Ovule Structure in Trachyandra Saltii (Asphodelaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Ovule Structure in Trachyandra Saltii (Asphodelaceae) S. Me. J. Bot. 1997,63(4) 223-226 223 Ovule structure in Trachyandra saltii (Asphodelaceae) E.M.A. Steyn* and G. F. Smith Research Directorate, National Botanical institute, Private Bag X101, Pretoria, 0001 Republic of Sou th Africa Received 2 April 1997; revised 19 May 1997 A scanning electron and light microscopical study of the multi-ovular ovaries of Trachyandra saltii (Baker) Oberm. var. saW; showed thaI the Iccules of open flowers contained bitegmic, arillate ovules, obliquely arranged on axile placentae with the micro pyles of mos! ovules pointing towards the septa. In the uncurved embryo sac the synergids with strongly PAS-positive filiform apparatus and the overgrown central cell nucleus were the most noticeable elements. The antipodals were still present in the chalazal extension of the embryo sac into the hypostase. At anthesis the ovules were hemitropous. It is suggested that, ontogenetically, the development 01 an aril on the ventral side 01 the ovule has prevented anatropy in the Asphodelaceae. Keywords: Aril, Asphodeloideae, embryo sac, ovule morphology, Trachyandra. ·To whom correspondence should be addressed. Introduction Ovules with curved nllcelli and embryo sacs are campylotropous Ovules of nowering plants display, like leaves and flowers, a ri ch (Bouman 1984; Comer 1976). variety in form and structure, depending on the number, shape, Thus, with the exception of orthrotropous ovules which arc position and combination of their component parts. This wealth actinomorphic, ovules of angiosperms develop into decidedly of morphological diversity has led to a profusion of descriptive zygomorphic structures with a si ngle plan e of symmetry, usually terms, th e recognition of an abundance of characters and charac­ referred to as the median sagittal plane. When viewed in this ter states (sensu Von Teichman & Van Wyk 1991) and the classi­ plane in cleared or sagittally sectioncd ovules, thc aforemen­ fication of ovules into various types. Nevertheless, comparative tioned morphological types can be accurately determined. embryologists have repeatedly stressed the conservative nature of Anatropy has generally been accepted as presenting the plesio­ ovular characters and their importance as indicators of taxo­ morphic state in angiosperms, wh ile all othcr forms an~ regarded nomic affinity (e.g. Herr 1984; Von Teichman & Van Wyk 1991; as apomorphies (Dahlgren J991; Bouman 1984). The occurrence Dahlgren 199 1). Like most embryological characters, the form of of such a wide range of ovular types in the Asphodclaceae sug­ the ovule usually displays no phenotypic plasticity, is remarkably gested the possibility that an in-depth study of ovular characters constant within a genus and onen represents a familial character may indicate an evolutionary, intrafamilial pathway to the genera ~ Davis 1966). During a preliminary survey of available embryo­ and thereby may lead towards a bctter understanding of relation­ logical data on the Asphodelaceae (sellslI Dahlgren el al. 1985). ships among the genera included in th e family. we therefore found it rather interesting to note that th e form of However, a more critical evaluation of the literature dealing the ovule seems to vary considerably within this relatively small with ovule morphology in the Asphodclaceae revealed a general family of petaloid monocotyledons. lack of descriptive or graphic detail in the various studies; it was This Old World family includes 16 genera and about 780 spe­ often unclear as to how the authors had come to their conchl­ cies and is generally considered as comprising two easily di stin­ sions. A point in case is an investigation of ovule morphology by guishable subfamilies, the Asphodeloideae and the Alooideae Kativu (1996). No photographic evidence was presented in this (Smith & Van Wyk 1991). Embryologically. all members of the report to substantiate the supposed occurrence of anatropy in sev­ family are characterised by arillate seeds and a tetrahedral eral anthericoid as well as in two asphodi.!loid species, namely arrangement of microspores in the tetrads, resulting from simu l­ Trachyandra safrii (Baker) Oberm. and .Iodrellia lIlacrocarpa taneous microsporogenesis (Dahlgren el al. 1985). As far as Baijnat h. Since flowering material of T. salt;; var. saLti; was read­ ovule morphology is concerned, variations with regard to the ily available from a natural population of plants in the Pretoria shape of the mature embryo sac and the orientation of th e micro­ National