George Gabriel Stokes and William Hyde Wollaston Michael W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mister Mary Somerville: Husband and Secretary
Open Research Online The Open University’s repository of research publications and other research outputs Mister Mary Somerville: Husband and Secretary Journal Item How to cite: Stenhouse, Brigitte (2020). Mister Mary Somerville: Husband and Secretary. The Mathematical Intelligencer (Early Access). For guidance on citations see FAQs. c 2020 The Author https://creativecommons.org/licenses/by/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1007/s00283-020-09998-6 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Mister Mary Somerville: Husband and Secretary BRIGITTE STENHOUSE ary Somerville’s life as a mathematician and mathematician). Although no scientific learned society had a savant in nineteenth-century Great Britain was formal statute barring women during Somerville’s lifetime, MM heavily influenced by her gender; as a woman, there was nonetheless a great reluctance even toallow women her access to the ideas and resources developed and into the buildings, never mind to endow them with the rights circulated in universities and scientific societies was highly of members. Except for the visit of the prolific author Margaret restricted. However, her engagement with learned institu- Cavendish in 1667, the Royal Society of London did not invite tions was by no means nonexistent, and although she was women into their hallowed halls until 1876, with the com- 90 before being elected a full member of any society mencement of their second conversazione [15, 163], which (Societa` Geografica Italiana, 1870), Somerville (Figure 1) women were permitted to attend.1 As late as 1886, on the nevertheless benefited from the resources and social nomination of Isis Pogson as a fellow, the Council of the Royal networks cultivated by such institutions from as early as Astronomical Society chose to interpret their constitution as 1812. -
Philosophical Transactions, »
INDEX TO THE PHILOSOPHICAL TRANSACTIONS, » S e r ie s A, FOR THE YEAR 1898 (VOL. 191). A. Absorption, Change of, produced by Fluorescence (B urke), 87. Aneroid Barometers, Experiments on.—Elastic After-effect; Secular Change; Influence of Temperature (Chree), 441. B. Bolometer, Surface, Construction of (Petavel), 501. Brilliancy, Intrinsic, Law of Variation of, with Temperature (Petavel), 501. Burke (John). On the Change of Absorption produced by Fluorescence, 87. C. Chree (C.). Experiments on Aneroid Barometers at Kew Observatory, and their Discussion, 441. Correlation and Variation, Influence of Random Selection on (Pearson and Filon), 229. Crystals, Thermal Expansion Coefficients, by an Interference Method (Tutton), 313. D. Differential Equations of the Second Order, &c., Memoir on the Integration of; Characteristic Invariant of (Forsyth), 1. 526 INDEX. E. Electric Filters, Testing Efficiency of; Dielectrifying Power of (Kelvin, Maclean, and Galt), 187. Electricity, Diffusion of, from Carbonic Acid Gas to Air; Communication of, from Electrified Steam to Air (Kelvin, Maclean, and Galt), 187. Electrification of Air by Water Jet, Electrified Needle Points, Electrified Flame, &c., at Different Air-pressures; at Different Electrifying Potentials; Loss of Electrification (Kelvin, Maclean, and Galt), 187. Electrolytic Cells, Construction and Calibration of (Veley and Manley), 365. Emissivity of Platinum in Air and other Gases (Petavel), 501. Equations, Laplace's and other, Some New Solutions of, in Mathematical Physics (Forsyth), 1. Evolution, Mathematical Contributions to Theory o f; Influence of Random Selection on the Differentiation of Local Races (Pearson and Filon), 229. F. Filon (L. N. G.) and Pearson (Karl). Mathematical Contributions to the Theory of Evolution.—IV. On the Probable Errors of Frequency Constants and on the Influence of Random Selection on Variation and Correlation, 229. -
The Partnership of Smithson Tennant and William Hyde Wollaston
