Centropomidae Poey, 1867 - Snooks [=?Centropomatei, Centropomi, Centropomatida, Oxylabracidae] Notes: ?Centropomatei Gravenhorst, 1843:348 [Ref

Total Page:16

File Type:pdf, Size:1020Kb

Centropomidae Poey, 1867 - Snooks [=?Centropomatei, Centropomi, Centropomatida, Oxylabracidae] Notes: ?Centropomatei Gravenhorst, 1843:348 [Ref FAMILY Centropomidae Poey, 1867 - snooks [=?Centropomatei, Centropomi, Centropomatida, Oxylabracidae] Notes: ?Centropomatei Gravenhorst, 1843:348 [ref. 32622] (family) ?? Centropomus [genus not mentioned, probably not based on Centropomus, not available] Centropomi van der Hoeven, 1855:412 [ref. 2182] (no family-group name) Centropomatida Poey, 1867:205 [ref. 32247] (family) Centropomus [also as Centropomatidi in Poey 1868:280 [ref. 3505]; stem corrected to Centropom- by Gill 1872:11 [ref. 26254], confirmed by Jordan 1923a:190 [ref. 2421], by Nelson 1976:219 [ref. 32838] and by Nelson 2006:342 [ref. 32486]; senior objective synonym of Oxylabracidae Jordan & Thompson, 1905] Oxylabracidae Jordan & Thompson, 1905:239 [ref. 2538] (family) Oxylabrax [also Jordan 1905:319 [ref. 31955]; junior objective synonym of Centropomatida Poey, 1867, invalid, Article 61.3.2] GENUS Centropomus Lacepede, 1802 - snooks [=Centropomus Lacepède [B. G. E.], 1802:248, Macrocephalus Bleeker [P.] (ex Browne), 1876:336, Oxylabrax Bleeker [P.], 1876:264, Platycephalus Miranda Ribeiro [A. de], 1902:3, 7] Notes: [ref. 4929]. Masc. Centropomus undecimradiatus Lacepède, 1802 (= Sciaena undecimalis Bloch 1792). Type by subsequent designation. Type is Sciaena undecimalis Bloch, renamed by Lacepède as S. undecimradiatus. Type designated by Gill 1861:48 [ref. 1768]. Spelled Centropoma by Duméril 1806:333 [ref. 1151]. •Valid as Centropomus Lacepède, 1802 -- (Fraser 1968 [ref. 21275], Rivas 1986:579 [ref. 5210], Castro-Aguirre et al. 1999:250 [ref. 24550], Orrell 2003:1287 [ref. 27053], Li et al. 2011:463 [ref. 32081]). Current status: Valid as Centropomus Lacepède, 1802. Centropomidae. (Macrocephalus) [ref. 448]. Masc. Sciaena undecimalis Bloch, 1792. Not available, name published in synonymy of Oxylabrax Bleeker; apparently never made available. •In the synonymy of Centropomus Lacepède, 1802. Current status: Synonym of Centropomus Lacepède, 1802. Centropomidae. (Oxylabrax) [ref. 447]. Masc. Sciaena undecimalis Bloch, 1792. Type by being a replacement name. Unneeded replacement for Centropomus Lacepède, 1802. •Objective synonym of Centropomus Lacepède, 1802 -- (Rivas 1986:587 [ref. 5210], Castro-Aguirre et al. 1999:250 [ref. 24550]). Current status: Synonym of Centropomus Lacepède, 1802. Centropomidae. (Platycephalus) [ref. 3710]. Masc. Sciaena undecimalis Bloch, 1792. Apparently not an original description. Miranda Ribeiro used Platycephalus Bloch & Schneider, 1801:58 [ref. 471] for Centropomus undecimalis, but Platycephalus Bloch, 1795 (in Platycephalidae) predates use by Bloch & Schneider 1801. •In the synonymy of Centropomus Lacepède, 1802. Current status: Synonym of Centropomus Lacepède, 1802. Centropomidae. Species Centropomus armatus Gill, 1863 - armed snook [=Centropomus armatus Gill [T. N.], 1863:163, Centropomus atridorsalis Regan [C. T.], 1903:627, Centropomus brevis Günther [A.], 1864:145] Notes: [Proceedings of the Academy of Natural Sciences