Botanical Garden (PNBG), the ovules of this species pyle towards the placenta seemingly occur, since campylotco­ were studied to reveal thl!ir form and internal structure. This pous, anatropous, hemitropuus and atropous (orthotropous) report deals with the findings of the investigation. ovules have been reported (Dahlgren & Clifford 1982; Dahlgren Material and Methods el al. 1985; McNaughton & Robertson 1974; Kativu 1996). Onlogcneticaily. the anatropous stage is attained when the Inflorescences of T. sallii va l". sallii were collected in mid -afternoon ovule primordium curves through 180 ~ so that the ovule becomes when the opening of a few deli cate, gret;:nish-white flowers per inno~ completely inverted and the micropyler-chalazal (longitudinal) rescence indicated the location of the well-camouflaged plants in axis of the nucellus lies parallel to the longitudinal axis of the natural grassland vegetation in the PNBG. A voucher speci men (Steyll 23) of one of the plants has been deposited at the National funicle. In orthcotcopous ovules no curvature occurs, the ovule Herbarium (PRE) in Pretoria. Open tl owers and a few adjacellt 110w­ therefore maintains an upright position and the funicle, chalaza ers with shriveled peta ls were dissected and the ovaries wen: Iixcd and micropyle lie in a direct line. If the curvature towards the ovt!might in a 0.1 M phosphate butTt!red solution (pH 7.4) containing anatropous position is arrested before the primordium has 2.5 % gluteraldehyde and 4% formaldehyde. Conventional methods reached the anatropous condition so that the longitudinal ax is of were used during processi ng for embedding in glycol methac rylate the nucellus lies more or less perpendicular to the longitudinal and eventual sectioning al 2 ~m . All secti ons were stained with the axis of the funicle, the ovule is hemi(ana)tropous. In orthrotro­ periodic acid/Schiff (PAS) reaction and countcrstained with toluid­ pous as well as hemitropous and anatropous ovules, the nucellus ine blue (Feder & O'Brien 1968). cylinder and embryo sac remain straight, i. e. show no curvature. Materi al for a precursory scanning electron (SE) microscopical 224 S. Afr.1. Bot. 1997,63(4) study was fixed as mentioned above, the ovary segments were dehy­ nent ovular parts with regard to each other. According to Johri et drated in a graded .. celone series and criticnl point dried according to al. (1992), the 'micropyle may point upward (epitropous), down­ conyentional procedures. Further dissection, namely the removal of ward (hypotropous) or to a side (lateral: pl eurotropous)'. The the dorsal ovary wall and the septa between the locules, was morc micropyles of the proximal ovules in the locules of Trachyandra readily accomplished after critical point drying. The ovary segments were turned downward, i.e. toward the base of the locule (Figure were then spuuered with gold and viewed in a lSI SX 25 SE micro­ I A) and therefore represented the hypmropous condition, sensu scope . lohri e/ at. (1992). The initiation of the arBs of the ovules, described in embryo­ Observations and Discussion logical literature on the Asphodelaceae as developing 'as an Ovule characters revealed by SE microscopy annular invagination of the distal part of the funicle' (Dahlgren er In the trilocular ovary of Tra chyandra each of the locules con­ al. 1985), was not seen in our material. According to Joshi ta ined six to seven closely packed ovules, alternately arranged in (1937) and McNaughton and Robertson (1974) the aril in Aloe two longitudinal rows on axile placenlae. The ovules were spp. starts to develop during megasporogenesis when the ovule bitegmic and the inner integument, protruding beyond the rim of begins to curve. In open flowers of T. sallii fixed within two the outer integument, formed the micropyle (Figures lA and B). hours after anthesis, the arils were already quite conspicuous With the dorsal ovary wall removed and the ovules seen in dorsal structu res occurring at the ventral side of the ovules (Figures 1A view, it was evident that, as far as the orientation of the ovules in and B). The funicles were short and broadened by the develop­ the Iocules was concerned, these structures were generally ment of the aril which formed a podium on which the ovule obli quely placed with the micropyles of most ovules turned out­ proper was carried and lifted above the placental papillae (Figure ward, i.e. pointed toward the side of the locule (Figure IA). The IB). ovules therefore tended toward pleurotropy. The terms 'pleurot­ In the typical variety of T. saltii the flowers lasted for less than ropous'. 