1913] INSTITUTE Àffàlks Ì63 and Wehnelt Interrupters, Etc., with the Aid of Lantern Slides. He Said That the X-Ray Could
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ae Outerbridge, Jr
18 4 ANNUAL REPORT OF BOARD OF MANAGERS. Model of canal boat with screw-propellers; also models of ice-boats and boats with feathering paddle-wheel blades. Models of earliest forms of lattice girder bridges. Sectional model of early beam engine with Watt parallel motion and condenser. Model of locomotive engine, by George Stevenson, I816. Sectional model of side-lever engine. Working models of early forms of stationary engines and locomotives. Models by Eastwick, Harrison, Baldwin, and other inventors, of crank motions and various other portions of engines, such as cylinders, etc. Model of Herman's mechanism for converting rectilinear into rotary motion. Beam engine, by Henry Cartwright, model 1842. Model of first World's Fair premium harrow. Model of Bain's printing telegraph, 1844. Various models and working apparatus of Morse and other inventors in the early history of telegraphy. Model of Oliver Evans's " Oructor Amphibolis." Original Yale lock, 1855. Benjamin Franklin's original electrical machine and various other apparatus used by him. In conclusion, it may be stated that all of the working models have been taken apart, cleaned, repaired by skilled mechanics, and all have been operated. Some of these models are displayed in the Library and lecture-room; many others line the walls of the class-rooms, where they are at all times available for educational purposes. Respectfully submitted, A. E. OUTERBRIDGE, JR., PHILADELPHIA, January 8, 1913. Chairman. REPORT OF THE COMMITTEE ON MEETINGS. To the President and Members of The Franklin Institute: During the year ending September 30, 1912, nine stated meetings of the Institute were held under arrangements made by the Committee on Meetings, with the co-operation of the Secretary's office. -
!History of Lightingv2.Qxd
CONTENTS Introduction 3 The role of lighting in modern society 3 1. The oldest light sources 4 Before the advent of the lamp 4 The oldest lamps 4 Candles and torches 5 Further development of the oil lamp 6 2. Gaslight 9 Introduction 9 Early history 9 Gas production 10 Gaslight burners 10 The gas mantle 11 3. Electric lighting before the incandescent lamp 14 Introduction 14 Principle of the arc lamp 15 Further development of the arc lamp 16 Applications of the arc lamp 17 4. The incandescent lamp 20 The forerunners 20 The birth of the carbon-filament lamp 22 Further development of the carbon-filament lamp 25 Early metal-filament lamps 27 The Nernst lamp 28 The birth of the tungsten-filament lamp 29 Drawn tungsten filaments 30 Coiled filaments 30 The halogen incandescent lamp 31 5. Discharge lamps 32 Introduction 32 The beginning 32 High-voltage lamps 33 Early low-pressure mercury lamps 34 The fluorescent lamp 35 High-pressure mercury lamps 36 Sodium lamps 37 The xenon lamp 38 6. Electricity production and distribution 39 Introduction 39 Influence machines and batteries 39 Magneto-electric generators 40 Self-exciting generators 41 The oldest public electricity supply systems 41 The battle of systems 42 The advent of modern a.c. networks 43 The History of Light and Lighting While the lighting industry is generally recognized as being born in 1879 with the introduction of Thomas Alva Edison’s incandescent light bulb, the real story of light begins thousands of years earlier. This brochure was developed to provide an extensive look at one of the most important inventions in mankind’s history: artificial lighting. -
Electrical Engineering
