George Gabriel Stokes and William Hyde Wollaston Michael W

Total Page:16

File Type:pdf, Size:1020Kb

George Gabriel Stokes and William Hyde Wollaston Michael W Downloaded from https://www.cambridge.org/core MicroscopyPioneers Pioneers in Optics: George Gabriel Stokes and William Hyde Wollaston Michael W. Davidson . IP address: National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 [email protected] 170.106.202.8 George Gabriel Stokes perhaps his most important optical research. The following is an (1819–1903) excerpt of his influential findings, which were read to the Royal , on Born in Ireland on August 13, 1819, George Stokes was Society of London on May 27, 1852: 30 Sep 2021 at 07:37:09 the youngest of six children. His father, a rector, directed his The following researches originated in a consideration of the early education before very remarkable phenomenon discovered by Sir John Herschel sending him to a school in in a solution of sulphate of quinine, and described by him Dublin. Stokes attended in two papers printed in the Philosophical Transactions for Bristol College in England, 1845, entitled “On a Case of the Superficial Colour presented , subject to the Cambridge Core terms of use, available at followed by Pembroke Col- by a Homogeneous Liquid internally colourless,” and “On lege at Cambridge Uni- the Epipolic Dispersion of Light.” The solution of quinine, versity, where he studied though it appears to be perfectly transparent and colourless, mathematics. He graduated like water, when viewed by transmitted light, exhibits in 1841 and was bestowed nevertheless in certain aspects, and under certain incidences with many honors, in- of the light, a beautiful celestial blue color. It appears from the cluding a fellowship that experiments of Sir John Herschel that the blue colour comes enabled him to remain at only from a stratum of fluid of small but finite thickness Cambridge. In 1849, Stokes adjacent to the surface by which the light enters. After passing was appointed Lucasian through this stratum, the incident light, though not sensibly Professor of Mathematics enfeebled nor colored, has lost the power of producing the and spent the rest of his life same effect, and therefore may be considered as in some way working at the prestigious or other qualitatively different from the original light. school. Throughout his career, Stokes emphasized the importance The noteworthy phenomenon observed by Stokes in https://www.cambridge.org/core/terms of experimentation and problem solving, rather than focusing quinine was that of fluorescence. Though Herschel had noted solely on pure mathematics. His practical approach served the occurrence previously, it was Stokes who revealed several him well, and Stokes made important advances in several important characteristics of the fluorophore. Most importantly, fields, most notably hydrodynamics and optics. An advocate Stokes understood that the celestial blue color was exhibited of the wave theory of light, Stokes was one of the prominent only near the surface where the light entered the relatively nineteenth-century scientists who believed in the concept of an concentrated quinine solution because the ultraviolet radiation of ether permeating space, which he supposed was necessary for the sun, or other light source, was completely absorbed by only light waves to travel. Though the existence of an ether was later a shallow layer of the substance. As he pointed out, the light was disproved, Stokes’s efforts in the area helped pioneer the science of “qualitatively different” after passing beyond this layer, or, more geodesy, the study of the Earth and its gravitational field. specifically, the ultraviolet was lacking in the remaining radiation. https://doi.org/10.1017/S1551929513000977 In hydrodynamics, Stokes investigated a number of These findings enabled Stokes to formulate what has come to be phenomena. Working in conjunction with Claude Navier, he known as Stokes Law, which holds that the wavelength of emitted developed a series of equations, known as the Navier-Stokes fluorescent light is always greater than the wavelength of the equations, which described the motion of viscous fluids. In 1850, exciting light. Closely associated to the law and frequently used for Stokes made another important contribution to the field when quantification purposes by scientists is Stokes shift, a measurement he published a treatise in which he mathematically described of the difference in wavelength or frequency between absorbed the fall of an object through a liquid. Based on his equations and and emitted quanta. the work of others in the field, Stokes was able to explain the Stokes’s early research in fluorescence served as the basis formation of clouds in the atmosphere. for much of his future work in optics. For example, he used An interest in light and its propagation led to Stokes’s many fluorescence for spectral analysis of ultraviolet radiation and experiments in optics. In 1849, he developed instruments and a eventually suggested that