'epitropous' and ' hypotropous' were used by Johri e/ al. 24 hours; at sunrise following the afternoon of anthesis the deli­ (1992) to designate the orientation of ovules in a locule and were cate petals had become shrivelled. The locules of such flowers not applied to indicate the amount of curvature experienced by contained pollen tubes. At the micropylar side of one ovule a pol­ the developing ovule and thus, the final position of the compo- len tube, adcrusted with white deposits, was seen passing over Figure 1 A-D Scanning electron micrographs of ovules of Trachyandra saltii var. saLti;: A. Dorsal view of the obliquely placed ovu les with arils (arrow heads) in one of the locuies after the dorsal wall and septa of the locule were removed. Distal ovu les, i.e. ovules nearest to the style, shown at left in micrograph. Note that di stal and central ovules are pleurotropous, since thei r micropyJes pOint toward the sides of the locule, but that the proximal ovule (lower.
Recommended publications
  • Asphodelus Fistulosus (Asphodelaceae, Asphodeloideae), a New Naturalised Alien Species from the West Coast of South Africa ⁎ J.S
    Available online at www.sciencedirect.com South African Journal of Botany 79 (2012) 48–50 www.elsevier.com/locate/sajb Research note Asphodelus fistulosus (Asphodelaceae, Asphodeloideae), a new naturalised alien species from the West Coast of South Africa ⁎ J.S. Boatwright Compton Herbarium, South African National Biodiversity Institute, Private Bag X7, Claremont 7735, South Africa Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa Received 4 November 2011; received in revised form 18 November 2011; accepted 21 November 2011 Abstract Asphodelus fistulosus or onionweed is recorded in South Africa for the first time and is the first record of an invasive member of the Asphodelaceae in the country. Only two populations of this plant have been observed, both along disturbed roadsides on the West Coast of South Africa. The extent and invasive potential of this infestation in the country is still limited but the species is known to be an aggressive invader in other parts of the world. © 2011 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Asphodelaceae; Asphodelus; Invasive species 1. Introduction flowers (Patterson, 1996). This paper reports on the presence of this species in South Africa. A population of A. fistulosus was The genus Asphodelus L. comprises 16 species distributed in first observed in the early 1990's by Drs John Manning and Eurasia and the Mediterranean (Días Lifante and Valdés, 1996). Peter Goldblatt during field work for their Wild Flower Guide It is superficially similar to the largely southern African to the West Coast (Manning and Goldblatt, 1996).
    [Show full text]
  • Insights from Microsporogenesis in Asparagales
    EVOLUTION & DEVELOPMENT 9:5, 460–471 (2007) Constraints and selection: insights from microsporogenesis in Asparagales Laurent Penet,a,1,Ã Michel Laurin,b Pierre-Henri Gouyon,a,c and Sophie Nadota aLaboratoire Ecologie, Syste´matique et Evolution, Batiment 360, Universite´ Paris-Sud, 91405 Orsay Ce´dex, France bUMR CNRS 7179, Universite´ Paris 6FPierre & Marie Curie, 2 place Jussieu, Case 7077, 75005 Paris, France cMuse´um National d’Histoire Naturelle, De´partement de Syste´matique et Evolution Botanique, 12 rue Buffon, 75005 Paris CP 39, France ÃAuthor for correspondence (email: [email protected]) 1Current address: Department of Biological Sciences, University of Pittsburgh, 4249 Fifth & Ruskin, Pittsburgh, PA 15260, USA. SUMMARY Developmental constraints have been proposed different characteristics of microsporogenesis, only cell to interfere with natural selection in limiting the available wall formation appeared as constrained. We show that set of potential adaptations. Whereas this concept has constraints may also result from biases in the correlated long been debated on theoretical grounds, it has been occurrence of developmental steps (e.g., lack of successive investigated empirically only in a few studies. In this article, cytokinesis when wall formation is centripetal). We document we evaluate the importance of developmental constraints such biases and their potential outcomes, notably the during microsporogenesis (male meiosis in plants), with an establishment of intermediate stages, which allow emphasis on phylogenetic patterns in Asparagales. Different development to bypass such constraints. These insights are developmental constraints were tested by character discussed with regard to potential selection on pollen reshuffling or by simulated distributions. Among the morphology. INTRODUCTION 1991) also hindered tests using the concept (Pigliucci and Kaplan 2000).
