Asphodelus Fistulosus (Asphodelaceae, Asphodeloideae), a New Naturalised Alien Species from the West Coast of South Africa ⁎ J.S

Total Page:16

File Type:pdf, Size:1020Kb

Asphodelus Fistulosus (Asphodelaceae, Asphodeloideae), a New Naturalised Alien Species from the West Coast of South Africa ⁎ J.S Available online at www.sciencedirect.com South African Journal of Botany 79 (2012) 48–50 www.elsevier.com/locate/sajb Research note Asphodelus fistulosus (Asphodelaceae, Asphodeloideae), a new naturalised alien species from the West Coast of South Africa ⁎ J.S. Boatwright Compton Herbarium, South African National Biodiversity Institute, Private Bag X7, Claremont 7735, South Africa Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa Received 4 November 2011; received in revised form 18 November 2011; accepted 21 November 2011 Abstract Asphodelus fistulosus or onionweed is recorded in South Africa for the first time and is the first record of an invasive member of the Asphodelaceae in the country. Only two populations of this plant have been observed, both along disturbed roadsides on the West Coast of South Africa. The extent and invasive potential of this infestation in the country is still limited but the species is known to be an aggressive invader in other parts of the world. © 2011 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Asphodelaceae; Asphodelus; Invasive species 1. Introduction flowers (Patterson, 1996). This paper reports on the presence of this species in South Africa. A population of A. fistulosus was The genus Asphodelus L. comprises 16 species distributed in first observed in the early 1990's by Drs John Manning and Eurasia and the Mediterranean (Días Lifante and Valdés, 1996). Peter Goldblatt during field work for their Wild Flower Guide It is superficially similar to the largely southern African to the West Coast (Manning and Goldblatt, 1996). In 2011 a Trachyandra Kunth but can be distinguished by the articulated second population was found by the same collectors close to pedicels. Together with Asphodeline Rchb., it forms the earliest Hopefield. It represents the first invasive member of the Aspho- diverging lineage of the largely southern African Asphodelaceae delaceae in South Africa. (Chase et al., 2000; Devey et al., 2006; Smith and Van Wyk, 1998). Ten Asphodelus species have been recorded from Medi- terranean North Africa (Días Lifante and Valdés, 1996), while 2. Species description Asphodelus tenuifolius Cav. extends to Eritrea and Somalia Asphodelus fistulosus L., Sp. Pl. 1: 309 (1753). Type: “Habitat (Demissew and Nordal, 1997; Thulin, 1995). No species have ” thus far been recorded from southern Africa (Germishuizen and in Gallo-Provincia, Hispania, Creta. , Löfling s.n., Herb. Linn. Meyer, 2003). No. 431.2 (LINN, lecto., designated by El-Gadi, 1978). Asphodelus fistulosus L. is native to the Mediterranean region Annual or short-lived perennial to 0.8 m in height. Rhizome and Macaronesia (Días Lifante and Valdés, 1996) but has been short, vertical; roots fibrous, yellow. Leaves erect, narrowly cylindrical, 15–40×2–3 mm, hollow, sheathing at base. Inflo- reported as a noxious weed in several countries, where it was – introduced predominantly as an ornamental for its attractive rescence a branched panicle, peduncle erect, terete, 2 3mm diam. at base; bracts ovate-acuminate, 3–7×2–5 mm, white, – ⁎ membranous; pedicels erect, articulated near middle, 3 5mm Compton Herbarium, South African National Biodiversity Institute, Private – Bag X7, Claremont 7735, South Africa. Tel.: +27 0 21 799 8662; fax: +27 0 21 long at anthesis, ultimately 6 8 mm long in fruit. Flowers 761 4151. patent, white to pinkish with pinkish-brown midribs; tepals E-mail address: [email protected]. spreading but suberect and weakly clawed in basal ±1 mm, 0254-6299/$ -see front matter © 2011 SAAB. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.sajb.2011.11.008 J.S. Boatwright / South African Journal of Botany 79 (2012) 48–50 49 outer elliptic, 10–11×2–3 mm, inner broadly elliptic to ob- Common names: Hollow-stem asphodel, onionweed, pink ovate, 10–11×3–4 mm. Stamens in two whorls, suberect, asphodel, wild onion. spreading; filaments expanded at base and filiform distally, white, outer ±6 mm long, inner ±8 mm long, papillate with 3. Distribution and habitat broad basal part patently scabrid; anthers 1.5–2.0 mm long, orange. Ovary globose, ±1.0–1.5 mm long, brownish; style To date A. fistulosus has been found in sandy soils along dis- straight, filiform, ±5–6 mm long, white; stigma tri-lobed, turbed roadsides between Vredenburg and Malmesbury on the orange. Capsule globose, 4–6×3–6 mm, light brown. Seeds West Coast of South Africa. It does not yet appear to have angular, ±3–4 mm long, with deep irregular pits, brown to spread into adjacent farmlands or native plant communities. It black, surface papillate (Fig. 1a–c). Flowering time: winter to is uncertain when and how the species was introduced but it spring (December to June) in its native range; in spring may have been via contaminated crop seeds or hay. Large (August to October) in South Africa. 2n=28, 56 (Rejon et al., areas of the West Coast have been transformed for cultivation 1990). of especially wheat (Rebelo et al., 2006). Both populations Fig. 1. Morphology, habit and distribution of Asphodelus fistulosus. (a) Habit; (b) flower; (c) flowers and capsules; (d) known distribution in southern Africa. Photographs taken at turn-off to St. Helenabaai and Stompneusbaai. 50 J.S. Boatwright / South African Journal of Botany 79 (2012) 48–50 still appear to be small, with less than 15 plants per population References seen (Fig. 1d). Auld, B.A., Medd, R.W., 1987. Weeds: An Illustrated Botanical Guide to the A. fistulosus is also invasive in the south-western United Weeds of Australia. Inkata Press, Melbourne. States, Australia, India, Spain and New Zealand (Patterson, Chase, M.W., De Bruijn, A.Y., Cox, A.V., Reeves, G., Rudall, P.J., Johnson, M.A.T., 1996). In Australia and America the species is found in Eguiarte, L.E., 2000. Phylogenetics of Asphodelaceae (Asparagales): an analysis of plastid rbcL and trnL-F DNA sequences. Annals of Botany 86, 935–951. pastures, rangelands and crops, where it excludes grasses and Demissew, S., Nordal, I., 1997. Asphodelaceae. In: Edwards, S., Demissew, S., other desirable forage species and is avoided by livestock Hedberg, I. (Eds.), Flora of Ethiopia and Eritrea, vol. 6. Addis Ababa Uni- (Auld and Medd, 1987; DiTomaso and Healy, 2007). The versity, Ethiopia and Uppsala University, Sweden, p. 116. main method of dispersal appears to be by seeds, which may Devey, D.S., Leitch, I., Rudall, P.J., Pires, J.C., Pillon, Y., Chase, M.W., 2006. be dispersed by animals, water, vehicles and other human activ- Systematics of Xanthorrhoeaceae sensu lato, with emphasis on Bulbine. Aliso 22, 345–351. ities. The seeds can survive in the soil bank for several years Días Lifante, Z., Valdés, B., 1996. Revisión del género Asphodelus L. (Asphode- before germinating once conditions are favourable, especially laceae) en el Mediterráneo Occidental. Boissiera 52, 11–189. with regard to precipitation and temperature (DiTomaso and DiTomaso, J.M., Healy, E.A., 2007. Weeds of California and other western states, Healy, 2007). A. fistulosus is listed in the Global Compendium vol. 2. University of California Publication 3488, California, pp. 897–899. of Weeds along with seven other species of Asphodelus El-Gadi, A., 1978. Liliaceae. In: Jafri, S.M.H., El-Gadi, A. (Eds.), Flora of Libya 57. Al Faateh University, Faculty of