Fraunhofer lines were electronic method for measuring astigmatism in the eye, and by 1851 had transitions of elements that absorbed light of certain wavelengths invented a device that could be used to analyze polarized light. from the sun’s crust. However, during the second half of his It was not until 1852, however, that Stokes carried out what was career, Stokes expended an increasing amount of time carrying 46 doi:10.1017/S1551929513000977 www.microscopy-today.com • 2013 November Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.8, on 30 Sep 2021 at 07:37:09, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1551929513000977 Downloaded from MicroscopyPioneers https://www.cambridge.org/core out administrative roles in various academic and political bodies, acid. Twelve years later Wollaston provided the best contemporary leaving him with less time to perform original research. Elected physiological description of the ear. to the Royal Society in 1851, Stokes became its secretary in 1854, Wollaston formed another alliance to perform chemistry and remained in the position until he was elected its president studies and experiments, this time with Smithson Tennant. thirty years later. He also served as president of the Cambridge Platinum had long evaded the efforts of chemists to concentrate Philosophical Society for six years and acted as a member of and purify the precious element, and the pair decided to join in Parliament from 1887–1891. For his many scientific contributions, the endeavor. When Tennant first tried to produce platinum, Stokes received a number of honors before his death in 1903, the result was his discovery of the new elements iridium and including the Rumford Medal in 1852, the Copley Medal in 1893, osmium. Wollaston’s later attempt led him to the discovery . IP address: and a knighthood in 1889. of palladium and rhodium. He then invented the technique of William Hyde Wollaston powder metallurgy and produced malleable platinum in 1805. The (1766–1828) feat proved extremely profitable and provided him with financial 170.106.202.8 independence for the rest of his life. He waited until 1828, however, The quantity and diversity of William Hyde Wollaston’s to reveal the description of his secret process to the Royal Society. research made him one of the most influential scientists of his Wollaston made great strides in various disciplines of time. Although formally , on physics. In 1802, he developed the refractometer, an instrument trained as a physician, 30 Sep 2021 at 07:37:09 for determining refractive index. The device helped Wollaston Wollaston studied and verify the laws of double refraction in Iceland spar, on which made advances in many he wrote a treatise. Also in 1802, Wollaston discovered that the scientific fields, including sun’s spectrum is not a continuous gradient but is interrupted chemistry, physics, botany, by a number of dark lines. Joseph Fraunhofer made the same crystallography, optics, as- observation and precisely described the phenomenon twelve tronomy, and mineralogy. years later. In 1807, Wollaston developed a version of the camera , subject to the Cambridge Core terms of use, available at He is particularly noted for lucida, which would eventually lead to Fox Talbot’s discoveries in being the first to observe photography. dark lines in the spectrum The camera lucida largely consisted of a four-sided prism of the sun, discovering (the Wollaston prism) that has since proved indispensable in the elements palladium microscopic work. The invention was originally used as a drawing and rhodium, and prov- aid that allowed artists to draw outlines in proper perspective. A ing the elementary nature piece of paper was laid flat on a drawing board and the artist would of niobium and titanium. look through a lens mounted on a small stand that contained the Wollaston also developed prism. The observer’s eye was placed so that the pupil was half a method for making covered by the horizontal face of the prism, allowing him to see platinum metal malleable, establishing an equivalence between both the paper and a faint image of the subject, which he could galvanic and frictional electricity, and originating several then easily trace. Although the device was awkward to use, it made inventions in optics, including the Wollaston prism that is artistic renderings significantly simpler to produce and quickly fundamentally important to interferometry and differential grew in popularity. interference contrast (DIC) microscopy. As a skilled optician, Wollaston created a doublet lens https://www.cambridge.org/core/terms Wollaston was born in Norfolk, England, on August 6, consisting of two plano-convex lenses with their flat surfaces 1766, to a vicar, Francis Wollaston, and Althea Hyde. He facing the object plane. This important lens design was refined received his formal education at Charterhouse School and by Charles Chevalier in 1830 and later perfected by Joseph J. the Gonville and Caius Colleges of Cambridge University. He Lister as a high-resolution achromatic lens.