    [Show full text]
  • Red Data List Special Edition
    Newsletter of the Southern African Botanical Diversity Network Volume 6 No. 3 ISSN 1027-4286 November 2001 Invasive Alien Plants Part 2 Southern Mozambique Expedition Living Plant Collections: Lowveld, Mozambique, Namibia REDSABONET NewsDATA Vol. 6 No. 3 November LIST 2001 SPECIAL EDITION153 c o n t e n t s Red Data List Features Special 157 Profile: Ezekeil Kwembeya ON OUR COVER: 158 Profile: Anthony Mapaura Ferraria schaeferi, a vulnerable 162 Red Data Lists in Southern Namibian near-endemic. 159 Tribute to Paseka Mafa (Photo: G. Owen-Smith) Africa: Past, Present, and Future 190 Proceedings of the GTI Cover Stories 169 Plant Red Data Books and Africa Regional Workshop the National Botanical 195 Herbarium Managers’ 162 Red Data List Special Institute Course 192 Invasive Alien Plants in 170 Mozambique RDL 199 11th SSC Workshop Southern Africa 209 Further Notes on South 196 Announcing the Southern 173 Gauteng Red Data Plant Africa’s Brachystegia Mozambique Expedition Policy spiciformis 202 Living Plant Collections: 175 Swaziland Flora Protection 212 African Botanic Gardens Mozambique Bill Congress for 2002 204 Living Plant Collections: 176 Lesotho’s State of 214 Index Herbariorum Update Namibia Environment Report 206 Living Plant Collections: 178 Marine Fishes: Are IUCN Lowveld, South Africa Red List Criteria Adequate? Book Reviews 179 Evaluating Data Deficient Taxa Against IUCN 223 Flowering Plants of the Criterion B Kalahari Dunes 180 Charcoal Production in 224 Water Plants of Namibia Malawi 225 Trees and Shrubs of the 183 Threatened
    [Show full text]
  • Flora of South Australia 5Th Edition | Edited by Jürgen Kellermann
    Flora of South Australia 5th Edition | Edited by Jürgen Kellermann KEY TO FAMILIES1 J.P. Jessop2 The sequence of families used in this Flora follows closely the one adopted by the Australian Plant Census (www.anbg.gov. au/chah/apc), which in turn is based on that of the Angiosperm Phylogeny Group (APG III 2009) and Mabberley’s Plant Book (Mabberley 2008). It differs from previous editions of the Flora, which were mainly based on the classification system of Engler & Gilg (1919). A list of all families recognised in this Flora is printed in the inside cover pages with families already published highlighted in bold. The up-take of this new system by the State Herbarium of South Australia is still in progress and the S.A. Census database (www.flora.sa.gov.au/census.shtml) still uses the old classification of families. The Australian Plant Census web-site presents comparison tables of the old and new systems on family and genus level. A good overview of all families can be found in Heywood et al. (2007) and Stevens (2001–), although these authors accept a slightly different family classification. A number of names with which people using this key may be familiar but are not employed in the system used in this work have been included for convenience and are enclosed on quotation marks. 1. Plants reproducing by spores and not producing flowers (“Ferns and lycopods”) 2. Aerial shoots either dichotomously branched, with scale leaves and 3-lobed sporophores or plants with fronds consisting of a simple or divided sterile blade and a simple or branched spikelike sporophore ..................................................................................
