Earth and Space Science. a Guide for Secondary Teachers. INSTITUTION Pennsylvania State Dept

Total Page:16

File Type:pdf, Size:1020Kb

Earth and Space Science. a Guide for Secondary Teachers. INSTITUTION Pennsylvania State Dept DOCUMENT RESUME ED 094 956 SE 016 611 AUTHOR Bolles, William H.; And Others TITLE Earth and Space Science. A Guide for Secondary Teachers. INSTITUTION Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services. PUB DATE 73 NOTE 200p. EDRS PRICE MF-$O.75 HC-$9.00 PLUS POSTAGE DESCRIPTORS Aerospace Education; *Astronomy; *Curriculum Guides; *Earth Science; Geology; Laboratory Experiments; Oceanology; Science Activities; Science Education; *Secondary School Science IDENTIFIERS Pennsylvania ABSTRACT Designed for use in Pennsylvania secondary school science classes, this guide is intended to provide fundamental information in each of the various disciplines of the earth sciences. Some of the material contained in the guide is intended as background material for teachers. Five units are presented: The Earth, The Oceans, The Space Environment, The Atmosphere, and The Exploration of Space. The course is organized so that students proceed from the familiar, everyday world to the atmosphere and the space environment. Teaching geology in the fall takes advantage of weather conditions which permit field study. The purpose of the Earth and Space Science course is to encourage student behaviors which will be indicative of a broad understanding of man1s physical environment of earth and space as well as an awareness of the consequences which could result from changes which man may effect.(PEB) BEST COPY AVAILABLE U S DEPARTMENT OF HEALTH. EDUCATION & WELFARE NATIONAL INSTITUTE OF 6 Fe elz+C EDUCATION Try,' DOCUMENT FIRSBEEN REPRO 4,..ATN!, (,1041151, DuCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN Pf 1.11 . AT Nc, POINTS OF VIEW OR OPINIONS 4,1 .4, 0444 STATED 00 NOT NECESSARILY REPRE ,,,!till,,,4,i1r 1,11 SENT OFFICIAL NATIONAL INSTITUTE 01 EDuCA ON POSITION OR POLICY EARTH AND SPACE SCIENCE A Guide For Secondary Teachers The coordination of the writings of the contributing authors and the final preparation of the teaching guide was the responsibility of: WilliamH.Bolles,Science Education Adviser, Pennsylvania Department of Education, Bureau of Curriculum Services. John H. Moss, Chairman, Environmental Studies, Franklin and Marshall College. Alan Geyer, Chief, Environmental Geology Divi- sion, Pennsylvania Department of Environmental Resources, Topographic and Geologic Survey. Bureau of Curriculum Services Pennsylvania Department of Education 1973 Copyright 1973 Commonwealth of Pennsylvania 9 EST COPY AVAILABLE Commonwealth of Pennsylvania Milton J. Shapp, Governor Department of Education John C. Pittenger, Secretary Office of Basic Education Donald M. Carroll Jr., Commissioner Harry K. Gerlach, Deputy Commissioner Bureau of Curriculum Services Michael E. Flanagan, Acting Director Division of Science and Technology Carl E. Heilman, Coordinator William H. Bolles, Science Education Adviser George Mettler,Production Coordinator John Wert, Artist Designer William H. Bolles, Photography Tom Ross, Cover Design Earth and Space Science Writing Committee Chairman John H. Moss, Chairman Environmental Studies Franklin and Marshall College Lancaster, Pennsylvania Pennsylvania Department of Education Box 911 Harrisburg, Pa. 17126 COVER PHOTOGRAPHS Rocket LaunchThe Apollo 15 Saturn V space vehicle carrying astronauts David R. Scott, Alfred M. Worcl.n and James B. Irwin lifts off to the Moon at 9:34 A.M., EDT, July 26, 1971 from the Kennedy Space Center's Launch Complex 39A. NASA Photo. SynclineThis striking example of a syncline is exposed along 1-81 in Schuylkill County. Photo by W. Bolles. Solar Eclipse--This photograph of a total solar eclipse was taken March 10, 1970 near Chesapeake, Virginia. Photo by W. Bolles. HailstoneCross-section of a hailstone under polarizedlight. National Center for Atmospheric Research, Boulder, Colorado. CatamaranThe Marine Science Consortium Catamaran operat- ing out of Lewes, Delaware. Grant Heilman Photo. CONTENTS Page Preface Introduction vii General Purpose vii The Scope of the Earth and Space Sciences vii Individual Aims viii Approach viii Unit 1.The Earth 1 Introduction 1 Fields of Student Investigation 1 The Landscape 1 Rocks and Minerals 3 Weathering Mass Wasting 16 Work of Ground Water 18 Work of Streams 25 Work of Glaciers 29 Structure of the Earth 36 Geologic History of the Earth ............ 53 Environmental Geology and Man 61 Unit 2.The Oceans 67 Introduction 67 Fields of Student Invey:;gation 67 Oceanographic Surveying and Research at Sea 67 Waves, Tides and Currents 68 Geology of the Oceans . 