SCIENCE MUSEUM SOUTH KENSINGTON HANDBOOK OF THE COLLECTIONS ILLUSTRATING ELECTRICAL ENGINEERING II. RADIO COMMUNICATION By W. T. O'DEA, B.Sc., A.M.I.E.E. Part I.-History and Development Crown Copyright Reseruea LONDON PUBLISHED BY HIS MAJESTY's STATIONERY OFFICI To be purchued directly from H.M. STATIONERY OFFICI at the following addre:11ea Adutral Houae, Kinpway, London, W.C.z; no, George Street, Edinburgh:& York Street, Manchester 1 ; 1, St, Andrew'• Cretccnr, Cudi.lf So, Chichester Street, Belfa1t or through any Booueller 1934 Price 2s. 6d. net CONTENTS PAGB PREFACE 5 ELECTROMAGNETI<: WAVF13 7 DETECTORS - I I EARLY WIRELESS TELEGRAPHY EXPERIMENTS 17 THE DEVELOPMENT OF WIRELESS TELEGRAPHY - 23 THE THERMIONIC vALVE 38 FuRTHER DEVELOPMENTS IN TRANSMISSION 5 I WIRELESS TELEPHONY REcEIVERS 66 TELEVISION (and Picture Telegraphy) 77 MISCELLANEOUS DEVELOPMENTS (Microphones, Loudspeakers, Measure- ment of Wavelength) 83 REFERENCES - 92 INDEX - 93 LIST OF ILLUSTRATIONS FACING PAGE Fig. I. Brookman's Park twin broadcast transmitters -Frontispiece Fig. 2. Hughes' clockwork transmitter and detector, 1878 8 Fig. 3· Original Hertz Apparatus - Fig. 4· Original Hertz Apparatus - Fig. S· Original Hertz Apparatus - 9 Fig. 6. Oscillators and resonators, 1894- 12 Fig. 7· Lodge coherers, 1889-94 - Fig. 8. Magnetic detectors, 1897, 1902 - Fig. 9· Pedersen tikker, 1901 I3 Fig. IO. Original Fleming diode valves, 1904 - Fig. II. Audion, Lieben-Reisz relay, Pliotron - Fig. IZ. Marconi transmitter and receiver, 1896 Fig. IJ. Lodge-Muirhead and Marconi receivers 17 Fig. 14. Marconi's first tuned transmitter, 1899 Fig. IS. 11 Tune A" coil set, 1900 - 20 Fig. 16. Marconi at Signal Hill, Newfoundland, 1901 Fig. -
History of Electric Light
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 76. NUMBER 2 HISTORY OF ELECTRIC LIGHT BY HENRY SGHROEDER Harrison, New Jersey PER\ ^"^^3^ /ORB (Publication 2717) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 15, 1923 Zrtie Boxb QSaftitnore (prcee BALTIMORE, MD., U. S. A. CONTENTS PAGE List of Illustrations v Foreword ix Chronology of Electric Light xi Early Records of Electricity and Magnetism i Machines Generating Electricity by Friction 2 The Leyden Jar 3 Electricity Generated by Chemical Means 3 Improvement of Volta's Battery 5 Davy's Discoveries 5 Researches of Oersted, Ampere, Schweigger and Sturgeon 6 Ohm's Law 7 Invention of the Dynamo 7 Daniell's Battery 10 Grove's Battery 11 Grove's Demonstration of Incandescent Lighting 12 Grenet Battery 13 De Moleyns' Incandescent Lamp 13 Early Developments of the Arc Lamp 14 Joule's Law 16 Starr's Incandescent Lamp 17 Other Early Incandescent Lamps 19 Further Arc Lamp Developments 20 Development of the Dynamo, 1840-1860 24 The First Commercial Installation of an Electric Light 25 Further Dynamo Developments 27 Russian Incandescent Lamp Inventors 30 The Jablochkofif " Candle " 31 Commercial Introduction of the Differentially Controlled Arc Lamp ^3 Arc Lighting in the United States 3;^ Other American Arc Light Systems 40 " Sub-Dividing the Electric Light " 42 Edison's Invention of a Practical Incandescent Lamp 43 Edison's Three-Wire System 53 Development of the Alternating Current Constant Potential System 54 Incandescent Lamp Developments, 1884-1894 56 The Edison " Municipal -
Ann Cooper Hewitt G.S
HIGH SOCIETY The Curious Case of Ann Cooper Hewitt G.S. Payne looks at a long-forgotten scandal that rocked America’s high society in the 1930s “I’M ONLY A sterilized heiress, foundries, as well as from a litany nia millionaire who came from A butt for the laughter of rubes, of inventions that ranged from the one of the oldest, wealthiest fami- I’m comely and rich, first US steam locomotive to the lies in New York society. Where But a venomous bitch — first gelatin dessert (later to exactly Maryon came from My mother ran off with my tubes!” become better known by its brand remains sketchy. She seemed to — Gene Fowler, journalist/humorist, name, Jell-O). Cooper’s son-in- have cultivated an image of a pop- the New York Daily Mirror, 1936 law, Abram Stevens Hewitt, was a ular Southern belle from Virginia. It was the story of the year, mayor of New York City and gen- But according to daughter Ann, the sensational scandal everyone erally regarded as the father of the “While my mother has always was talking about from New York New York City subway system. boasted of her Southern aristoc- to San Francisco. Ann Cooper Cooper’s grandson (Ann’s father) racy, she was the daughter of a Hewitt was the heiress to a horsecar driver in San Francisco fortune, and she was suing who lived in a flat over a corner her own mother, Maryon grocery store when she was a Cooper Hewitt, for half a mil- girl.” lion dollars. Why? Because Wherever she came from, two years earlier, in 1934, Maryon found her way into when Ann was 20 and still money and society with her technically a minor, Maryon marriage to Brugiere. -