“A History of Platinum and its Allied Metals”, by Donald McDonald and Leslie B. Hunt 9 The Partnership of Smithson Tennant and William Hyde Wollaston “A quantity of platina was purchased by me a few years since with the design of rendering it malleable for the different purposes to which it is adapted. That object has now been attained. ” WILLIAM HYDE W O L L A S T O N Up to the end of the eighteenth century the attempts to produce malleable platinum had advanced mainly in the hands of practical men aiming at its pre paration and fabrication rather than at the solution of scientific problems. These were now to be attacked with a marked degree of success by two remarkable but very different men who first became friends during their student days at Cam bridge and who formed a working partnership in 1800 designed not only for scientific purposes but also for financial reasons. They were of the same genera tion and much the same background as the professional scientists of London whose work was described in Chapter 8, and to whom they were well known, but with the exception of Humphry Davy they were of greater stature and made a greater advance in the development of platinum metallurgy than their predecessors. Their combined achievements over a relatively short span of years included the successful production for the first time of malleable platinum on a truly com mercial scale as well as the discovery of no less than four new elements contained in native platinum, a factor that was of material help in the purification and treatment of platinum itself. -
RBRC-32 BNL-6835.4 PARITY ODD BUBBLES in HOT QCD D. KHARZEEV in This ~A~Er We Give a Pedawwicalintroduction~0 Recent Work Of
RBRC-32 BNL-6835.4 PARITY ODD BUBBLES IN HOT QCD D. KHARZEEV RIKEN BNL Research Center, Br$ookhauenNational Laboratory, . Upton, New York 11973-5000, USA R.D. PISARSKI Department of Physics, Brookhaven National Laboratoy, Upton, New York 11973-5000, USA M.H.G. TYTGAT Seruice de Physique Th&orique, (7P 225, Uniuersitc4Libre de Bruzelles, B[ud. du !t%iomphe, 1050 Bruxelles, Belgium We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N + m. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the reconfining phrrse transition. The meet interesting possibility is if the reconfining transition, at T = Td, is of second order. Then we argue that Witten’s relation implies that the topological suscepti~lfity vanishes in a calculable fdion at Td. Ae noted by Witten, this implies that for sufficiently light quark messes, metaetable etates which act like regions of nonzero O — parity odd bubbles — can arise at temperatures just below Td. Experimentally, parity odd bubbles have dramatic signature% the rI’ meson, and especially the q meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as q + rr”ro, are allowed. The most direct way to detect parity violation is by measuring a parity odd global seymmetry for charged pions, which we define. 1 Introduction In this .-~a~er we give a Pedawwicalintroduction~0 recent work of ours? We I consider an SU(IV) gau”ge t~e~ry in the limit of a large number of colors, N + co, This is, of course, a familiar limit? We use the large N expansion I to investigate the behavior of the theory at nonzero temperature, especially for the topological susceptibility. -
William Hyde Wollaston Eric Clark
Downloaded from https://www.cambridge.org/core MicroscopyPioneers Pioneers in Optics: William Hyde Wollaston Eric Clark . IP address: From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 170.106.202.226 [email protected] , on William Hyde Wollaston bladder stone that he named cystic oxide, later called cystine, the 03 Oct 2021 at 02:49:34 (1766–1828) first known amino acid. Twelve years later Wollaston provided The quantity and diversity the best contemporary physiological description of the ear. of William Hyde Wollaston’s Wollaston formed another alliance to perform chemis- research made him one of the try studies and experiments, this time with Smithson Tennant. most influential scientists of his Platinum