of Philadelphia v. 15; ref. 1681] Panama Bay, (Pacific) Panama. Current status: Valid as Centropomus armatus Gill, 1863. Centropomidae. Distribution: Eastern Pacific: Mexico to Ecuador. Habitat: brackish, marine. (atridorsalis) [Annals and Magazine of Natural History (Series 7) v. 12 (no. 72) (art. 64); ref. 13401] Río Vaqueria near La Tola, northwestern Ecuador. Current status: Synonym of Centropomus armatus Gill, 1863. Centropomidae. Habitat: brackish, marine. (brevis) [Proceedings of the Zoological Society of London 1864 (pt 1); ref. 13930] Tropical America, specific locality unknown. Current status: Synonym of Centropomus armatus Gill, 1863. Centropomidae. Habitat: brackish, marine. Species Centropomus ensiferus Poey, 1860 - swordspine snook [=Centropomus ensiferus Poey [F.], 1860:122, Pl. 12 (fig. 1), Centropomus affinis Steindachner [F.], 1864:37, Centropomus macrochirus Poey [F.], 1955:245, Centropomus scaber Bocourt [F.], 1868:90] Notes: [Memorias sobre la historia natural de la Isla de Cuba v. 2; ref. 3499] Cuba. Current status: Valid as Centropomus ensiferus Poey, 1860. Centropomidae. Distribution: Western Atlantic: Florida (U.S.A.) to Central America and to Brazil. Habitat: freshwater, brackish, marine. (affinis) [Anzeiger der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftlichen Classe v. 1 (no. 5); ref. 21705] Demerara, Guyana; Rio de Janeiro and Cajutuba, Brazil. Current status: Synonym of Centropomus ensiferus Poey, 1860. Centropomidae. Habitat: freshwater, brackish, marine. (macrochirus) [Ictiologia Cubana. Posthumous transcription of original unpublished manuscript (1884) by M. Sánchez Roig and F. Gómez de la Maza v. 1; ref. 22481] Cuba. Current status: Synonym of Centropomus ensiferus Poey, 1860. Centropomidae. Habitat: freshwater, brackish, marine. (scaber) [Annales des Sciences Naturelles, Paris (Zoologie et Paléontologie) (Sér. 5) v. 9; ref. 16972] Belize. Current status: Synonym of Centropomus ensiferus Poey, 1860. Centropomidae. Habitat: freshwater, brackish, marine. Species Centropomus medius Gunther, 1864 - blackfin snook [=Centropomus medius Günther [A.], 1864:144, Centropomus grandoculatus Jenkins [O. P.] & Evermann [B. W.], 1889:139] Notes: [Proceedings of the Zoological Society of London 1864 (pt 1); ref. 13930] Chiapam, Guatemala. Current status: Valid as Centropomus medius Günther, 1864. Centropomidae. Distribution: Eastern Pacific: Baja California to Colombia. Habitat: freshwater, brackish, marine. (grandoculatus) [Proceedings of the United States National Museum v. 11 (no. 698); ref. 2342] Guaymas, Sonora, western Mexico. Current status: Synonym of Centropomus medius Günther, 1864. Centropomidae. Habitat: freshwater, brackish, marine. Species Centropomus mexicanus Bocourt, 1868 - largescale fat snook [=Centropomus mexicanus Bocourt [F.], 1868:90, Centropomus constantinus Jordan [D. S.] & Starks [E. C.], in Jordan & Evermann, 1896:1125, Centropomus gabbi Fowler [H. W.], 1906:423, Fig. 1, Centropomus pellegrini Puyo [J.], 1936:213, Fig. 41] Notes: [Annales des Sciences Naturelles, Paris (Zoologie et Paléontologie) (Sér. 5) v. 9; ref. 16972] Oaxaca, Mexico. Current status: Valid as Centropomus mexicanus Bocourt, 1868. Centropomidae. Distribution: Western Atlantic: Florida (U.S.A.) and the Caribbean to Brazil. Habitat: brackish, marine. (constantinus) [Bulletin of the United States National Museum No. 47; ref. 2443] Bahia, Brazil. Current status: Synonym of Centropomus mexicanus Bocourt, 1868. Centropomidae. Habitat: brackish, marine. (gabbi) [Proceedings of the Academy of Natural Sciences of Philadelphia v. 58; ref. 15658] Eastern Dominican Republic. Current status: Synonym of Centropomus mexicanus Bocourt, 1868. Centropomidae. Habitat: brackish, marine. (pellegrini) [Bulletin de la Société d'Histoire Naturelle de Toulouse v. 70; ref. 15298] Marais Leolong, Cayenne, French Guiana. Current status: Synonym of Centropomus mexicanus Bocourt, 1868. Centropomidae. Habitat: brackish, marine. Species Centropomus nigrescens Gunther, 1864 - black snook [=Centropomus nigrescens Günther [A.], 1864:144] Notes: [Proceedings of the Zoological Society of London 1864 (pt 1); ref. 13930] Chiapam, Guatemala. Current status: Valid as Centropomus nigrescens Günther, 1864. Centropomidae. Distribution: Eastern Pacific: Mexico to Colombia. Habitat: freshwater, brackish, marine. Species Centropomus parallelus Poey, 1860 - fat snook [=Centropomus parallelus Poey [F.], 1860:120, Pl. 13 (figs. 2, 3), Centropomus heringi Fowler [H. W.], 1906:425, Fig. 2] Notes: [Memorias sobre la historia natural de la Isla de Cuba v. 2; ref. 3499] Havana, Cuba. Current status: Valid as Centropomus parallelus Poey, 1860. Centropomidae. Distribution: Western Atlantic: Florida (U.S.A.) to Central America and to Brazil. Habitat: freshwater, brackish, marine. (heringi) [Proceedings of the Academy of Natural Sciences of Philadelphia v. 58; ref. 15658] Suriname. Current status: Synonym of Centropomus parallelus Poey, 1860. Centropomidae. Habitat: freshwater, brackish, marine. Species Centropomus pectinatus Poey, 1860 - tarpon snook [=Centropomus pectinatus Poey [F.], 1860:121, Pl. 13 (fig. 6), Centropomus cuvieri Bocourt [F.], 1868:91, Centropomus pedimacula Poey [F.], 1860:122, Pl. 13 (figs. 4-5)] Notes: [Memorias sobre la historia natural de la Isla de Cuba v. 2; ref. 3499] Havana, Cuba. Current status: Valid as Centropomus pectinatus Poey, 1860. Centropomidae. Distribution: Western Atlantic: Florida (U.S.A.) to Central America and to Brazil. Habitat: freshwater, brackish, marine. (cuvieri) [Annales des Sciences Naturelles, Paris (Zoologie et Paléontologie) (Sér. 5) v. 9; ref. 16972] Santo Domingo. Current status: Synonym of Centropomus pectinatus Poey, 1860. Centropomidae. Habitat: freshwater, brackish, marine. (pedimacula) [Memorias sobre la historia natural de la Isla de Cuba v. 2; ref. 3499] Cienfuegos, Cuba. Current status: Synonym of Centropomus pectinatus Poey, 1860. Centropomidae. Habitat: freshwater, brackish, marine. Species Centropomus poeyi Chavez, 1961 - Mexican snook [=Centropomus poeyi Chávez [H.], 1961:75, Fig. 1] Notes: [Ciencia (Mexico City) v. 21 (no. 2); ref. 9305] Laguna de Alvarado, Veracruz, Mexico, Gulf of Mexico. Current status: Valid as Centropomus poeyi Chávez, 1961. Centropomidae. Distribution: Western Atlantic: Caribbean. Habitat: freshwater, brackish, marine. Species Centropomus robalito Jordan & Gilbert, 1882 - yellowfin snook [=Centropomus robalito Jordan [D. S.] & Gilbert [C. H.], 1882:462] Notes: [Proceedings of the United States National Museum v. 4 (no. 254); ref.
