Optimisation of Common Snook Centropomus Undecimalis Broodstock Management

Total Page:16

File Type:pdf, Size:1020Kb

Optimisation of Common Snook Centropomus Undecimalis Broodstock Management Optimisation of common snook Centropomus undecimalis broodstock management NICOLE RENEE RHODY May 2014 A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF AQUACULTURE UNIVERSITY OF STIRLING I Nicole Rhody DECLARATION This thesis has been composed in its entirety by the candidate. Except where specifically acknowledged, the work described in this thesis has been conducted independently and has not been submitted for any other degree. CANDIDATE NAME: .............................................................. SIGNATURE: ............................................................... DATE: ................................................................ SUPERVISOR NAME: ............................................................... SIGNATURE: ................................................................ DATE: ................................................................ II Nicole Rhody ACKNOWLEDGEMENTS First and foremost I would like to thank my principle supervisor, Dr. Hervé Migaud, for his constant support, direction and encouragement throughout this venture. I am particularly grateful for the guidance, scientific prospective and constructive criticism you provided along the way. To Dr. Kevan Main, I would like to express my sincerest gratitude for her unwavering commitment to helping me on both a personal and professional level to accomplish the work presented in this dissertation. I would also like to convey my appreciation to Drs. Andrew Davie, John Taggart, Harry Grier, Nilli Zmora and Cecilia Puchulutegui for their instruction and seemingly endless patience in the laboratory. I thank you all for the countless hours you spent sharing your knowledge and expertise, as well as the time you dedicated to improving each manuscript. Special thanks go to my friends, colleagues and fellow “summer campers” at Mote Marine Laboratory in particular, Dr. Nathan Brennan, Paula Caldentey, Carole Neidig, Michael Nystrom, Matthew Resley and Dr. Carlos Yanes-Roca. All your help and valuable input is what made this work a success. To Holly Rolls, Marion Hauville and Catherine Hayslip, I want to thank each of you for your assistance with field collections and willingness to share your samples and perspectives on snook research. Additionally, I would like to thank Drs. Janina Costa, Matthew Sprague, Monica Betancor, Eric Leclercq and Sara Picòn-Camacho, not only for their friendship, but for giving me a place to stay during my time in Stirling. Thanks to your kindness and hospitality I always felt I had a “home away from home”. Last but not least, I want to give a special thank you to Paul West. Although many people encouraged me throughout this work, you were there from the beginning constantly cheering me on all the way to the finish line and for that I will always be grateful. III Nicole Rhody TABLE OF CONTENTS Title page ………………………………………………………………..........................I Declaration ………………………………………………………………......................II Acknowledgements ……………………………………………………………………III Table of Contents………………………………………………………………............IV List of Species Names………………………………………………………………...VII Abbreviations…….…………………………………………………………….............IX Abstract…………….………………………………………………………………...XIII CHAPTER 1. General Introduction ...........................................................................1 1. 1. Overview of common snook life history and relevance to aquaculture..................2 1.1.1. Geographic distribution and biology………….........................................2 1.1.2. Economic importance and brief history of management in Florida..........5 1.1.3. Aquaculture prospects: current situation and challenges………………..8 1.2. Gametogenesis in fish …………............................................................................11 1.2.1. Nomenclature…………………………………………………………...11 1.2.2. Female gonadal development in teleosts (oogenesis)…………………..12 1.2.3. Patterns of ovarian development in teleosts……………………………17 1.2.4. Male gonadal development in teleosts (spermatogenesis)……………...18 1.3. Neuroendocrine control of reproduction……………………………………….....21 1.3.1. Gonadotropin releasing hormone GnRH…………………………….....23 1.3.2. Pituitary gonadotropins………………………………………………....25 1.3.3. Sex steroids and the control of gametogenesis…………………….........27 1.4. Environmental regulation of reproduction………………………………………..29 1.4.1. Photoperiod……………………………………………………………..30 1.4.2. Temperature……………………………………………………………..31 1.4.3. Lunar periodicity………………………………………………………...31 1.5. Hormonal manipulation of oocyte maturation and spermiation…………………..33 1.6. Experimental aims………………………………………………………………...37 IV Nicole Rhody CHAPTER 2. Assessing reproductive condition in captive and wild common snook stocks: A comparison between the wet mount technique and histological preparations..................................................................................................................39 Abstract ..............................................................................................................40 1. Introduction ....................................................................................................41 2. Materials and methods ...................................................................................43 3. Results ............................................................................................................46 4. Discussion ......................................................................................................58 Acknowledgements ............................................................................................61 CHAPTER 3. Spawning performance and endocrine profiles of captive common snook Centropomus undecimalis broodstock treated with different sustained release GnRHa-delivery systems………………………………...