin and evolution of the solar system and primordial materials that would have led to emergence of life. Hayabusa Hayabusa2 Target Itokawa Ryugu Launch 2003 2014 Arrival 2005 2018 Return 2010 2020 ©JAXA Asteroid Ryugu 6 Martian Moons eXploration (MMX) Sample return from Marian moon for detailed analysis. Strategic L-Class A key element in the ISAS roadmap for small body exploration. Phase A n Science Objectives 1. Origin of Mars satellites. - Captured asteroids? - Accreted debris resulting from a giant impact? 2. Preparatory processes enabling to the habitability of the solar system.
    [Show full text]
  • IADC-2020- UN COPUOS STSC Presentation Final
    The Inter-Agency Space Debris Coordination Committee (IADC) an overview of IADC’s annual activities Laurent Francillout, CNES, France IADC Chair www.iadc-home.org 57 th Session of the Scientific and Technical Subcommittee United Nations Committee on the Peaceful Uses of Outer Space 3 to 14 February 2020 1 Overview IADC is an international forum of national and international space agencies for the worldwide technical/scientific coordination of activities related to space debris in Earth orbit issues and provides technical recommendations. The 13 IADC member agencies are: – ASI (Agenzia Spaziale Italiana) – CNES (Centre National d'Etudes Spatiales) – CNSA (China National Space Administration) – CSA (Canadian Space Agency) – DLR (German Aerospace Center) – ESA (European Space Agency) – ISRO (Indian Space Research Organisation) – JAXA (Japan Aerospace Exploration Agency) – KARI (Korea Aerospace Research Institute) – NASA (National Aeronautics and Space Administration) – ROSCOSMOS (State Space Corporation “ROSCOSMOS”) – SSAU (State Space Agency of Ukraine) – UKSA (United Kingdom Space Agency) 2 Membership IADC members are national or international space and state organizations that carry out space activities through planning, designing, launching, or operating space objects. IADC members should actively undertake space debris research activities and contribute to an increased understanding of space debris issues for the preservation of the orbital environment (IADC Terms of Reference, see http://www.iadc-home.org ) 3 Structure and Purposes IADC consists of a Steering Group and four specified Working Groups (WGs) covering measurements ( WG1 ), environment and database (WG2 ), protection ( WG3 ), and mitigation ( WG4 ). The primary purpose of the IADC is to – exchange information on space debris research activities between member space agencies.
    [Show full text]
  • International Space Station Facilities Research in Space 2017 and Beyond Table of Contents
    National Aeronautics and Space Administration International Space Station Facilities Research in Space 2017 and Beyond Table of Contents Welcome to the International Space Station 1 Program Managers 2 Program Scientists 3 Research Goals of Many Nations 4 An Orbiting Laboratory Complex 5 Knowledge and Benefits for All Humankind 6 Highlights from International Space Station 7 Benefits for Humanity, 2nd Edition What is an ISS Facility? 9 ISS Research History and Status 10 ISS Topology 11 Multipurpose Laboratory Facilities 21 Internal Multipurpose Facilities 23 External Multipurpose Facilities 37 Biological Research 47 Human Physiology and Adaptation Research 65 Physical Science Research 73 Earth and Space Science Research 87 Technology Demonstration Research 95 The ISS Facility Brochure is published by the NASA ISS Program Science Office. Acronyms 100 Executive Editor: Joseph S. Neigut Associate Editor: Judy M. Tate-Brown Index 104 Designer: Cynthia L. Bush NP-2017-04-014-A-JSC Welcome to the International Space Station The International Space Station (ISS) is an unprecedented human achievement from conception to construction, to operation and long-term utilization of a research platform on the frontier of space. Fully assembled and continuously inhabited by all space agency partners, this orbiting laboratory provides a unique environment in which to conduct multidisciplinary research and technology development that drives space exploration, basic discovery and Earth benefits. The ISS is uniquely capable of unraveling the mysteries of our universe— from the evolution of our planet and life on Earth to technology advancements and understanding the effects of spaceflight on the human body. This outpost also serves to facilitate human exploration beyond low-Earth orbit to other destinations in our solar system through continued habitation and experience.