Recommended publications
  • Mister Mary Somerville: Husband and Secretary
    Open Research Online The Open University’s repository of research publications and other research outputs Mister Mary Somerville: Husband and Secretary Journal Item How to cite: Stenhouse, Brigitte (2020). Mister Mary Somerville: Husband and Secretary. The Mathematical Intelligencer (Early Access). For guidance on citations see FAQs. c 2020 The Author https://creativecommons.org/licenses/by/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1007/s00283-020-09998-6 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Mister Mary Somerville: Husband and Secretary BRIGITTE STENHOUSE ary Somerville’s life as a mathematician and mathematician). Although no scientific learned society had a savant in nineteenth-century Great Britain was formal statute barring women during Somerville’s lifetime, MM heavily influenced by her gender; as a woman, there was nonetheless a great reluctance even toallow women her access to the ideas and resources developed and into the buildings, never mind to endow them with the rights circulated in universities and scientific societies was highly of members. Except for the visit of the prolific author Margaret restricted. However, her engagement with learned institu- Cavendish in 1667, the Royal Society of London did not invite tions was by no means nonexistent, and although she was women into their hallowed halls until 1876, with the com- 90 before being elected a full member of any society mencement of their second conversazione [15, 163], which (Societa` Geografica Italiana, 1870), Somerville (Figure 1) women were permitted to attend.1 As late as 1886, on the nevertheless benefited from the resources and social nomination of Isis Pogson as a fellow, the Council of the Royal networks cultivated by such institutions from as early as Astronomical Society chose to interpret their constitution as 1812.
    [Show full text]
  • Philosophical Transactions, »
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS, » S e r ie s A, FOR THE YEAR 1898 (VOL. 191). A. Absorption, Change of, produced by Fluorescence (B urke), 87. Aneroid Barometers, Experiments on.—Elastic After-effect; Secular Change; Influence of Temperature (Chree), 441. B. Bolometer, Surface, Construction of (Petavel), 501. Brilliancy, Intrinsic, Law of Variation of, with Temperature (Petavel), 501. Burke (John). On the Change of Absorption produced by Fluorescence, 87. C. Chree (C.). Experiments on Aneroid Barometers at Kew Observatory, and their Discussion, 441. Correlation and Variation, Influence of Random Selection on (Pearson and Filon), 229. Crystals, Thermal Expansion Coefficients, by an Interference Method (Tutton), 313. D. Differential Equations of the Second Order, &c., Memoir on the Integration of; Characteristic Invariant of (Forsyth), 1. 526 INDEX. E. Electric Filters, Testing Efficiency of; Dielectrifying Power of (Kelvin, Maclean, and Galt), 187. Electricity, Diffusion of, from Carbonic Acid Gas to Air; Communication of, from Electrified Steam to Air (Kelvin, Maclean, and Galt), 187. Electrification of Air by Water Jet, Electrified Needle Points, Electrified Flame, &c., at Different Air-pressures; at Different Electrifying Potentials; Loss of Electrification (Kelvin, Maclean, and Galt), 187. Electrolytic Cells, Construction and Calibration of (Veley and Manley), 365. Emissivity of Platinum in Air and other Gases (Petavel), 501. Equations, Laplace's and other, Some New Solutions of, in Mathematical Physics (Forsyth), 1. Evolution, Mathematical Contributions to Theory o f; Influence of Random Selection on the Differentiation of Local Races (Pearson and Filon), 229. F. Filon (L. N. G.) and Pearson (Karl). Mathematical Contributions to the Theory of Evolution.—IV. On the Probable Errors of Frequency Constants and on the Influence of Random Selection on Variation and Correlation, 229.