Science, Tripoli, p. 16. (Randall, 2002). Germishuizen, G., Meyer, N.L. (Eds.), 2003. Plants of Southern Africa: An Annotated Checklist. Strelitzia 14. National Botanical Institute, Pretoria. Manning, J.C., Goldblatt, P., 1996. Botancial Society Wild Flower Guide 7: 3.1. Specimens examined West Coast. Botanical Society of South Africa. Cape Town and Darling Wild Flower Society, Darling. Patterson, D.T., 1996. Temperature and photoperiod effects on onionweed South Africa. Western Cape: 3218 (Clanwilliam): along (Asphodelus fistulosus) and its potential range in the United States. Weed R27 from Velddrif to Cape Town at turn-off to St. Helenabaai Technology 10, 684–688. and Stompneusbaai (−CC), 28 Aug. 2009, Boatwright et al. Randall, R., 2002. A Global Compendium of Weeds. Missouri Botanical Garden 296 (NBG); 6 Sept. 2011, Boatwright and Magee 585 (NBG). Press, St. Louis. 3318 (Cape Town): Hopefield, Koperfontein, along main Rebelo, A.G., Boucher, C., Helme, N., Mucina, L., Rutherford, M.C., 2006. − Fynbos biome. In: Mucina, L., Rutherford, M.C. (Eds.), Vegetation of road ( AB), 20 Sept. 2011, Manning 3353 (NBG). South Africa, Lesotho and Swaziland, Strelitzia 19. South African National Biodiversity Institute, Pretoria. Rejon, C.R., Blanca, G., Cueto, M., Lozano, R., Ruiz Rejon, M., 1990. Asphodelus Acknowledgements tenuifolius and A. fistulosus (Liliaceae) are morphologically, genetically and biologically different species. Plant Systematics and Evolution 169, 1–12. Smith, G.F., Van Wyk, B.-E., 1998. Asphodelaceae. In: Kubitzki, K. (Ed.), The Dr J.C. Manning (SANBI) is thanked for bringing the spe- Families and Genera of Vascular Plants, 3. Springer, Berlin, pp. 130–140. cies to my attention and Dr A.R. Magee (SANBI) for reading Thulin, M., 1995. Aphodelaceae. In: Thulin, M. (Ed.), Flora of Somalia, 4. an earlier version of this paper. Royal Botanica Gardens, Kew, p. 32. Edited by JC Manning.
Recommended publications
  • Liliaceae S.L. (Lily Family)
    Liliaceae s.l. (Lily family) Photo: Ben Legler Photo: Hannah Marx Photo: Hannah Marx Lilium columbianum Xerophyllum tenax Trillium ovatum Liliaceae s.l. (Lily family) Photo: Yaowu Yuan Fritillaria lanceolata Ref.1 Textbook DVD KRR&DLN Erythronium americanum Allium vineale Liliaceae s.l. (Lily family) Herbs; Ref.2 Stems often modified as underground rhizomes, corms, or bulbs; Flowers actinomorphic; 3 sepals and 3 petals or 6 tepals, 6 stamens, 3 carpels, ovary superior (or inferior). Tulipa gesneriana Liliaceae s.l. (Lily family) “Liliaceae” s.l. (sensu lato: “in the broad sense”) - Lily family; 288 genera/4950 species, including Lilium, Allium, Trillium, Tulipa; This family is treated in a very broad sense in this class, as in the Flora of the Pacific Northwest. The “Liliaceae” s.l. taught in this class is not monophyletic. It is apparent now that the family should be treated in a narrower sense and some of the members should form their own families. Judd et al. recognize 15+ families: Agavaceae, Alliaceae, Amarylidaceae, Asparagaceae, Asphodelaceae, Colchicaceae, Dracaenaceae (Nolinaceae), Hyacinthaceae, Liliaceae, Melanthiaceae, Ruscaceae, Smilacaceae, Themidaceae, Trilliaceae, Uvulariaceae and more!!! (see web reading “Consider the Lilies”) Iridaceae (Iris family) Photo: Hannah Marx Photo: Hannah Marx Iris pseudacorus Iridaceae (Iris family) Photo: Yaowu Yuan Photo: Yaowu Yuan Sisyrinchium douglasii Sisyrinchium sp. Iridaceae (Iris family) Iridaceae - 78 genera/1750 species, Including Iris, Gladiolus, Sisyrinchium. Herbs, aquatic or terrestrial; Underground stems as rhizomes, bulbs, or corms; Leaves alternate, 2-ranked and equitant Ref.3 (oriented edgewise to the stem; Gladiolus italicus Flowers actinomorphic or zygomorphic; 3 sepals and 3 petals or 6 tepals; Stamens 3; Ovary of 3 fused carpels, inferior.