    [Show full text]
  • And Trachyandra Dwaricata
    4 PHYTOCHEMICAL INVESTIGATIONS OF BULBINEABYSSINICA, BULBINENATALENSIS AND TRACHYANDRA DWARICATA A THESIS SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES ADDIS ABABA UNIVERSITY IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMISTRY BY GIZACHEW NIGUSSIE SEPTEMBER, 1999 f dddedicated to: mothery 1Ityij. sister and 7Idty brother* i / ACKNOWLEDGMENTS First and foremost I would like to express my appreciation to my research advisors Dr. Wendimagegn Mammo and Prof. Sebsebe Demissew for their constant guidance and supervision from the conception to the completion of this work. My heartfelt gratitude goes to Prof. Ermias Dagne who provided me with valuable literature sources and authentic samples. I would like to thank all staff members of the Department of Chemistry for contributions they made in one way or the other. I take pleasure in expressing appreciation and thanks to Ato Daniel Bisrat, Ato Zerihun Ayalew, Ato Berhanu Mekonnen, Ato Tesfaye Hailu, Ato Legesse Adane, Ato Alemayehu Mekonnen, Tesfaye Welede and Dawit. I would iike to acknowledge Professor Berhanu Abegaz Molla and through him Network for Analytical and Bioassay Services in Africa (NABSA) for the 300 MHz NMR and mass spectral data. The Department of Organic Chemistry of the Chalmers University of Technology, Gothenburg, Sweden is gratefully acknowledged for the 400 MHz and MS data. I am grateful for the financial and material support from Bahir Dar Polytechnic Institute, and Financial support from the Swedish Agency for Research Cooperation with Developing Countries (SAREC) through the Ethiopian Science and Technology Commission (ESTC) is gratefully acknoweldged. I ' ' W •>!. / / ABSTRACT PHYTOCHEMICAL INVESTIGATIONS OF BULBINE ABYSSINICA, BULBINE NATALENSIS AND TRACHYANDRA DIVARICATA Advisor: Dr.
    [Show full text]
  • Supplementary Material Spatial Analysis of Limiting Resources on An
    10.1071/WR14083_AC ©CSIRO 2014 Supplementary Material: Wildlife Research 41 , 510–521 Supplementary material Spatial analysis of limiting resources on an island: diet and shelter use reveal sites of conservation importance for the Rottnest Island quokka Holly L. Poole A, Laily Mukaromah A, Halina T. Kobryn A and Patricia A. Fleming A,B ASchool of Veterinary & Life Sciences, Murdoch University, WA 6150, Australia. BCorresponding author. Email: [email protected] Table S1. Raw data of plant fragment identification for 67 faecal samples from Rottnest Island quokkas Plant Family Plants No. No. No. field group faecal fragments validation sample quadrats sites present in present in Dicot Malvaceae Guichenotia ledifolia 52 9854 75 Dicot Fabaceae Acacia rostellifera 37 3018 37 Monocot Asphodelaceae Trachyandra divaricata 46 2702 145 Dicot Myrtaceae Melaleuca lanceolata 25 1506 28 Dicot Chenopodiaceae Tecticornia 13 1350 4 halocnemoides Monocot Poaceae Stipeae (Tribe) 34 1302 171 Monocot Asphodelaceae Asphodelus fistulosus 26 1103 22 Dicot Chenopodiaceae Rhagodia baccata 13 1002 46 Dicot Chenopodiaceae Suaeda australis 12 862 2 Dicot Chenopodiaceae Threlkeldia diffusa 15 829 0 Monocot Poaceae Rostraria cristata 27 788 71 Monocot Poaceae Sporobolus virginicus 5 617 2 Dicot Chenopodiaceae Sarcocornia sp . 10 560 0 Dicot Lamiaceae Westringia dampieri 5 383 46 Dicot Goodeniaceae Scaevola crassifolia 10 349 20 Monocot Cyperaceae Gahnia trifida 8 281 6 Other Cupressaceae Callitris preissii 3 148 18 Monocot Poaceae Poa poiformis 2 116 0 Dicot Chenopodiaceae Atriplex spp. (A. 1 40 1 paludosa ) Monocot Poaceae Polypogon maritimus 1 39 0 Dicot Myrtaceae Agonis flexuosa 1 15 0 Monocot Poaceae Brachypodium distachyon 0 0 1 Monocot Asphodelaceae Bulbine semibarbata 0 0 1 Dicot Pittosporaceae Pittosporum 0 0 1 phylliraeoides Monocot Poaceae Spinifex longifolius 0 0 1 Dicot Fabaceae Acacia saligna 0 0 2 Dicot Chenopodiaceae Atriplex cinerea 0 0 2 1 Dicot Asteraceae Centaurea sp .