…………………..62 Abstract ..............................................................................................................63 1. Introduction ....................................................................................................64 2. Materials and methods ...................................................................................67 3. Results ............................................................................................................79 4. Discussion ......................................................................................................90 Acknowledgements ............................................................................................94 CHAPTER 4. Parental contribution and spawning performance in captive common snook Centropomus undecimalis broodstock…………………………….95 Abstract .............................................................................................................96 1. Introduction ...................................................................................................98 2. Materials and methods .................................................................................101 3. Results ..........................................................................................................109 4. Discussion ....................................................................................................124 Acknowledgements ..........................................................................................128 V Nicole Rhody CHAPTER 5. Influence of tidal cycles on the endocrine control of reproductive activity in common snook (Centropomus undecimalis.............................................130 Abstract ...........................................................................................................131 1. Introduction .................................................................................................133 2. Materials and methods ................................................................................ 136 3. Results ..........................................................................................................146 4. Discussion ....................................................................................................166 Acknowledgements ..........................................................................................171 CHAPTER 6. Embryonic and early larval development in hatchery-reared common snook.............................................................................................................172 Abstract ............................................................................................................173 1. Introduction ..................................................................................................174 2. Materials and methods .................................................................................176 3. Results .........................................................................................................180 4. Discussion ...................................................................................................198 Acknowledgements .........................................................................................205 CHAPTER 7. Summary of findings…….................................................................206 CHAPTER 8. General discussion…………………………………………………210 REFERENCES..........................................................................................................220 PUBLICATIONS AND CONFERENCES..............................................................267 VI Nicole Rhody LIST OF SPECIES Atlantic bluefin tuna Thunnus thynnus
Recommended publications
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Belonidae Bonaparte 1832 Needlefishes
    ISSN 1545-150X California Academy of Sciences A N N O T A T E D C H E C K L I S T S O F F I S H E S Number 16 September 2003 Family Belonidae Bonaparte 1832 needlefishes By Bruce B. Collette National Marine Fisheries Service Systematics Laboratory National Museum of Natural History, Washington, DC 20560–0153, U.S.A. email: [email protected] Needlefishes are a relatively small family of beloniform fishes (Rosen and Parenti 1981 [ref. 5538], Collette et al. 1984 [ref. 11422]) that differ from other members of the order in having both the upper and the lower jaws extended into long beaks filled with sharp teeth (except in the neotenic Belonion), the third pair of upper pharyngeal bones separate, scales on the body relatively small, and no finlets following the dorsal and anal fins. The nostrils lie in a pit anterior to the eyes. There are no spines in the fins. The dorsal fin, with 11–43 rays, and anal fin, with 12–39 rays, are posterior in position; the pelvic fins, with 6 soft rays, are located in an abdominal position; and the pectoral fins are short, with 5–15 rays. The lateral line runs down from the pectoral fin origin and then along the ventral margin of the body. The scales are small, cycloid, and easily detached. Precaudal vertebrae number 33–65, caudal vertebrae 19–41, and total verte- brae 52–97. Some freshwater needlefishes reach only 6 or 7 cm (2.5 or 2.75 in) in total length while some marine species may attain 2 m (6.5 ft).