Recommended publications
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Belonidae Bonaparte 1832 Needlefishes
    ISSN 1545-150X California Academy of Sciences A N N O T A T E D C H E C K L I S T S O F F I S H E S Number 16 September 2003 Family Belonidae Bonaparte 1832 needlefishes By Bruce B. Collette National Marine Fisheries Service Systematics Laboratory National Museum of Natural History, Washington, DC 20560–0153, U.S.A. email: [email protected] Needlefishes are a relatively small family of beloniform fishes (Rosen and Parenti 1981 [ref. 5538], Collette et al. 1984 [ref. 11422]) that differ from other members of the order in having both the upper and the lower jaws extended into long beaks filled with sharp teeth (except in the neotenic Belonion), the third pair of upper pharyngeal bones separate, scales on the body relatively small, and no finlets following the dorsal and anal fins. The nostrils lie in a pit anterior to the eyes. There are no spines in the fins. The dorsal fin, with 11–43 rays, and anal fin, with 12–39 rays, are posterior in position; the pelvic fins, with 6 soft rays, are located in an abdominal position; and the pectoral fins are short, with 5–15 rays. The lateral line runs down from the pectoral fin origin and then along the ventral margin of the body. The scales are small, cycloid, and easily detached. Precaudal vertebrae number 33–65, caudal vertebrae 19–41, and total verte- brae 52–97. Some freshwater needlefishes reach only 6 or 7 cm (2.5 or 2.75 in) in total length while some marine species may attain 2 m (6.5 ft).
    [Show full text]
  • Monophyly and Interrelationships of Snook and Barramundi (Centropomidae Sensu Greenwood) and five New Markers for fish Phylogenetics ⇑ Chenhong Li A, , Betancur-R
    Molecular Phylogenetics and Evolution 60 (2011) 463–471 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Monophyly and interrelationships of Snook and Barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics ⇑ Chenhong Li a, , Betancur-R. Ricardo b, Wm. Leo Smith c, Guillermo Ortí b a School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA b Department of Biological Sciences, The George Washington University, Washington, DC 200052, USA c The Field Museum, Department of Zoology, Fishes, 1400 South Lake Shore Drive, Chicago, IL 60605, USA article info abstract Article history: Centropomidae as defined by Greenwood (1976) is composed of three genera: Centropomus, Lates, and Received 24 January 2011 Psammoperca. But composition and monophyly of this family have been challenged in subsequent Revised 3 May 2011 morphological studies. In some classifications, Ambassis, Siniperca and Glaucosoma were added to the Accepted 5 May 2011 Centropomidae. In other studies, Lates + Psammoperca were excluded, restricting the family to Available online 12 May 2011 Centropomus. Recent analyses of DNA sequences did not solve the controversy, mainly due to limited taxonomic or character sampling. The present study is based on DNA sequence data from thirteen Keywords: genes (one mitochondrial and twelve nuclear markers) for 57 taxa, representative of all relevant Centropomidae species. Five of the nuclear markers are new for fish phylogenetic studies. The monophyly of Centrop- Lates Psammoperca omidae sensu Greenwood was supported by both maximum likelihood and Bayesian analyses of a Ambassidae concatenated data set (12,888 bp aligned). No support was found for previous morphological hypothe- Niphon spinosus ses suggesting that ambassids are closely allied to the Centropomidae.