    [Show full text]
  • Vascular Plants of Negelle-Borona Kallos
    US Forest Service Technical Assistance Trip Federal Democratic Republic of Ethiopia In Support to USAID-Ethiopia for Assistance in Rangeland Management Support to the Pastoralist Livelihoods Initiative for USAID-Ethiopia Office of Business Environment Agriculture & Trade Vascular Plants of Negelle-Borona Kallos Mission dates: November 19 to December 21, 2011 Report submitted June 6, 2012 by Karen L. Dillman, Ecologist USDA Forest Service, Tongass National Forest [email protected] Vascular Plants of Negelle-Borona, Ethiopia, USFS IP Introduction This report provides supplemental information to the Inventory and Assessment of Biodiversity report prepared for the US Agency for International Development (USAID) following the 2011 mission to Negelle- Borona region in southern Ethiopia (Dillman 2012). As part of the USAID supported Pastoralist Livelihood Initiative (PLI), this work focused on the biodiversity of the kallos (pastoral reserves). This report documents the vascular plant species collected and identified from in and around two kallos near Negelle (Oda Yabi and Kare Gutu). This information can be utilized to develop a comprehensive plant species list for the kallos which will be helpful in future vegetation monitoring and biodiversity estimates in other locations of the PLI project. This list also identifies plants that are endemic to Ethiopia and East Africa growing in the kallos as well as plants that are non-native and could be considered invasive in the rangelands. Methods Field work was conducted between November 28 and December 9, 2011 (the end of the short rainy season). The rangeland habitats visited are dominated by Acacia and Commifera trees, shrubby Acacia or dwarf shrub grasslands.
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • The Naturalized Vascular Plants of Western Australia 1
    12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon).
    [Show full text]
  • From the Western Cape
    S.Afr.J.Bot., 1990,56(2): 257- 260 257 A new species of Trachyandra section Trachyandra (Asphodelaceae) from the western Cape P.L. Perry Compton Herbarium, National Botanic Gardens, Private Bag X7, Claremont, 7735 Republic of South Africa Accepted 6 November 1989 Trachyandra pro/ifera P.L. Perry, an autumn-flowering geophyte with distinctive proliferating roots is described. It has a limited distribution in the Nieuwoudtville area on the Bokkeveldberge. Trachyandra karrooica Oberm. appears to be the most closely related species. Trachyandra pro/ifera P.L. Perry, 'n herfsblommende geofiet met kenmerkende proliferende wortels word beskryf. Dit besit 'n beperkte verspreiding op die Bokkeveldberge in die Niewoudtville-area. Trachyandra karrooica Oberm. is waarskynlik die spesie wat die naaste verwant is. Keywords: Asphodelaceae, taxonomy, Trachyandra Introduction intlorescentia simpIici , glabra, pauciflora et tloribus 30 mm The genus Trachyandra was first described by Kunth diametro differt. (1843) when he divided Anthericum L. into the three TYPUS.- Cape Province: NieuwoudtviIIe, Farm Glen Lyon , genera Phalangium Mill. , Bulbinella Kunth and flower April 1986 , leaf June 1986, Snijman 869 (NBG, Trachyandra Kunth. Most authors after that date holotypus) . reverted to Anthericum for all or part of the related groupings until the revision by Obermeyer (1962) of the Plants deciduous small , up to 200 mm high , gregarious, South African species of Anthericum, Chlorophytum and proliferating to form large clumps. Roots few , thick , Trach yandra. fleshy, mainly up to 75 mm long, 5 mm wide near the Although the distinction between Anthericum and base, gradually tapering to the apex, with root hairs Chlorophytum is somewhat tenuous, relying on seed along most of the length and scattered narrower laterals; structure, Trachyandra forms a more distinctive outer flakey layer light rusty brown with an inner bright grouping separated from the former two genera on a red layer, and white internally; swollen regions formed number of characters.