    [Show full text]
  • Through Our French Window Gordon James
    ©Gordon James ©Gordon Through our French window Gordon James Fig. 1 Asphodelus ramosus n 2014 I wrote an article above the hamlet of Le attention – systematically I for this journal about Clapier where we have a perhaps, dealing with the the orchids that grow on small house, and covers an Ranunculaceae family first, and around a limestone area of perhaps 25km2 lying but that could prove a little plateau in Southern France 750–850m above sea level dull; or perhaps according to called the Plateau du which, together with the season. In the end I decided Guilhaumard, which is surrounding countryside, simply to pick out some of situated on the southern supports an extraordinarily our favourites. With a few edge of the great Causse rich range of plants besides exceptions all the plants du Larzac, a limestone orchids. mentioned in this article karst plateau in the south I wasn’t sure how best can be reached on foot from of the Massif Central. to introduce the plants our house by moderately fit Guilhaumard rises steeply I think deserve special pensioners like us! ©Gordon James ©Gordon James ©Gordon Fig. 2 Asphodelus ramosus Fig. 3 Narcissus assoanus 371 ©Gordon James ©Gordon James ©Gordon Fig. 4 Narcissus poeticus Fig. 5 Iris lutescens Despite its elevation, I will start with those summers are hot, as the plants which, at least for a Plateau is relatively far moment, carpet the ground toward the South of and foremost amongst these ©Gordon James ©Gordon France, though it can be is Asphodelus ramosus (syn. quite cold and snowy A.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • In Vitro Allelopathic Effect of Aqueous Extracts of Sugarcane on Germination Parameters of Wheat
    doi:10.14720/aas.2017.109.2.18 Original research article / izvirni znanstveni članek In vitro allelopathic effect of aqueous extracts of sugarcane on germination parameters of wheat Abdul MAJEED1*, Zahir MUHAMMAD2, Manzoor HUSSAIN3 and Habib AHMAD4 Received January 26, 2017; accepted March 27, 2017. Delo je prispelo 26. januarja 2017, sprejeto 27. marca 2017. ABSTRACT IZVLEČEK Allelopathy – interactions among plants for resources along In vitro ALELOPATSKI UČINKI VODNIH with competition – is a composite phenomenon which has IZVLEČKOV SLADKORNEGA TRSA NA spacious potentials of application in agriculture. PARAMETRE KALITVE NAVADNE PŠENICE Understanding of interactions among plants, particularly cultivated crops, may be helpful in modifying crop cultivation Alelopatija – interakcije med rastlinami za vire preko pattern with consequent yields increments. In this study, we tekmovanja – je kompleksen fenomen, ki ima za uporabo v investigated the allelopathic effects of aqueous extracts of kmetijstvu velik pomen. Razumevanje teh interakcij med root, stem peels and leaves of sugarcane (Saccharum officinale rastlinami, še posebej med gojenimi, lahko pomaga pri L.) cultivar 51 at concentrations 0, 2.5, 5.0, 7.5 and 10.0 g/l on spreminjanju načinov pridelave z znatnim povečanjem germination indices and seedling biomass of wheat (Triticum pridelka. V raziskavi so bili preučevani alelopatski učinki aestivum L.) cultivar Pirsabak-2005. Results demonstrated vodnih izvlečkov korenin, stebel in listov sladkornega trsa that higher concentration (10.0 g/l) of extracts of root, stem (Saccharum officinale L.), kultivarja 51, v koncentracijah 0, peels and leaves significantly decreased mean germination 2.5, 5.0, 7.5 in 10.0 g/l na kalitvene parametere in biomaso time (MGT) but increased shoot and seminal root growth and kalic krušne pšenice (Triticum aestivum L.), sorte Pirsabak- seedling dry biomass; however, germination percentage was 2005.