    [Show full text]
  • Feeding Habits of Centropomus Undecimalis (Actinopterygii, Centropomidae) in the Parnaíba River Delta, Piauí, Brazil
    Brazilian Journal of Development 39536 ISSN: 2525-8761 Feeding habits of Centropomus undecimalis (Actinopterygii, Centropomidae) in the Parnaíba river delta, Piauí, Brazil Alimentação do Centropomus undecimalis (Actinopterygii, Centropomidae) no estuário do delta do rio Parnaíba, Piauí, Brasil DOI:10.34117/bjdv7n4-423 Recebimento dos originais: 07/03/2021 Aceitação para publicação: 16/04/2021 José Rafael Soares Fonseca Doutorando em Recursos Pesqueiros e Engenharia de Pesca Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca, Centro de Engenharias e Ciências Exatas, Universidade Estadual do Oeste do Paraná – UNIOESTE, Rua da Faculdade, 645, 85903-000 – Toledo– PR – Brasil E-mail: [email protected] Cezar Augusto Freire Fernandes Doutorado em Recursos Pesqueiros e Aquicultura Universidade Federal do Delta do Parnaíba – UFDPAR, Av. São Sebastião, 2819 Bairro Nossa Senhora de Fátima– CEP: 64.202-020 – Parnaíba – PI – Brasil E-mail: [email protected] Francisca Edna de Andrade Cunha Doutorado em Ciências Biológicas Universidade Federal do Delta do Parnaíba – UFDPAR, Av. São Sebastião, 2819 Bairro Nossa Senhora de Fátima– CEP: 64.202-020 – Parnaíba – PI – Brasil E-mail: [email protected] ABSTRACT The objective of this work was to evaluate the feeding of Centropomus undecimalis in the estuary of the Parnaíba river delta, with emphasis on diet composition during seasonal variations between dry and rainy seasons. The samples were obtained from artisanal fishing with gillnets, from June 2014 - July 2015. The individuals were measured, weighed and dissected to remove the stomachs. The fish diet was analyzed using the methods: Gravimetric, Frequency of Occurrence, Dominance of the item and Food Index.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes.
    [Show full text]
  • And Platycephalus Indicus (Teleostei: Platycephalidae) in the Mediterranean Sea
    BioInvasions Records (2012) Volume 1, Issue 1: 53–57 doi: http://dx.doi.org/10.3391/bir.2012.1.1.12 Open Access © 2012 The Author(s). Journal compilation © 2012 REABIC Aquatic Invasions Records Recent evidence on the presence of Heniochus intermedius (Teleostei: Chaetodontidae) and Platycephalus indicus (Teleostei: Platycephalidae) in the Mediterranean Sea Michel Bariche Department of Biology, Faculty of Arts and Sciences, American University of Beirut, PO Box 11-0236, Beirut, Lebanon E-mail: [email protected] Received: 4 January 2012 / Accepted: 23 February 2012 / Published online: 7 March 2012 Handling editor: Ernesto Azzurro, ISPRA, Institute for Environmental Protection and Research, Italy Abstract A second specimen of the Red Sea bannerfish Heniochus intermedius Steindachner, 1893 and a specimen of the Bartail flathead Platycephalus indicus (Linnaeus, 1758) have been recently collected from Lebanon (eastern Mediterranean). The two alien species constitute very rare occurrences in the Mediterranean; the first record of H. intermedius dates back to 2002 and only a few P. indicus individuals were collected between the 1950s and 1970s. Their presence in the Mediterranean is discussed as well as possible future trends in light of recent environmental changes. Key words: Heniochus intermedius, Platycephalus indicus, alien species, Lessepsian migration, Lebanon, eastern Mediterranean Introduction associated to coral reefs (Randall 1983; CIESM 2009). Butterflyfishes (Chaetodontidae) are marine Flatheads (Platycephalidae) are large bottom fishes that can be easily recognized by a deep dwelling fishes found mostly in the Indo-Pacific compressed body, small terminal and protractile area. They are characterized by an elongate mouth and bright coloration patterns (Randall body, a depressed head and a large mouth, with 1983; Nelson 2006).