    [Show full text]
  • Coastal Vegetation of South Africa 14
    658 S % 19 (2006) Coastal Vegetation of South Africa 14 Ladislav Mucina, Janine B. Adams, Irma C. Knevel, Michael C. Rutherford, Leslie W. Powrie, John J. Bolton, Johannes H. van der Merwe, Robert J. Anderson, Thomas G. Bornman, Annelise le Roux and John A.M. Janssen Table of Contents 1 Introduction: Distribution and Azonal Character of Coastal Vegetation 660 2 Origins of South African Coastal Features 661 3 Ecology of Coastal Habitats 662 3.1 Aquatic and Semi-aquatic Habitats 662 3.1.1 Algal Beds 662 3.1.2 Estuaries 662 3.2 Terrestrial Habitats 666 3.2.1 Sandy Beaches and Dunes 666 3.2.2 Rocky Shores: Coastal Cliffs and Headlands 671 4 Biogeographical Patterns 672 4.1 Major Biogeographical Divisions 672 4.2 Algal Beds 673 4.3 Estuaries 674 4.4 Dunes 675 5 Principles of Delimitation of Vegetation Units 675 5.1 Algal Beds 675 5.2 Estuarine Vegetation 675 5.3 Dry Seashore Vegetation 676 5.4 Eastern Strandveld 676 6 Conservation Challenges: Status, Threats and Actions 677 6.1 Algal Beds 677 6.2 Estuaries 677 6.3 Beaches, Dunes and Strandveld 678 7 Future Research 679 8 Descriptions of Vegetation Units 680 9 Credits 690 10 References 690 Figure 14.1 Evening mood with Scaevola plumieri (Goodeniaceae) on the coastal dunes of Maputaland (northern KwaZulu-Natal). 659 W.S. Matthews W.S. S % 19 (2006) List of Vegetation Units cate interactions between sea and air temperature, geology and local topography, wind patterns and deposition of sand Algal Beds 680 and salt, and of tidal regime.
    [Show full text]
  • Key to the Species Accounts
    Key to the species accounts Species and infraspecific taxa are arranged alphabetically by family, genus, and species to facilitate easy lookup. Where available, synonyms are also included. Note that families are listed alphabetically, regardless of whether they are dicotyle- dons or monocotyledons. Endemic and protected species are identified by the following icons: C1 CITES Appendix I C2 CITES Appendix II E Endemic taxon P Protected under Nature Conservation Ordinance 4 of 1975 Status The conservation status is indicated by the following abbreviations: CR Critically Endangered EN Endangered LC Least Concern NT Near Threatened R Rare VU Vulnerable Description Description of the growth form and major distinguishing characters of each taxon. Rationale Brief explanation of the reasons for listing and the factors that contributed to a particular assessment. Habitat Short description of habitat and altitude (in metres) where taxon may be expected to occur. Threats List of the main factors that threaten the taxon with extinction in Namibia. Additional notes Other important information. Where available, common names are included in this section. Red Data Book of Namibian Plants i Red Data Book of Namibian Plants Sonja Loots 2005 Southern African Botanical Diversity Network Report No. 38 ii Red Data Book of Namibian Plants Citation LOOTS S. 2005. Red Data Book of Namibian plants. Southern African Botanical Diversity Network Report No. 38. SABONET, Pretoria and Windhoek. Address for Correspondence National Botanical Research Institute Private Bag 13184 Windhoek NAMIBIA Tel: +264 61 2022013 Fax: +264 61 258153 E-mail: [email protected] Issued by The Project Coordinator Southern African Botanical Diversity Network c/o National Botanical Institute Private Bag X101 Pretoria 0001 SOUTH AFRICA Printed in 2005 in the Republic of South Africa by Capture Press, Pretoria, (27) 12 349-1802 ISBN 1-919976-16-7 © SABONET.
    [Show full text]