    [Show full text]
  • Development of Supersonic Parachute for Japanese Mars Rover Mission
    Trans. JSASS Aerospace Tech. Japan Vol. 14, No. ists30, pp. Pe_87-Pe_94, 2016 Development of Supersonic Parachute for Japanese Mars Rover Mission By Hiroki TAKAYANAGI,1) Toshiyuki SUZUKI,1) Kazuhiko YAMADA,2) Yusuke MARU,2) Shingo MATSUYAMA3) and Kazuhisa FUJITA1) 1)Research and Development Directorate, JAXA, Chofu, Japan 2) Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan 3) Aeronautical Technology Directorate, JAXA, Chofu, Japan (Received July 31st, 2015) For landing a rover on the Mars ground, supersonic parachute has been developed in JAXA. Key technologies are categorized in aerodynamic performance, mechanical strength, ejection system, and validation method of the design for pre-flight model. So far, we have performed experiments in low-speed, transonic, and supersonic wind tunnels in Chofu aerospace center and ISAS. From these experiments, we have investigated aerodynamic performance such as drag coefficients, opening load factor, and stability of the parachute. We have also evaluated the mechanical strength in these wind tunnel tests. In addition, ejection system with automobile airbag inflator has been developed and a vertical ground test is performed in Noshiro Rocket Testing Center. Key Words: Supersonic Parachute, Mars EDL Nomenclature China officially announced plans to go forward with their Mars mission planned for 2020. The program includes plans 2 A : Reference area, m for Mars sample return in 2030. India has already achieved CD : Drag coefficient their first interplanetary mission since 2014 called as D : Diameter Mangalyaan. As a next step, they also plan to land a rover on D0 : Nominal diameter the Mars ground in 2020’s. Dp : Projected diameter of inflated parachute In Japan, several missions to Mars have been planned.
    [Show full text]
  • PRESS Private Lunar Exploration Company Ispace Collaborates With
    PRESS Contact: Shuhei Akimoto Phone: +81 0344057540 Email: [email protected] Website: www.ispace-inc.com December 16, 2016 Private Lunar Exploration Company ispace Collaborates With JAXA on Lunar Resource Development Initiative A new agreement between ispace and JAXA marks the beginning of Japan’s first initiative for the development and creation of a space resource industry Tokyo, Japan – December 16, 2016 — ispace, inc, a private lunar robotic exploration company, announced today that it has signed a Memorandum of Understanding (MOU) with the Japan Aerospace Exploration Agency (JAXA) to jointly create a roadmap for lunar resource development. Under this agreement, both parties will utilize their knowledge and network to develop plans and frameworks for creating an industry around lunar resource mining, delivery and utilization. Based in Tokyo, Japan, ispace inc. is working to develop a lunar mining business to cultivate the space resource market. The space industry is estimated to reach a value of 90 billion US dollars in 2030 and the resource market is predicted to be at its core. ispace currently manages the front running Google Lunar XPRIZE team, HAKUTO. Next year the company will send a rover to the Moon to demonstrate its micro-robotic technology for lunar exploration. In the next decade, ispace plans to establish a high-frequency transportation service to the Moon and conduct exploration missions to map lunar resources. In the long term, the company plans to deliver extracted and processed resources to customers on and around the Moon. “Space resource development is attracting a great deal of attention around the world” said Takeshi Hakamada, the founder and CEO of ispace.
    [Show full text]
  • Kibo Utilization Scenario Toward 2020 in the Field of Life Science the Kibo
    Kibo Utilization Scenario toward 2020 in the field of Life Science The Kibo Utilization Promotion Committee The Scenario Examination Working Group in Life Science Table of Contents 1. Introduction...................................................................................................................... 1 1.1. Guidelines for the Scenario Study.............................................................................. 1 2. Present Conditions and Trends in Space Life Sciences Research.............................. 3 2.1. Purpose of Life Sciences Research using the Space Environment........................... 3 2.2. Utilization Phases 1 and 2......................................................................................... 4 2.2.1. Prioritization Approaches and Research Items in Phase 1................................. 4 2.2.2. Prioritization Approaches and Research Items in Phase 2................................. 6 2.3. Status of Achievements and Outcomes of Kibo Utilization Experiments............ 8 2.4. Challenges Recognized through Phases 1 and 2...................................................... 9 2.5. International Trends in Space Life Sciences Research........................................... 10 3. Future Approaches and Research for Space Life Sciences in Kibo..................... 11 3.1. Prioritized Goal 1: “Integrative comprehension of adaptation process by living organisms to the space environment ”............. ................................................. .... 12 3.2. Prioritized Goal 2: “Building-up
    [Show full text]