69 Physical Properties of Sea Water 70 The Chemistry of Sea Water 71 Biological Oceanography 71 Conservation and the Importance of the Sea to Man 73 Unit 3.The Space Environment 77 Introduction 77 Fields of Student Investigation 77 Environmental Effects of Earth Motion 78 The Moon . .................. 82 The Solar System 87 The Nearest StarOnr Sun 90 Aspects of the Sky 92 Locating Celestial Objects 92 Shadow Stick Astronomy .......... 110 The Use of Telescopes 112 Design of a Sundial 115 Telling Time by the Stars in the Northern Hemisphere 118 Role of the Planetarium 119 Using the Classroom as a Planetarium 119 The Milky Way r 121 The Stars ............. 123 The Universe 129 iii CONTENTS (Cont'd.) Pvc Unit 4.The Atmosphere 135 Introduction . ... ..... ......... 135 Fields of Student I nvestigation 135 Weather Elements and Their Observation 136 Pressure 136 Temperature 136 Humidity 139 Precipitation 144 Wind 146 Clouds 148 Visibility ....... 149 Upper-Air Observations 149 Basic Principles and Concepts 149 The Atmosphere's Energy Supply 149 Water in the Atmosphere.. 151 Hydrologic Cycle 152 Heat Transfer . 156 Air Masses and Fronts:Air Motion 158 Atmosphere Stability 162 Severe Weather 164 Unit 5.The Exploration of Space 167 Introduction . ................. 167 Fields of Student Investigation 167 The Early History of Space Flight 169 Satellites and Space Probes 171 Manned Space Exploration 175 Problems of Man in Space 175 Project Mercury 175 Project Gemini 177 Project Apollo 178 The Next Decade in Space 187 iv Preface This teaching guide is not intended as a course of study to be taken by the teacher and taught to students, but rather, as a true guide which places emphasis upon the basic funda- mentals in each of the various discipiines of the earth sciences. Some of the material in the guide is for the background information of the teacher and is not necessarily appropriate for secondary school students. The committee which produced the guide feels that the Earth and Space Science course has been, and should continue to be, a course for all students. Throughout the guideevery attempt has been made to indicate the relevance to man of the material being studied. The con- tent of the course, however, must be adapted to the ability levels of the students if any sem- blance of interest in science is to be achieved. Nothing is ever gained by teaching a too rigorous course which is beyond the grasp of most students and then basing success on the fact that a high percentage of pupils are unable to pass the course. Experience has shown that the grade placement of the Earth and Space Science course need not be fixed at any particular level.Schools have successfully taught the course as a preparatory offering, laying the foundation for more advanced courses, and as a terminal science course for the general student. A number of schools also offer Earth and Space Science II as an advanced course in the junior or senior year. The order of the units may be varied at the discretion of the teacher; however, the sequence of the units in the guide is based upon the assumption that students should begin their study of the earth-space sciences with the familiar, everyday world which they see around them and then proceed to the less tangible areas of the atmosphere and the space environment. This pro- cedure also allows the teaching of geology in the fall, which is the most desirable time for field trips; Oceanography next, in the hope that this rapidly developing and important discipline will be included instead of omitted as is often the case when it is scheduled last; astronomy in the winter, when darkness comes early and the familiar winter constellations are in the night sky; meterology in the spring, at a time when weather patterns show a great variety of changing conditions; and the exploration of space last because of its interrelationships with all the other earth sciences which have been previously taught. Recommendations as to the time to be spent on any one unit would be extremely difficult due to the variation in length of class periods, the number of times the class meets per week, the extent of laboratory exercises, the ability levels of different groups of students and the training and interests of the teachers.It is strongly recommended, however, that no single dis- cipline of the earth sciences be given a disproportionate share of time and that no discipline be omitted entirely. The quantity of material in the guide is such that only the most advanced classes will be able to proceed through all of it in a single school year. The teacher must exer- cise judgment as to what is essential with respect to the objectives of the course, for students of lesser ability. However, a portion of each of the units should be taught in each class. There has been no attempt to approach the comprehensiveness of the materials produced by the National Science Foundation funded science projects such as PSSC, CHEMS, CBA, BSCS and ESCP.It is hoped, however, that this guide will suggest some additional