    [Show full text]
  • Autobiography of Sir George Biddell Airy by George Biddell Airy 1
    Autobiography of Sir George Biddell Airy by George Biddell Airy 1 CHAPTER I. CHAPTER II. CHAPTER III. CHAPTER IV. CHAPTER V. CHAPTER VI. CHAPTER VII. CHAPTER VIII. CHAPTER IX. CHAPTER X. CHAPTER I. CHAPTER II. CHAPTER III. CHAPTER IV. CHAPTER V. CHAPTER VI. CHAPTER VII. CHAPTER VIII. CHAPTER IX. CHAPTER X. Autobiography of Sir George Biddell Airy by George Biddell Airy The Project Gutenberg EBook of Autobiography of Sir George Biddell Airy by George Biddell Airy This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg Autobiography of Sir George Biddell Airy by George Biddell Airy 2 License included with this eBook or online at www.gutenberg.net Title: Autobiography of Sir George Biddell Airy Author: George Biddell Airy Release Date: January 9, 2004 [EBook #10655] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK SIR GEORGE AIRY *** Produced by Joseph Myers and PG Distributed Proofreaders AUTOBIOGRAPHY OF SIR GEORGE BIDDELL AIRY, K.C.B., M.A., LL.D., D.C.L., F.R.S., F.R.A.S., HONORARY FELLOW OF TRINITY COLLEGE, CAMBRIDGE, ASTRONOMER ROYAL FROM 1836 TO 1881. EDITED BY WILFRID AIRY, B.A., M.Inst.C.E. 1896 PREFACE. The life of Airy was essentially that of a hard-working, business man, and differed from that of other hard-working people only in the quality and variety of his work. It was not an exciting life, but it was full of interest, and his work brought him into close relations with many scientific men, and with many men high in the State.
    [Show full text]
  • Further Reading: Michael Faraday
    Further Reading: Michael Faraday General reading Geoffrey Cantor, Michael Faraday: Sandemanian and Scientist. A Study of Science and Religion in the Nineteenth Century, (London, 1991). David Gooding, Experiment and the Making of Meaning: Human Agency in Scientific Observation and Experiment, (Dordrecht, 1991). David Gooding and Frank A.J.L. James (eds.), Faraday Rediscovered: Essays on the Life and Work of Michael Faraday, 1791‐1867, (London, 1985). Frank A.J.L. James (ed.), ‘The Common Purposes of Life’: Science and society at the Royal Institution of Great Britain, (Aldershot, 2002). Frank A.J.L. James, Michael Faraday: A very short Introduction. (Oxford, 2010) Alan E. Jeffreys, Michael Faraday: A List of His Lectures and Published Writings, (London, 1960). Published books by Faraday, mainly collections of papers and lecture notes, some published after his death: Chemical Manipulation, Being Instructions to Students in Chemistry. (1827). Experimental Researches in Electricity, Vol I, II& III (1837, 1844, 1855) Experimental Researches in Chemistry and Physics (1859). W. Crookes. ed. A Course of six lectures on the Various Forces of Matter (1860) W. Crookes. ed. A Course of six lectures on the Chemical History of a Candle, (1861) W. Crookes. ed. On the Various Forces in Nature. (1873) The liquefaction of gases (1896.) Published texts by Faraday The vast majority of Faraday’s manuscripts, apart from letters, have been published on microfilm and cd. Frank A.J.L. James, Guide to the Microfilm edition of the Manuscripts of Michael Faraday (1791‐1867) from the Collections of the Royal Institution, The Institution of Electrical Engineers, The Guildhall Library [and] The Royal Society, (2nd ed., Wakefield, 2001).