    [Show full text]
  • Phylogeographic Analysis of the Genus Platycephalus Along the Coastline of the Northwestern Pacific Inferred by Mitochondrial DN
    Cheng et al. BMC Evolutionary Biology (2019) 19:159 https://doi.org/10.1186/s12862-019-1477-1 RESEARCH ARTICLE Open Access Phylogeographic analysis of the genus Platycephalus along the coastline of the northwestern Pacific inferred by mitochondrial DNA Jie Cheng1,2, Zhiyang Wang3, Na Song4, Takashi Yanagimoto5 and Tianxiang Gao6* Abstract Background: Flathead fishes of the genus Platycephalus are economically important demersal fishes that widely inhabit the continental shelves of tropical and temperate sea waters. This genus has a long history of taxonomic revision, and recently four Platycephalus species (Platycephalus sp. 1, Platycephalus sp. 2, P. indicus, and P. cultellatus) in the northwestern Pacific Ocean (NWP) have been recognized and redescribed. However, many aspects of their systematics and evolutionary history are unclear. Results: A total of 411 individuals were sampled from 22 different sites across their distributions in the NWP. Three mitochondrial loci were sequenced to clarify the phylogeny and phylogeographic history of the fishes. The results showed significant differentiation of four Platycephalus species in the NWP with well-supported clades in which Platycephalus sp. 1 and Platycephalus sp. 2 were the closest, clustered with P. cultellatus,while their genetic relationship with P. indicus was the furthest. There were significant genealogical branches corresponding to P. indicus but not to other Platycephalus lineages. We further examined the phylogeographic patterns of 16 Platycephalus sp. 1 populations along the coastlines of China and Japan. A total of 69 haplotypes were obtained, with 23 shared among populations. One dominant haplotypic group, with a modest lineage structure and low levels of haplotype diversity and nucleotide diversity, was observed among Platycephalus sp.
    [Show full text]
  • Do Coastal Land Alterations Impact Estuarine Food Webs?
    Do coastal land alterations impact estuarine food webs? Aaron J. Adams Center for Fisheries Enhancement Fisheries Habitat Ecology Program Mote Marine Laboratory Charlotte Harbor Field Station P.O. Box 2197 Pineland, FL 33945 Phone: 239-283-1622 Fax: 239-283-2466 Email: [email protected] R. Kirby Wolfe Center for Fisheries Enhancement Fisheries Habitat Ecology Program Mote Marine Laboratory Charlotte Harbor Field Station P.O. Box 2197 Pineland, FL 33945 Craig A. Layman Marine Sciences Program Department of Biological Sciences Florida International University 3000 NE 151st Street North Miami, FL 33181 Phone: 786-390-0578 Email: [email protected] Abstract In estuarine ecosystems, maintaining the proper balance of freshwater and marine inputs is essential for proper ecosystem function, and anthropogenic alterations of this balance (namely, freshwater flows into estuaries) are of particular concern to resource managers. Differences in freshwater flows and associated salinity patterns can influence biodiversity or the relative abundance of organisms. Freshwater flows are especially important to small tributaries that transverse the margin between uplands and estuaries and are important habitats for many young- of-the-year marine finfish and shellfish. Little is known, however, about the effects of these habitat alterations on trophic ecology of coastal fishes. We used stomach contents and stable isotope analysis (δ13C, δ15N) to examine the effects of freshwater flow alterations on the trophic ecology of juvenile common snook (Centropomus undecimalis) in four mangrove creeks with different freshwater flow regimes: two creeks considered ‘less degraded’ (their drainages are largely intact) and two creeks are ‘more degraded’ (drainages have been altered by development and drainage ditches).