    [Show full text]
  • Drum and Croaker (Family Sciaenidae) Diversity in North Carolina
    Drum and Croaker (Family Sciaenidae) Diversity in North Carolina The waters along and off the coast are where you will find 18 of the 19 species within the Family Sciaenidae (Table 1) known from North Carolina. Until recently, the 19th species and the only truly freshwater species in this family, Freshwater Drum, was found approximately 420 miles WNW from Cape Hatteras in the French Broad River near Hot Springs. Table 1. Species of drums and croakers found in or along the coast of North Carolina. Scientific Name/ Scientific Name/ American Fisheries Society Accepted Common Name American Fisheries Society Accepted Common Name Aplodinotus grunniens – Freshwater Drum Menticirrhus saxatilis – Northern Kingfish Bairdiella chrysoura – Silver Perch Micropogonias undulatus – Atlantic Croaker Cynoscion nebulosus – Spotted Seatrout Pareques acuminatus – High-hat Cynoscion nothus – Silver Seatrout Pareques iwamotoi – Blackbar Drum Cynoscion regalis – Weakfish Pareques umbrosus – Cubbyu Equetus lanceolatus – Jackknife-fish Pogonias cromis – Black Drum Larimus fasciatus – Banded Drum Sciaenops ocellatus – Red Drum Leiostomus xanthurus – Spot Stellifer lanceolatus – Star Drum Menticirrhus americanus – Southern Kingfish Umbrina coroides – Sand Drum Menticirrhus littoralis – Gulf Kingfish With so many species historically so well-known to recreational and commercial fishermen, to lay people, and their availability in seafood markets, it is not surprising that these 19 species are known by many local and vernacular names. Skimming through the ETYFish Project
    [Show full text]
  • Monophyly and Interrelationships of Snook and Barramundi (Centropomidae Sensu Greenwood) and five New Markers for fish Phylogenetics ⇑ Chenhong Li A, , Betancur-R
    Molecular Phylogenetics and Evolution 60 (2011) 463–471 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Monophyly and interrelationships of Snook and Barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics ⇑ Chenhong Li a, , Betancur-R. Ricardo b, Wm. Leo Smith c, Guillermo Ortí b a School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA b Department of Biological Sciences, The George Washington University, Washington, DC 200052, USA c The Field Museum, Department of Zoology, Fishes, 1400 South Lake Shore Drive, Chicago, IL 60605, USA article info abstract Article history: Centropomidae as defined by Greenwood (1976) is composed of three genera: Centropomus, Lates, and Received 24 January 2011 Psammoperca. But composition and monophyly of this family have been challenged in subsequent Revised 3 May 2011 morphological studies. In some classifications, Ambassis, Siniperca and Glaucosoma were added to the Accepted 5 May 2011 Centropomidae. In other studies, Lates + Psammoperca were excluded, restricting the family to Available online 12 May 2011 Centropomus. Recent analyses of DNA sequences did not solve the controversy, mainly due to limited taxonomic or character sampling. The present study is based on DNA sequence data from thirteen Keywords: genes (one mitochondrial and twelve nuclear markers) for 57 taxa, representative of all relevant Centropomidae species. Five of the nuclear markers are new for fish phylogenetic studies. The monophyly of Centrop- Lates Psammoperca omidae sensu Greenwood was supported by both maximum likelihood and Bayesian analyses of a Ambassidae concatenated data set (12,888 bp aligned). No support was found for previous morphological hypothe- Niphon spinosus ses suggesting that ambassids are closely allied to the Centropomidae.
    [Show full text]
  • Feeding Habits of Centropomus Undecimalis (Actinopterygii, Centropomidae) in the Parnaíba River Delta, Piauí, Brazil
    Brazilian Journal of Development 39536 ISSN: 2525-8761 Feeding habits of Centropomus undecimalis (Actinopterygii, Centropomidae) in the Parnaíba river delta, Piauí, Brazil Alimentação do Centropomus undecimalis (Actinopterygii, Centropomidae) no estuário do delta do rio Parnaíba, Piauí, Brasil DOI:10.34117/bjdv7n4-423 Recebimento dos originais: 07/03/2021 Aceitação para publicação: 16/04/2021 José Rafael Soares Fonseca Doutorando em Recursos Pesqueiros e Engenharia de Pesca Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca, Centro de Engenharias e Ciências Exatas, Universidade Estadual do Oeste do Paraná – UNIOESTE, Rua da Faculdade, 645, 85903-000 – Toledo– PR – Brasil E-mail: [email