    [Show full text]
  • Herschel, Humboldt and Imperial Science
    CHAPTER 41 Herschel, Humboldt and Imperial Science Christopher Carter In science, the nineteenth century is known as the beginning of a systematic approach to geophysics, an age when terrestrial magnetism, meteorology and other worldwide phenomena were studied for the first time on a large scale. International efforts to study the earth’s climate, tides and magnetic field became common in the first half of this century, in large part because of the impetus given to the field by the work of Alexander von Humboldt. Due to Humboldt’s influence, a system of geomagnetic observatories soon covered most of the European continent.1 But one prominent nation remained outside of this system of observations. Despite Britain’s inherent interest in geomag- netic studies (due to its maritime concerns) the laissez-faire attitudes of the British political system weakened efforts to subsidize state funded scientific projects. Not until the 1830s did Britain join with other European nations in the geophysical arena. This cooperation was beneficial to the science, as it brought not only Britain’s considerable scientific resources to bear on the problem, but it also opened up Britain’s imperial holdings as new stations to expand the observational system. Humboldt’s 1836 letter to the Duke of Sussex (President of the Royal Society), suggesting the establishment of geomagnetic observatories in Brit- ish colonies, provides an initial point of reference for our investigations.2 However, while welcomed by the scientific community, Humboldt’s appeal 1. By 1835, continental geomagnetic stations were operating at Altona, Augsburg, Berlin, Breda, Breslau, Copenhagen, Freiburg, Goettingen, Hanover, Leipzig, Marburg, Milan, Munich, St.
    [Show full text]
  • The Partnership of Smithson Tennant and William Hyde Wollaston
    “A History of Platinum and its Allied Metals”, by Donald McDonald and Leslie B. Hunt 9 The Partnership of Smithson Tennant and William Hyde Wollaston “A quantity of platina was purchased by me a few years since with the design of rendering it malleable for the different purposes to which it is adapted. That object has now been attained. ” WILLIAM HYDE W O L L A S T O N Up to the end of the eighteenth century the attempts to produce malleable platinum had advanced mainly in the hands of practical men aiming at its pre­ paration and fabrication rather than at the solution of scientific problems. These were now to be attacked with a marked degree of success by two remarkable but very different men who first became friends during their student days at Cam ­ bridge and who formed a working partnership in 1800 designed not only for scientific purposes but also for financial reasons. They were of the same genera­ tion and much the same background as the professional scientists of London whose work was described in Chapter 8, and to whom they were well known, but with the exception of Humphry Davy they were of greater stature and made a greater advance in the development of platinum metallurgy than their predecessors. Their combined achievements over a relatively short span of years included the successful production for the first time of malleable platinum on a truly com­ mercial scale as well as the discovery of no less than four new elements contained in native platinum, a factor that was of material help in the purification and treatment of platinum itself.
    [Show full text]
  • RBRC-32 BNL-6835.4 PARITY ODD BUBBLES in HOT QCD D. KHARZEEV in This ~A~Er We Give a Pedawwicalintroduction~0 Recent Work Of
    RBRC-32 BNL-6835.4 PARITY ODD BUBBLES IN HOT QCD D. KHARZEEV RIKEN BNL Research Center, Br$ookhauenNational Laboratory, . Upton, New York 11973-5000, USA R.D. PISARSKI Department of Physics, Brookhaven National Laboratoy, Upton, New York 11973-5000, USA M.H.G. TYTGAT Seruice de Physique Th&orique, (7P 225, Uniuersitc4Libre de Bruzelles, B[ud. du !t%iomphe, 1050 Bruxelles, Belgium We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N + m. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the reconfining phrrse transition. The meet interesting possibility is if the reconfining transition, at T = Td, is of second order. Then we argue that Witten’s relation implies that the topological suscepti~lfity vanishes in a calculable fdion at Td. Ae noted by Witten, this implies that for sufficiently light quark messes, metaetable etates which act like regions of nonzero O — parity odd bubbles — can arise at temperatures just below Td. Experimentally, parity odd bubbles have dramatic signature% the rI’ meson, and especially the q meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as q + rr”ro, are allowed. The most direct way to detect parity violation is by measuring a parity odd global seymmetry for charged pions, which we define. 1 Introduction In this .-~a~er we give a Pedawwicalintroduction~0 recent work of ours? We I consider an SU(IV) gau”ge t~e~ry in the limit of a large number of colors, N + co, This is, of course, a familiar limit? We use the large N expansion I to investigate the behavior of the theory at nonzero temperature, especially for the topological susceptibility.