had long evaded the efforts of chemists to concentrate , subject to the Cambridge Core terms of use, available at time. Although formally trained and purify the precious element, and the pair decided to join in as a physician, Wollaston studied the endeavor. When Tennant first tried to produce platinum, the and made advances in many sci- result was his discovery of the new elements iridium and osmium. entific fields, including chemistry, Wollaston’s later attempt led him to the discovery of palladium physics, botany, crystallography, and rhodium. He then invented the technique of powder metal- optics, astronomy, and mineral- lurgy and produced malleable platinum in 1805. The feat proved ogy. He is particularly noted for extremely profitable and provided him with financial indepen- being the first to observe dark lines dence for the rest of his life. -
Philosophical Transactions (A)
INDEX TO THE PHILOSOPHICAL TRANSACTIONS (A) FOR THE YEAR 1889. A. A bney (W. de W.). Total Eclipse of the San observed at Caroline Island, on 6th May, 1883, 119. A bney (W. de W.) and T horpe (T. E.). On the Determination of the Photometric Intensity of the Coronal Light during the Solar Eclipse of August 28-29, 1886, 363. Alcohol, a study of the thermal properties of propyl, 137 (see R amsay and Y oung). Archer (R. H.). Observations made by Newcomb’s Method on the Visibility of Extension of the Coronal Streamers at Hog Island, Grenada, Eclipse of August 28-29, 1886, 382. Atomic weight of gold, revision of the, 395 (see Mallet). B. B oys (C. V.). The Radio-Micrometer, 159. B ryan (G. H.). The Waves on a Rotating Liquid Spheroid of Finite Ellipticity, 187. C. Conroy (Sir J.). Some Observations on the Amount of Light Reflected and Transmitted by Certain 'Kinds of Glass, 245. Corona, on the photographs of the, obtained at Prickly Point and Carriacou Island, total solar eclipse, August 29, 1886, 347 (see W esley). Coronal light, on the determination of the, during the solar eclipse of August 28-29, 1886, 363 (see Abney and Thorpe). Coronal streamers, observations made by Newcomb’s Method on the Visibility of, Eclipse of August 28-29, 1886, 382 (see A rcher). Cosmogony, on the mechanical conditions of a swarm of meteorites, and on theories of, 1 (see Darwin). Currents induced in a spherical conductor by variation of an external magnetic potential, 513 (see Lamb). 520 INDEX. -
the Papers Philosophical Transactions
ABSTRACTS / OF THE PAPERS PRINTED IN THE PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON, From 1800 to1830 inclusive. VOL. I. 1800 to 1814. PRINTED, BY ORDER OF THE PRESIDENT AND COUNCIL, From the Journal Book of the Society. LONDON: PRINTED BY RICHARD TAYLOR, RED LION COURT, FLEET STREET. CONTENTS. VOL. I 1800. The Croonian Lecture. On the Structure and Uses of the Meinbrana Tympani of the Ear. By Everard Home, Esq. F.R.S. ................page 1 On the Method of determining, from the real Probabilities of Life, the Values of Contingent Reversions in which three Lives are involved in the Survivorship. By William Morgan, Esq. F.R.S.................... 4 Abstract of a Register of the Barometer, Thermometer, and Rain, at Lyndon, in Rutland, for the year 1798. By Thomas Barker, Esq.... 5 n the Power of penetrating into Space by Telescopes; with a com parative Determination of the Extent of that Power in natural Vision, and in Telescopes of various Sizes and Constructions ; illustrated by select Observations. By William Herschel, LL.D. F.R.S......... 5 A second Appendix to the improved Solution of a Problem in physical Astronomy, inserted in the Philosophical Transactions for the Year 1798, containing some further Remarks, and improved Formulae for computing the Coefficients A and B ; by which the arithmetical Work is considerably shortened and facilitated. By the Rev. John Hellins, B.D. F.R.S. .......................................... .................................. 7 Account of a Peculiarity in the Distribution of the Arteries sent to the ‘ Limbs of slow-moving Animals; together with some other similar Facts. In a Letter from Mr. -