The Curious Case of U.S. Letters Patent No. 223,898
CHAPTER 5 The Curious Case of U.S. Letters Patent No. 223,898 I have not failed. I’ve just found ten thousand ways that don’t work. —Thomas Edison ho invented the light bulb? This was the topic at hand. Technically, the litigation Wwas between the Edison Electric Light Company and the Mount Morris Electric Light Company, but everyone knew that these were subsidiaries and legal proxies for their parent companies. Even the attorneys litigating this $1 billion case called it simply Edison v. Westinghouse. The issue before them: U.S. Letters Patent No. 223,898, granted to Thomas Edison on January 27, 1880, which described the invention of an “incandescent electric lamp.” Quickly nicknamed the Light Bulb Patent by the press, it was without question the most valuable patent ever granted in the history of the United States. And George Westinghouse was accused of infringing on it. Yet, as Paul Cravath pointed out to his client George Westinghouse, even a problem so simply put might yet admit to many layers of unraveling. In fact, the question hinged on one’s precise definition of the terms involved—“who,” “in- vented,” “the,” and, most importantly, “light bulb.” The first electric lamps had actually been invented almost a cen- tury before, Paul had learned when he’d first begun to research the case. Sir Humphry Davy had publicly demonstrated early “arc lights” in 1809. By attaching a battery to two charcoal sticks, he’d caused a U-shaped thread of electricity to “arc” across the gap between the sticks. The explosion of light was blindingly bright; perfect for light- ing dark outdoor areas, if it could be tamed into safety and reliability. -
Energy Efficient Landscape Lighting
energy efficient landscape lighting OPTIONS FOR COMMERCIAL & RESIDENTIAL SITES June 2008. Casey Gates energy efficient landscape lighting OPTIONS FOR COMMERCIAL & RESIDENTIAL SITES June 2008. A Senior Project Presented to the Faculty of the Landscape Architecture Department University of California, Davis in Partial Fulfillment of the Requirement for the Degree of Bachelors of Science of Landscape Architecture Accepted and Approved by: __________________________ Faculty Committee Member, Byron McCulley _____________________________ Committee Member, Bart van der Zeeuw _____________________________ Committee Member, Jocelyn Brodeur _____________________________ Faculty Senior Project Advisor, Rob Thayer Casey Gates Acknowledgements THANK YOU Committee Members: Byron McCulley, Jocelyn Brodeur, Bart Van der zeeuw, Rob Thayer Thank you for guiding me through this process. You were so helpful in making sense of my ideas and putting it all together. You are great mentors. Family: Mom, Dad, Kelley, Rusty You inspire me every day. One of my LDA projects 2007 One of my LDA projects 2007, Walker Hall The family Acknowledgements Abstract ENERGY EFFICIENT LANDSCAPE LIGHTING IN COMMERCIAL AND LARGE SCALE RESIDENTIAL SITES Summary Landscape lighting in commercial and large scale residential sites is an important component to the landscape architecture industry. It is a concept that is not commonly covered in university courses but has a significant impact on the success of a site. This project examines the concepts of landscape lighting and suggests ideas to improve design standards while maintaining energy efficiency. This project will discuss methods and ideas of landscape lighting to improve energy efficiency. Designers should know lighting techniques and their energy efficient alternatives. This project demonstrates how design does not have to be compromised for the sake of energy efficiency. -
Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market
Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market Prepared by Pacific Northwest National Laboratory for U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program June 2006 PNNL-15730 Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market LJ Sandahl TL Gilbride MR Ledbetter HE Steward C Calwell(a) June, 2006 Prepared for The U.S. Department of Energy Under Contract DE-AC05-76RLO 1830 Pacific Northwest National Laboratory Richland, Washington 99352 _________________ (a)Ecos Consulting DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. -