    [Show full text]
  • William Hyde Wollaston Eric Clark
    Downloaded from https://www.cambridge.org/core MicroscopyPioneers Pioneers in Optics: William Hyde Wollaston Eric Clark . IP address: From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 170.106.202.226 [email protected] , on William Hyde Wollaston bladder stone that he named cystic oxide, later called cystine, the 03 Oct 2021 at 02:49:34 (1766–1828) first known amino acid. Twelve years later Wollaston provided The quantity and diversity the best contemporary physiological description of the ear. of William Hyde Wollaston’s Wollaston formed another alliance to perform chemis- research made him one of the try studies and experiments, this time with Smithson Tennant. most influential scientists of his Platinum had long evaded the efforts of chemists to concentrate , subject to the Cambridge Core terms of use, available at time. Although formally trained and purify the precious element, and the pair decided to join in as a physician, Wollaston studied the endeavor. When Tennant first tried to produce platinum, the and made advances in many sci- result was his discovery of the new elements iridium and osmium. entific fields, including chemistry, Wollaston’s later attempt led him to the discovery of palladium physics, botany, crystallography, and rhodium. He then invented the technique of powder metal- optics, astronomy, and mineral- lurgy and produced malleable platinum in 1805. The feat proved ogy. He is particularly noted for extremely profitable and provided him with financial indepen- being the first to observe dark lines dence for the rest of his life.
    [Show full text]
  • Philosophical Transactions (A)
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS (A) FOR THE YEAR 1889. A. A bney (W. de W.). Total Eclipse of the San observed at Caroline Island, on 6th May, 1883, 119. A bney (W. de W.) and T horpe (T. E.). On the Determination of the Photometric Intensity of the Coronal Light during the Solar Eclipse of August 28-29, 1886, 363. Alcohol, a study of the thermal properties of propyl, 137 (see R amsay and Y oung). Archer (R. H.). Observations made by Newcomb’s Method on the Visibility of Extension of the Coronal Streamers at Hog Island, Grenada, Eclipse of August 28-29, 1886, 382. Atomic weight of gold, revision of the, 395 (see Mallet). B. B oys (C. V.). The Radio-Micrometer, 159. B ryan (G. H.). The Waves on a Rotating Liquid Spheroid of Finite Ellipticity, 187. C. Conroy (Sir J.). Some Observations on the Amount of Light Reflected and Transmitted by Certain 'Kinds of Glass, 245. Corona, on the photographs of the, obtained at Prickly Point and Carriacou Island, total solar eclipse, August 29, 1886, 347 (see W esley). Coronal light, on the determination of the, during the solar eclipse of August 28-29, 1886, 363 (see Abney and Thorpe). Coronal streamers, observations made by Newcomb’s Method on the Visibility of, Eclipse of August 28-29, 1886, 382 (see A rcher). Cosmogony, on the mechanical conditions of a swarm of meteorites, and on theories of, 1 (see Darwin). Currents induced in a spherical conductor by variation of an external magnetic potential, 513 (see Lamb). 520 INDEX.
    [Show full text]
  • the Papers Philosophical Transactions
    ABSTRACTS / OF THE PAPERS PRINTED IN THE PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON, From 1800 to1830 inclusive. VOL. I. 1800 to 1814. PRINTED, BY ORDER OF THE PRESIDENT AND COUNCIL, From the Journal Book of the Society. LONDON: PRINTED BY RICHARD TAYLOR, RED LION COURT, FLEET STREET. CONTENTS. VOL. I 1800. The Croonian Lecture. On the Structure and Uses of the Meinbrana Tympani of the Ear. By Everard Home, Esq. F.R.S. ................page 1 On the Method of determining, from the real Probabilities of Life, the Values of Contingent Reversions in which three Lives are involved in the Survivorship. By William Morgan, Esq. F.R.S.................... 4 Abstract of a Register of the Barometer, Thermometer, and Rain, at Lyndon, in Rutland, for the year 1798. By Thomas Barker, Esq.... 5 n the Power of penetrating into Space by Telescopes; with a com­ parative Determination of the Extent of that Power in natural Vision, and in Telescopes of various Sizes and Constructions ; illustrated by select Observations. By William Herschel, LL.D. F.R.S......... 5 A second Appendix to the improved Solution of a Problem in physical Astronomy, inserted in the Philosophical Transactions for the Year 1798, containing some further Remarks, and improved Formulae for computing the Coefficients A and B ; by which the arithmetical Work is considerably shortened and facilitated. By the Rev. John Hellins, B.D. F.R.S. .......................................... .................................. 7 Account of a Peculiarity in the Distribution of the Arteries sent to the ‘ Limbs of slow-moving Animals; together with some other similar Facts. In a Letter from Mr.