Back Matter (PDF)
[ 229 • ] INDEX TO THE PHILOSOPHICAL TRANSACTIONS, S e r ie s B, FOR THE YEAR 1897 (YOL. 189). B. Bower (F. 0.). Studies in the Morphology of Spore-producing Members.— III. Marattiaceae, 35. C Cheirostrobus, a new Type of Fossil Cone (Scott), 1. E. Enamel, Tubular, in Marsupials and other Animals (Tomes), 107. F. Fossil Plants from Palaeozoic Rocks (Scott), 1, 83. L. Lycopodiaceae; Spencerites, a new Genus of Cones from Coal-measures (Scott), 83. 230 INDEX. M. Marattiaceae, Fossil and Recent, Comparison of Sori of (Bower), 3 Marsupials, Tubular Enamel a Class Character of (Tomes), 107. N. Naqada Race, Variation and Correlation of Skeleton in (Warren), 135 P. Pteridophyta: Cheirostrobus, a Fossil Cone, &c. (Scott), 1. S. Scott (D. H.). On the Structure and Affinities of Fossil Plants from the Palaeozoic Ro ks.—On Cheirostrobus, a new Type of Fossil Cone from the Lower Carboniferous Strata (Calciferous Sandstone Series), 1. Scott (D. H.). On the Structure and Affinities of Fossil Plants from the Palaeozoic Rocks.—II. On Spencerites, a new Genus of Lycopodiaceous Cones from the Coal-measures, founded on the Lepidodendron Spenceri of Williamson, 83. Skeleton, Human, Variation and Correlation of Parts of (Warren), 135. Sorus of JDancea, Kaulfxissia, M arattia, Angiopteris (Bower), 35. Spencerites insignis (Will.) and S. majusculus, n. sp., Lycopodiaceous Cones from Coal-measures (Scott), 83. Sphenophylleae, Affinities with Cheirostrobus, a Fossil Cone (Scott), 1. Spore-producing Members, Morphology of.—III. Marattiaceae (Bower), 35. Stereum lvirsutum, Biology of; destruction of Wood by (Ward), 123. T. Tomes (Charles S.). On the Development of Marsupial and other Tubular Enamels, with Notes upon the Development of Enamels in general, 107. -
Bicentenary of Four Platinum Group Metals
Bicentenary of Four Platinum Group Metals PART I: RHODIUM AND PALLADIUM – EVENTS SURROUNDING THEIR DISCOVERIES By W. P. Griffith Department of Chemistry, Imperial College, London SW7 2AZ The years 2002 to 2004 mark the bicentenaries of the discoveries of rhodium, palladium, iridium and osmium. Two remarkable people were responsible for their discoveries William Hyde Wollaston (17661828) the discoverer of rhodium and palladium, and his friend Smithson Tennant (17611815) the discoverer of iridium and osmium. This and a subsequent paper will seek to retell the stories of their discoveries, and to indicate the growing usefulness of the metals throughout the nineteenth century to their importance today. In this first part we will discuss Wollaston and his discoveries. Part II, to be published in a later issue, will complete the story with Tennants discoveries of the more intractable elements iridium and osmium. In 1789, Lavoisier defined the element as: described it in an anonymous handbill in April 1803. Later that year Wollaston, still anonymously, du dernier terme auquel parvient lanalyse published the information in Nicholsons Journal (5). (the last point that analysis can reach). He listed In November 1803 he confided its discovery to his thirty-three simple substances, of which we friend, Sir Joseph Banks, the President of the would now recognise twenty-three as elements. Royal Society (6, 7). Eventually he commented on Ten of these had been known since antiquity and it in the Philosophical Transactions of the Royal Society in seventeen more were discovered before 1789, but 1804 (8) and finally published it openly in 1805 (9), the golden age of discovery and isolation of the so the year 2003 is thus reasonable to claim for the elements followed after Lavoisiers definition. -
Back Matter (PDF)