    [Show full text]
  • Hábitos Alimentarios De Los Jóvenes De Centropomus Robalito (Centropomidae: Actinopterygii) En La Laguna De Barra De Navidad, Jalisco, México
    Hábitos alimentarios de los jóvenes de Centropomus robalito (Centropomidae: Actinopterygii) en la laguna de Barra de Navidad, Jalisco, México Juan Ramón Flores-Ortega, Gaspar González-Sansón*, Consuelo Aguilar-Betancourt, Daniel Kosonoy-Aceves, Alina Venegas-Muñoz, Gabriela Lucano-Ramírez & Salvador Ruiz-Ramírez Departamento de Estudios para el Desarrollo Sustentable de la Zona Costera, Gómez Farías 82, San Patricio-Melaque, Cihuatlán, Jalisco, CP 48980; [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] * Correspondencia Recibido 01-XII-2014. Corregido 20-V-2015. Aceptado 22-VI-2015. Abstract: Feeding habits of juvenile Centropomus robalito (Centropomidae: Actinopterygii) in Barra de Navidad lagoon, Mexican Central Pacific. In America, the species of genus Centropomus (Snooks) are a key component of the tropical estuarine ichthyofauna. These species use brackish water bodies mainly as nursery areas, although adult specimens are also present. The Yellow-fin snook Centropomus robalito (Jordan & Gilbert, 1882) is one of the most abundant species in the coastal wetlands of the Mexican Central Pacific but there is very few data on its biology. The goal of this research was to analyze the diet composition of juvenile specimens of C. robalito and to study its ontogenic changes in Barra de Navidad coastal lagoon located in the Mexican Central Pacific. Specimens were collected between January 2011 and March 2012 using several fishing gears (cast net, gillnets and beach purse seine). A total of 681 juvenile fish were obtained and classified in three size- classes (small < 69 mm TL; intermediate 70-139 mm TL; large ≥ 140 mm TL) to analyze stomach contents.
    [Show full text]
  • And Centropomus Parallelus (Poey, 1860) in Two Tropical Estuaries in Northeastern Brazil
    Feeding ecology of Centropomus undecimalis (Bloch, 1792) and Centropomus parallelus (Poey, 1860) in two tropical estuaries in Northeastern Brazil ALEX SOUZA LIRA*, FLÁVIA LUCENA FRÉDOU, ANDRÉA PONTES VIANA, LEANDRO NOLÉ EDUARDO & THIERRY FRÉDOU Universidade Federal Rural de Pernambuco. Av. Dom Manuel de Medeiros, s/n, Departamento de Pesca e Aquicultura, Dois Irmãos, Recife, PE, Brasil. CEP: 52171-900. Corresponding author: [email protected] Abstract: This study provides information on the feeding habitats of Centropomus undecimalis and Centropomus parallelus in two estuaries of Pernambuco, Northeast Brazil. Specimens were collected every three months from February 2013 to June 2014 in the estuary of Sirinhaém River (south coast) and the Estuarine Complex of Santa Cruz Channel (north coast). To access diet composition we used frequency of occurrence %Fo; numerical frequency %N and weight percentage %W. Multivariate analysis of MDS, ANOSIM and SIMPER were used to evaluate the similarity and differences of the diet between species and regions. A total of 390 individuals were evaluated. The results indicate that the Estuary of Sirinhaém River and the Estuarine Complex of Santa Cruz Channel are used as a feeding ground by the Centropomus species. The diet of the C. undecimalis and C.parallelus in both areas was based primarily on Crustaceans - Decapoda and teleosts. C. undecimalis appeared as a predator with piscivorous tendency in the two study regions, whereas C. parallelus was classified as zoobentivorous in the south coast and as piscivorous in the north coast. Key-words: Estuaries, overlap, trophic ecology, snook Resumo: Ecologia alimentar do Centropomus undecimalis (BLOCH, 1792) and Centropomus parallelus (POEY, 1860) em dois estuários tropicais no Nordeste do Brasil.
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]