    [Show full text]
  • The Astronomy of Sir John Herschel
    Introduction m m m m m m m m m m m Herschel’s Stars The Stars flourish, and in spite of all my attempts to thin them and . stuff them in my pockets, continue to afford a rich harvest. John Herschel to James Calder Stewart, July 17, 1834 n 2017, TRAPPIST-1, a red dwarf star forty light years from Earth, made headlines as the center of a system with not one or two but Iseven potentially habitable exoplanets.1 This dim, nearby star offers only the most recent example of verification of the sort of planetary system common in science fiction: multiple temperate, terrestrial worlds within a single star’s family of planets. Indeed, this discovery followed the an- nouncement only a few years earlier of the very first Earth-sized world orbiting within the habitable zone of its star, Kepler-186, five hundred light years from Earth.2 Along with other ongoing surveys and advanced instruments, the Kepler mission, which recently added an additional 715 worlds to a total of over five thousand exoplanet candidates, is re- vealing a universe in which exoplanets proliferate, Earth-like worlds are common, and planets within the habitable zone of their host star are far from rare.3 Exoplanetary astronomy has developed to the point that as- tronomers can not only detect these objects but also describe the phys- ical characteristics of many with a high degree of confidence and pre- cision, gaining information on their composition, atmospheric makeup, temperature, and even weather patterns. 3 © 2018 University of Pittsburgh Press. All rights reserved.
    [Show full text]
  • Camera Obscura Vs
    MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2006 PREPRINT 307 Erna Fiorentini Camera Obscura vs. Camera Lucida – Distinguishing Early Nineteenth Century Modes of Seeing TABLE OF CONTENTS 1. Distinguishing Technologies: a Box and a Prism 5 2. Untangling Stories: an Old and a New Device 6 3. Parting Fortunes: the New Eclipses the Old 10 4. Diverging Necessities: Old and New Demands 12 5. Discerning Visual Modalities: Projective vs. Prismatic Seeing 20 5.1. Accuracy and Perceptual Experience: Criteria in Comparison 21 5.1.1. Degrees of ‘Truth to Nature’ 21 5.1.2. Degrees of Perceptual Experience 27 5.2. Projective vs. Prismatic: Optical Principles in Comparison 29 6. An Epilogue: the ‘Prismatic’ as the Camera-Lucida-Mode of Seeing 37 CAMERA OBSCURA VS. CAMERA LUCIDA 1 DISTINGUISHING EARLY NINETEENTH CENTURY MODES OF SEEING Erna Fiorentini If we look at Fig. 1, we see a painter holding an inspired pose while beholding and recording the landscape. Although he appears to beindulging in purely aesthetic rapture, he is equipped with optical drawing devices and with many other instruments for observation, tracing and measuring. A Camera Lucida is arrayed on a tripod on the right, surrounded by a telescope, a setsquare, a ruler, a pair of compasses and other devices, while in the background a tent-type Camera Obscura is in use. This motif belonged to Carl Jacob Lindström’s well-known satiric, illustrated book I Stranieri in Italia, printed and distributed in Naples in 1830.2 Moreover, Lindström produced countless further exemplars of this scene in watercolour, engraving and lithography.
    [Show full text]