[ 387 ] INDEX TO THE PHILOSOPHICAL TRANSACTIONS, S e r ie s A, V ol. 194. A. Alloys of gold and aluminium (Heycock and Neville), 201. B. Bakerian Lecture (Tilden), 233. C. Chappuis (P.). See Habkeb and Chappuis. Children, association of defects in (Yule), 257. Cole (E. S.). See W obthinoton and Cole. Combinatorial analysis (MacMahon), 361. Conductivity of dilute solutions (W hetham), 321. E. Earthquake motion, propagation to great distances (Oldham), 135. G. Gold-aluminium alloys—melting-point curve (Heycock and Neville), 201. Gbindley (John H.). An Experimental Investigation of the Tliermo-dynamical Properties of Superheated Steam.—On the Cooling of Saturated Steam by Free Expansion, 1. H. Habkeb (J. A.) and Chapptjis (P.). A Comparison of Platinum and Gas Thermometers, including a Determination of the Boiling-point of Sulphur on the Nitrogen Scale, 37. Heycock (C. T.) and Neville (F. H.). Gold-aluminium alloys, 201. VOL. CXCIV.---- A 261. 3 D 2 388 INDEX. T. Impact with a liquid surface (W orthington and Cole), 175. Ionization of solutions at freezing point (W hetham), 321. L. Latin square problem (MacMahon), 361. M. MacMahon (P. A.). Combinatorial Analysis.—The Foundations of a New Theory, 361. Metals, specific heats of—relation to atomic weights (Tilden), 233. N. N eville (F. H.). See H eycock and N eville. O. Oldham (R. D.) On the Propagation of Earthquake Motion to Great Distances, 135. P. Perry (John). Appendix to Prof. Tilden’s Bakerian Lecture—Thermo-dynamics of a Solid, 250. R. Resistance coils—standardization o f; manganin as material for (Harker and Chappuis), 37. S. -
(1991) 17 Faraday's Election to the Royal Society
ll. t. Ch. ( 17 References and Notes ntbl pnt n th lhtt dplnt ll th prtl thr t rd fr r pprh 0. It hld b phzd tht, fr 1. H. n n, The Life and Letters of Faraday, 2 l,, vh, th t r fndntl prtl nd tht hl nn, Grn C,, ndn, 86, t r pnd f th h plx pttrn f fr 2. , ndll, Faraday as a Discoverer, nn, Grn ld b d t nt fr "ltv ffnt" nd fr th rlrt C., ndn, 868, f rtl. , Gldtn, Michael Faraday, Mlln, ndn, . A, Faraday as a Natural Philosopher, Unvrt f 82, Ch, Ch, I, , 4. Sn I rd th ppr t th ACS, I hv xnd ll th 2. Gdn nd , , d., Faraday Rediscovered, vl f th Mechanics Magazine nd d nt fnd th lttr Mlln, ndn, 8, Gldtn ntnd. t hv nfd th zn th . G, Cntr, Michael Faraday: Sandemanian and Scientist, nthr jrnl tht I hv nt dvrd. Mlln, ndn, , . S, , hpn, Michael Faraday: His Life and Work, Mlln, Yr, Y, 88, 6. Mrtn, d,, Faraday's Diary (1820-1862),7 l., ll, L, Pearce Williams is John Stambaugh Professor of the ndn, 6. History of Science at Cornell University, Ithaca, NY 14850 . Wll, Michael Faraday, A Biography, Chpn and is author of "Michael Faraday, A Biography" and "The ll, ndn, 6, Origins of Field Theory" He has also edited two volumes of 8. M. rd, Experimental Researches in Electricity, l,, "The Selected Correspondence of Michael Faraday" Qrth, ndn, 88, l , p, . 9. Ibid., l, 2, p. -
Historical Group
Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 71 Summer 2017 Registered Charity No. 207890 COMMITTEE Chairman: Dr John A Hudson ! Dr Noel G Coley (Open University) Graythwaite, Loweswater, Cockermouth, ! Dr Christopher J Cooksey (Watford, Cumbria, CA13 0SU ! Hertfordshire) [e-mail: [email protected]] ! Prof Alan T Dronsfield (Swanwick, Secretary: Prof. John W Nicholson ! Derbyshire) 52 Buckingham Road, Hampton, Middlesex, ! Prof Frank James (Royal Institution) TW12 3JG [e-mail: [email protected]] !Dr Michael Jewess (Harwell, Oxon) Membership Prof Bill P Griffith ! Dr David Leaback (Biolink Technology) Secretary: Department of Chemistry, Imperial College, ! Dr Viviane Quirke (Oxford Brookes London, SW7 2AZ [e-mail: [email protected]] ! University) Treasurer: Dr Peter J T Morris ! Prof Henry Rzepa (Imperial College) 5 Helford Way, Upminster, Essex RM14 1RJ Newsletter Dr Anna Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail: [email protected]] Newsletter Dr Gerry P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail: [email protected]] http://www.chem.qmul.ac.uk/rschg/ http://www.rsc.org/membership/networking/interestgroups/historical/index.asp 1 RSC Historical Group Newsletter No. 72 Summer 2017 Contents From the Editor 2 ROYAL SOCIETY OF CHEMISTRY HISTORICAL GROUP MEETINGS 3 Chemistry and Anaesthesia – Some Historical Perspectives 3 Royal Society of Chemistry Historical Group AGM 4 RSC News 5