protected] Cezar Augusto Freire Fernandes Doutorado em Recursos Pesqueiros e Aquicultura Universidade Federal do Delta do Parnaíba – UFDPAR, Av. São Sebastião, 2819 Bairro Nossa Senhora de Fátima– CEP: 64.202-020 – Parnaíba – PI – Brasil E-mail: [email protected] Francisca Edna de Andrade Cunha Doutorado em Ciências Biológicas Universidade Federal do Delta do Parnaíba – UFDPAR, Av. São Sebastião, 2819 Bairro Nossa Senhora de Fátima– CEP: 64.202-020 – Parnaíba – PI – Brasil E-mail: [email protected] ABSTRACT The objective of this work was to evaluate the feeding of Centropomus undecimalis in the estuary of the Parnaíba river delta, with emphasis on diet composition during seasonal variations between dry and rainy seasons. The samples were obtained from artisanal fishing with gillnets, from June 2014 - July 2015. The individuals were measured, weighed and dissected to remove the stomachs. The fish diet was analyzed using the methods: Gravimetric, Frequency of Occurrence, Dominance of the item and Food Index.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • Sciaenidae 3117
    click for previous page Perciformes: Percoidei: Sciaenidae 3117 SCIAENIDAE Croakers (drums) by K. Sasaki iagnostic characters: Moderately elongate, moderately compressed, small to large (to 200 cm Dstandard length) perciform fishes. Head and body (occasionally also fins) completely scaly, except tip of snout. Sensory pores often conspicuous on tip of snout (upper rostral pores), on lower edge of snout (marginal rostral pores), and on chin (mental pores), usually 3 or 5 upper rostral pores, 5 marginal rostral pores, and 3 pairs of mental pores; these pores usually distinct in bottom feeders with inferior to subterminal mouth, whereas indistinct in midwater feeders with terminal to oblique mouth. A barbel sometimes present on chin. Position and size of mouth variable from strongly inferior to oblique, larger in species with oblique mouth, smaller in species with inferior mouth. Teeth differentiated into large and small in both jaws or in upper jaw only; enlarged teeth always form outer series in upper jaw, inner series in lower jaw; well-developed canines (more than twice as large as other teeth) may be present at front of one or both jaws; vomer and palatine without teeth. Dorsal fin continuous, with deep notch between anterior (spinous) and posterior (soft) portions; anterior portion with VIII to X slender spines (usually X), and posterior portion with I spine and 21 to 44 soft rays; base of posterior portion elongate, much longer than anal-fin base; anal fin with II spines and 6 to 12 (usually 7) soft rays; caudal fin emarginate to pointed, never deeply forked, usually pointed in juveniles, rhomboidal in adults; pelvic fins with I spine and 5 soft rays, the first soft ray occasionally with a short filament.
    [Show full text]
  • Download (2MB)
    UNIVERSITI PUTRA MALAYSIA ISOLATION, CHARACTERIZATION AND PATHOGENICITY OF EPIZOOTIC ULCERATIVE SYNDROME-RELATED Aphanomyces TOWARD AN IMPROVED DIAGNOSTIC TECHNIQUE SEYEDEH FATEMEH AFZALI FPV 2014 7 ISOLATION, CHARACTERIZATION AND PATHOGENICITY OF EPIZOOTIC ULCERATIVE SYNDROME-RELATED Aphanomyces TOWARD AN IMPROVED DIAGNOSTIC TECHNIQUE UPM By SEYEDEH FATEMEH AFZALI COPYRIGHT © Thesis Submitted to the School of Graduate Study, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy August 2014 i All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia. Copyright © Universiti Putra Malaysia UPM COPYRIGHT © ii DEDICATION This dissertation is lovingly dedicated to my kind family. A special feeling of gratitude to my great parents who inspired my life through their gritty strength, enduring faith, and boundless love for family. My nice sisters and brother have never left my side and have supported me throughout the process. I also dedicate this work and give special thanks to my best friend “Hasti” for being there for me throughout the entire doctorate program. UPM COPYRIGHT © iii Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy ISOLATION, CHARACTERIZATION AND PATHOGENICITY OF EPIZOOTIC ULCERATIVE SYNDROME-RELATED Aphanomyces TOWARD AN IMPROVED DIAGNOSTIC TECHNIQUE By SEYEDEH FATEMEH AFZALI August 2014 Chair: Associate Professor Hassan Hj Mohd Daud, PhD Faculty: Veterinary Medicine Epizootic ulcerative syndrome (EUS) is a seasonal and severely damaging disease in wild and farmed freshwater and estuarine fishes.
    [Show full text]
  • Do Coastal Land Alterations Impact Estuarine Food Webs?