    [Show full text]
  • Illinois Exotic Species List
    Exotic Species in Illinois Descriptions for these exotic species in Illinois will be added to the Web page as time allows for their development. A name followed by an asterisk (*) indicates that a description for that species can currently be found on the Web site. This list does not currently name all of the exotic species in the state, but it does show many of them. It will be updated regularly with additional information. Microbes viral hemorrhagic septicemia Novirhabdovirus sp. West Nile virus Flavivirus sp. Zika virus Flavivirus sp. Fungi oak wilt Ceratocystis fagacearum chestnut blight Cryphonectria parasitica Dutch elm disease Ophiostoma novo-ulmi and Ophiostoma ulmi late blight Phytophthora infestans white-nose syndrome Pseudogymnoascus destructans butternut canker Sirococcus clavigignenti-juglandacearum Plants okra Abelmoschus esculentus velvet-leaf Abutilon theophrastii Amur maple* Acer ginnala Norway maple Acer platanoides sycamore maple Acer pseudoplatanus common yarrow* Achillea millefolium Japanese chaff flower Achyranthes japonica Russian knapweed Acroptilon repens climbing fumitory Adlumia fungosa jointed goat grass Aegilops cylindrica goutweed Aegopodium podagraria horse chestnut Aesculus hippocastanum fool’s parsley Aethusa cynapium crested wheat grass Agropyron cristatum wheat grass Agropyron desertorum corn cockle Agrostemma githago Rhode Island bent grass Agrostis capillaris tree-of-heaven* Ailanthus altissima slender hairgrass Aira caryophyllaea Geneva bugleweed Ajuga genevensis carpet bugleweed* Ajuga reptans mimosa
    [Show full text]
  • Asphodelus Microcarpus Against Methicillin Resistant Staphylococcus Aureus Isolates
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2016; 8(12); 1964-1968 ISSN: 0975-4873 Research Article Antibacterial Activity of Asphodelin lutea and Asphodelus microcarpus Against Methicillin Resistant Staphylococcus aureus Isolates Rawaa Al-Kayali1*, Adawia Kitaz2, Mohammad Haroun3 1Biochemistry and Microbiology Dep., Faculty of Pharmacy, Aleppo University, Syria 2Pharmacognosy Dep., Faculty of Pharmacy, Aleppo University, Syria 3Faculty of Pharmacy, Al Andalus University for Medical Sciences, Syria Available Online: 15th December, 2016 ABSTRACT Objective: the present study aimed at evaluation of antibacterial activity of wild local Asphodelus microcarpus and Asphodeline lutea against methicillin resistant Staphylococcus aureus (MRSA) isolates.. Methods: Antimicrobial activity of the crude extracts was evaluated against MRSA clinical isolates using agar wells diffusion. Determination of minimum inhibitory concentration( MIC)of methanolic extract of two studied plants was also performed using tetrazolium microplate assay. Results: Our results showed that different extracts (20 mg/ml) of aerial parts and bulbs of the studied plants were exhibited good growth inhibitory effect against methicilline resistant S. aureus isolates and reference strain. The inhibition zone diameters of A. microcarpus and A. lutea ranged from 9.3 to 18.6 mm and from 6.6 to 15.3mm respectively. All extracts have better antibacterial effect than tested antibiotics against MRSA isolate. The MIC of the methanolic extracts of A. lutea and A. microcarpus for MRSA fell in the range of 0.625 to 2.5 mg/ml and of 1.25-5 mg/ml, respectively. conclusion:The extracts of A. lutea and A. microcarpus could be a possible source to obtain new antibacterial to treat infections caused by MRSA isolates.