    Do coastal land alterations impact estuarine food webs? Aaron J. Adams Center for Fisheries Enhancement Fisheries Habitat Ecology Program Mote Marine Laboratory Charlotte Harbor Field Station P.O. Box 2197 Pineland, FL 33945 Phone: 239-283-1622 Fax: 239-283-2466 Email: [email protected] R. Kirby Wolfe Center for Fisheries Enhancement Fisheries Habitat Ecology Program Mote Marine Laboratory Charlotte Harbor Field Station P.O. Box 2197 Pineland, FL 33945 Craig A. Layman Marine Sciences Program Department of Biological Sciences Florida International University 3000 NE 151st Street North Miami, FL 33181 Phone: 786-390-0578 Email: [email protected] Abstract In estuarine ecosystems, maintaining the proper balance of freshwater and marine inputs is essential for proper ecosystem function, and anthropogenic alterations of this balance (namely, freshwater flows into estuaries) are of particular concern to resource managers. Differences in freshwater flows and associated salinity patterns can influence biodiversity or the relative abundance of organisms. Freshwater flows are especially important to small tributaries that transverse the margin between uplands and estuaries and are important habitats for many young- of-the-year marine finfish and shellfish. Little is known, however, about the effects of these habitat alterations on trophic ecology of coastal fishes. We used stomach contents and stable isotope analysis (δ13C, δ15N) to examine the effects of freshwater flow alterations on the trophic ecology of juvenile common snook (Centropomus undecimalis) in four mangrove creeks with different freshwater flow regimes: two creeks considered ‘less degraded’ (their drainages are largely intact) and two creeks are ‘more degraded’ (drainages have been altered by development and drainage ditches).
    [Show full text]
  • Diversity and Risk Patterns of Freshwater Megafauna: a Global Perspective
    Diversity and risk patterns of freshwater megafauna: A global perspective Inaugural-Dissertation to obtain the academic degree Doctor of Philosophy (Ph.D.) in River Science Submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin By FENGZHI HE 2019 This thesis work was conducted between October 2015 and April 2019, under the supervision of Dr. Sonja C. Jähnig (Leibniz-Institute of Freshwater Ecology and Inland Fisheries), Jun.-Prof. Dr. Christiane Zarfl (Eberhard Karls Universität Tübingen), Dr. Alex Henshaw (Queen Mary University of London) and Prof. Dr. Klement Tockner (Freie Universität Berlin and Leibniz-Institute of Freshwater Ecology and Inland Fisheries). The work was carried out at Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Germany, Freie Universität Berlin, Germany and Queen Mary University of London, UK. 1st Reviewer: Dr. Sonja C. Jähnig 2nd Reviewer: Prof. Dr. Klement Tockner Date of defense: 27.06. 2019 The SMART Joint Doctorate Programme Research for this thesis was conducted with the support of the Erasmus Mundus Programme, within the framework of the Erasmus Mundus Joint Doctorate (EMJD) SMART (Science for MAnagement of Rivers and their Tidal systems). EMJDs aim to foster cooperation between higher education institutions and academic staff in Europe and third countries with a view to creating centres of excellence and providing a highly skilled 21st century workforce enabled to lead social, cultural and economic developments. All EMJDs involve mandatory mobility between the universities in the consortia and lead to the award of recognised joint, double or multiple degrees. The SMART programme represents a collaboration among the University of Trento, Queen Mary University of London and Freie Universität Berlin.
    [Show full text]
  • 2018 IUCN SSC Scianenid RLA Report
    IUCN SSC Sciaenidae Red List Authority 2018 Report Orangel Aguilera Ying Giat Seah Co-Chairs Mission statement Targets for the 2017-2020 quadrennium Ning Labbish Chao (1) (Previous Co-Chair) The mission of the IUCN SSC Sciaenidae Red List Assess (2) Min Liu (Previous Co-Chair) Authority is to revise and submit the assess- Red List: (1) organise a Red List assessment (3) Orangel Aguilera (2018 Elected Co-Chair) ments of all 300 species of sciaenid fishes and and training workshop, planned for 25–29 (4) Ying Giat Seah (2018 Elected Co-Chair) to redefine the goal of the second phase of the September 2018, at the Universiti Malaysia Global Sciaenidae Conservation Plan. Terengganu, Malaysia (expecting 50 members Red List Authority Coordinators to participate); (2) complete submission of Orangel Aguilera (3) (Brazil, South America) Projected impact for the 2017-2020 global Sciaenidae Red List assessments; (3) Ying Giat Seah (4) (Malaysia, Asia) quadrennium final revision of global Sciaenidae Red List By the end of 2020, we will complete the first assessments. Location/Affiliation global assessment of sciaenid fishes and (1) Bio-Amazonia Conservation International, will submit it to IUCN for final publication. A Activities and results 2018 Brookline, MA, US; National Museum of Marine significant threat to Sciaenidae conservation Assess Biology, Taiwan, Province of China has become more prominent since 2016 due Red List (2) Xiamen University, Xiamen, China to the popularity of Sciaenid Maws (dried gas i. We organised the Third Sciaenidae Red List (3) Departamento de Biologia Marinha (GBM), bladder) for food and medicinal use in Asian Assessment Workshop, entitled ‘International Universidade Federal do Fluminense, countries.
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]