    [Show full text]
  • California Department of Food and Agriculture
    DEPARTMENT OF FOOD AND AGRICULTURE PROPOSED CHANGES IN THE REGULATIONS Title 3, California Code of Regulations Section 4500 Noxious Weed Species INITIAL STATEMENT OF REASONS/ POLICY STATEMENT OVERVIEW Description of Public Problem, Administration Requirement, or Other Condition or Circumstance the Regulation is Intended to Address This regulation is intended to address the obligation of the Department of Food and Agriculture (Department) to protect the agricultural industry from the movement and spread of injurious noxious weeds into and within California. Specific Purpose and Factual Basis The specific purpose of section 4500 is to provide authority to the state to regulate the movement of the listed noxious weeds species into or within California. The factual basis for the determination by the Department that the amendment of this regulation is necessary is as follows: Invasive weeds have significant effects on the agricultural industry and environment. They can intensify drought impacts, increase fire hazard, decrease rangeland productivity, reduce water resources, raise nursery business costs, and diminish wildland diversity. Alien weeds spread to and invade approximately 700,000 hectares per year of U.S. wildlife habitat. One such pest weed, introduced in the early 19th century as an ornamental plant, is the European purple loosestrife. Spreading at a rate of 115,000 hectares per year, the weed population changes the basic structure of most of the invaded wetlands. Competitive stands of purple loosestrife have reduced the biomass of 44 native plant species and endangered wildlife such as the bog turtle that depends on these native plants. Loosestrife now occurs in 48 states and costs $45 million per year in control expenses and forage losses.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Morphological and Ornamental Studies of Eremurus Species
    LUCRĂRI ŞTIINŢIFICE SERIA HORTICULTURĂ, 60 (2) / 2017, USAMV IAŞI MORPHOLOGICAL AND ORNAMENTAL STUDIES OF EREMURUS SPECIES STUDII PRIVIND CARACTERELE MORFOLOGICE ŞI ORNAMENTALE ALE UNOR SPECII DE EREMURUS BAHRIM Cezar 1, BRÎNZĂ Maria1, CHELARIU Elena Liliana1, DRAGHIA Lucia1 e-mail: [email protected] Abstract. The species of Eremurus genus (Liliaceae family), by its distinctive ornamental characters and its ability to adapt to the most diverse ecological conditions, can represent valuable variants in the enrichment of floral assortment, for landscaping design or cut flowers. In this paper are presented the results of observations and determinations carried out for three species of Eremurus (E. himalaicus Baker, E. robustus Regel, E. stenophyllus (Boiss. & Buhse) Bak.) cultivated in Iasi (N-E Romania) during 2015-2016. The main objective of the paper is to highlight the morphological and decorative characters of these plants, so that their cultivation can be valid in unprotected conditions and the efficient way of uses. The results obtained support the promotion of these plants in culture, both in floral art and in landscaping design. Key words: Eremurus, morphological characters, ornamental value Rezumat. Speciile genului Eremurus (familia Liliaceae), prin caracterele ornamentale deosebite şi prin capacitatea bună de adaptare la cele mai diverse condiţii ecologice, pot reprezenta variante foarte valoroase în îmbogăţirea sortimentului de plante floricole pentru amenajarea grădinilor sau pentru flori tăiate. În lucrarea de faţă sunt prezentate rezultatele observaţiilor şi determinărilor efectuate în perioada 2015-2016 la trei specii de Eremurus (E. himalaicus Baker, E. robustus Regel, E. stenophyllus (Boiss. & Buhse) Bak.) cultivate la Iaşi (partea de N-E României). Obiectivul principal al lucrării este de a evidenţia caracterele morfo-decorative ale acestor plante, astfel încât să poată fi argumentată cultivarea lor în condiţii neprotejate şi modul eficient de valorificare.
    [Show full text]
  • Insights from Microsporogenesis in Asparagales
    EVOLUTION & DEVELOPMENT 9:5, 460–471 (2007) Constraints and selection: insights from microsporogenesis in Asparagales Laurent Penet,a,1,Ã Michel Laurin,b Pierre-Henri Gouyon,a,c and Sophie Nadota aLaboratoire Ecologie, Syste´matique et Evolution, Batiment 360, Universite´ Paris-Sud, 91405 Orsay Ce´dex, France bUMR CNRS 7179, Universite´ Paris 6FPierre & Marie Curie, 2 place Jussieu, Case 7077, 75005 Paris, France cMuse´um National d’Histoire Naturelle, De´partement de Syste´matique et Evolution Botanique, 12 rue Buffon, 75005 Paris CP 39, France ÃAuthor for correspondence (email: [email protected]) 1Current address: Department of Biological Sciences, University of Pittsburgh, 4249 Fifth & Ruskin, Pittsburgh, PA 15260, USA. SUMMARY Developmental constraints have been proposed different characteristics of microsporogenesis, only cell to interfere with natural selection in limiting the available wall formation appeared as constrained. We show that set of potential adaptations. Whereas this concept has constraints may also result from biases in the correlated long been debated on theoretical grounds, it has been occurrence of developmental steps (e.g., lack of successive investigated empirically only in a few studies. In this article, cytokinesis when wall formation is centripetal). We document we evaluate the importance of developmental constraints such biases and their potential outcomes, notably the during microsporogenesis (male meiosis in plants), with an establishment of intermediate stages, which allow emphasis on phylogenetic patterns in Asparagales. Different development to bypass such constraints. These insights are developmental constraints were tested by character discussed with regard to potential selection on pollen reshuffling or by simulated distributions. Among the morphology. INTRODUCTION 1991) also hindered tests using the concept (Pigliucci and Kaplan 2000).
    [Show full text]
  • Possible Uses of Plants of the Genus Asphodelus in Oral Medicine
    biomedicines Communication Possible Uses of Plants of the Genus Asphodelus in Oral Medicine Mario Dioguardi 1,* , Pierpaolo Campanella 1, Armando Cocco 1, Claudia Arena 1, Giancarlo Malagnino 1, Diego Sovereto 1, Riccardo Aiuto 2, Luigi Laino 3, Enrica Laneve 1, Antonio Dioguardi 1, Khrystyna Zhurakivska 1 and Lorenzo Lo Muzio 1 1 Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; [email protected] (P.C.); [email protected] (A.C.); [email protected] (C.A.); [email protected] (G.M.); [email protected] (D.S.); [email protected] (E.L.); [email protected] (A.D.); [email protected] (K.Z.); [email protected] (L.L.M.) 2 Department of Biomedical, Surgical, and Dental Science, University of Milan, 20122 Milan, Italy; [email protected] 3 Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy; [email protected] * Correspondence: [email protected] Received: 19 August 2019; Accepted: 29 August 2019; Published: 2 September 2019 Abstract: Among the many plants used in traditional medicine we have the plants of the genus Asphodelus, which are present in the Mediterranean area in North Africa and South East Asia, and have been used by indigenous peoples until recently for various pathologies, including: Psoriasis, alopecia areata, acne, burns, nephrolithiasis, toothache, and local inflammation. The scientific literature over the last five years has investigated the various effects of the metabolites extracted from plants of the genus Asphodelus, paying attention to the diuretic, antihypertensive, antimicrobial, anti-inflammatory, and antioxidant effects, and it also has begun to investigate the antitumor properties on tumor cell lines.
    [Show full text]
  • Download Article (PDF)
    Open Chem., 2019; 17: 1412–1422 Research Article Katarzyna Szewczyk*, Danuta Kalemba, Małgorzata Miazga-Karska, Barbara Krzemińska, Agnieszka Dąbrowska, Renata Nowak The essential oil composition of selected Hemerocallis cultivars and their biological activity https://doi.org/10.1515/chem-2019-0160 received November 15, 2019; accepted December 18, 2019. 1 Introduction Abstract: The horticultural cultivars of Hemerocallis The essential oil-producing species are extensively (daylily) have been used to treat diseases such as arranged among the plant kingdom. The volatile insomnia, inflammation and depression, and also as compounds are not only important in plant physiology a vegetable in eastern Asia. Taking into consideration but also in pharmaceutical, food and cosmetics industries. the fact, that the volatile compounds in Hemerocallis Numerous studies showed that essential oils possess cultivars have not been investigated to date, we decided therapeutic properties and can prevent and cure many to study the composition of the essential oils (EOs) from diseases [1]. the aerial parts of ten varieties collecting in Poland. EOs, The genus Hemerocallis, belonging to Asphodelaceae obtained by hydrodistillation, were analyzed by GC/MS family (Hemerocallidoideae subfamily), is mainly of East method that resulted in identification of 23-36 volatile Asia origin and contains hardy plants surviving from North compounds comprising 89.5%–96.3% of the total amount. American Zones [2]. According to the American Daylily The essential oils differed in their composition and they Society [3], more than 80 000 Hemerocallis cultivars can be classified into three groups. The antibacterial and exist in the world. They have usually been created by antioxidant activities of EOs were also evaluated.
    [Show full text]