Recommended publications
  • Silica-Rich Deposits and Hydrated Minerals at Gusev Crater, Mars: Vis-NIR Spectral Characterization and Regional Mapping
    Icarus 205 (2010) 375–395 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping M.S. Rice a,*, J.F. Bell III a, E.A. Cloutis b, A. Wang c, S.W. Ruff d, M.A. Craig e, D.T. Bailey b, J.R. Johnson f, P.A. de Souza Jr. g, W.H. Farrand h a Department of Astronomy, Cornell University, Ithaca, NY 14853, USA b Department of Geography, University of Winnipeg, 515 Portage Ave., Winnipeg, Man., Canada R3B 2E9 c Department of Earth and Planetary Science and McDonnell Center for Space Science, Washington University, St. Louis, MO 63130, USA d School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA e Department of Earth Sciences, University of Western Ontario, 1151 Richmond St. Louis, Ont., Canada N6A 5B7 f Astrogeology Team, United States Geological Survey, Flagstaff, AZ 86001, USA g Tasmanian ICT Center, CSIRO, Hobart, Tasmania 7000, Australia h Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA article info abstract Article history: The Mars Exploration Rover (MER) Spirit has discovered surprisingly high concentrations of amorphous Received 7 January 2009 silica in soil and nodular outcrops in the Inner Basin of the Columbia Hills. In Pancam multispectral obser- Revised 24 March 2009 vations, we find that an absorption feature at the longest Pancam wavelength (1009 nm) appears to be Accepted 31 March 2009 characteristic of these silica-rich materials; however, spectral analyses of amorphous silica suggest that Available online 8 May 2009 the 1009 nm spectral feature is not a direct reflection of their silica-rich nature.
    [Show full text]
  • Nixon Slates Soviet Talks BRUSSELS (AP) - Presi- Soviet - American Talks
    own School Board Asks Budget Defeat SEfe STORY BELOW * Snow Ending Mixed snow and rain ending 1WDAILY FINAL - today. Partly cloudy and cold ) Red Bank, Freehold 7" tonight and tomorrow. 1 Long Branch EDITION MM Monmouth County's Home Newspaper for 90 Years VOL. 91, NO. 169 RED BANK, N. J., MONDAY, FEBRUARY 24, 1969 18 PAGES 10 CENTS SAIGON (AP) - Viet Cong and North Vietnamese provincial capitals, and 29 district capitals. Some towns tian frontier Sunday in an operation to cut enemy supply Saigon was shelled twice yesterday, for the first time troops raked more than 50 towns and military posts with were hit several times. lines. There were no casualties, but the two losses raised since the halt in the bombing of. North Vietnam last Nov. 1. rockets, mortars and. light ground attacks today in the sec- Vice President Nguyen Cao Ky, taking a plane to return to 2,362 the number of American helicopters lost in the war. Fifteen civilians were killed and 48 were wounded. But ond day of countrywide attacks. American officers said to the Paris peace talks, said he would recommend a re- AROUND U.S. BASES the capital was spared any shelling today. the enemy had started a spring offensive intended to gen- sumption of the bombing of North Vietnam if shelling of The bulk of the fighting occurred north and northwest of 'A BRAZEN THING' erate pressure from the American public for concessions at South Vietnam's cities continued. He said his South Viet- Saigon, around the big American bases at Long Blnh, Bien An American official said the rocket attacks on the .
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • NASA's Goddard Space Flight Center Laboratory for High Energy
    1 NASA’s Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, Maryland 20771 @S0002-7537~99!00301-7# This report covers the period from July 1, 1997 to June 30, Toshiaki Takeshima, Jane Turner, Ken Watanabe, Laura 1998. Whitlock, and Tahir Yaqoob. This Laboratory’s scientific research is directed toward The following investigators are University of Maryland experimental and theoretical research in the areas of X-ray, Scientists: Drs. Keith Arnaud, Manuel Bautista, Wan Chen, gamma-ray, and cosmic-ray astrophysics. The range of inter- Fred Finkbeiner, Keith Gendreau, Una Hwang, Michael Loe- ests of the scientists includes the Sun and the solar system, wenstein, Greg Madejski, F. Scott Porter, Ian Richardson, stellar objects, binary systems, neutron stars, black holes, the Caleb Scharf, Michael Stark, and Azita Valinia. interstellar medium, normal and active galaxies, galaxy clus- Visiting scientists from other institutions: Drs. Vadim ters, cosmic-ray particles, and the extragalactic background Arefiev ~IKI!, Hilary Cane ~U. Tasmania!, Peter Gonthier radiation. Scientists and engineers in the Laboratory also ~Hope College!, Thomas Hams ~U. Seigen!, Donald Kniffen serve the scientific community, including project support ~Hampden-Sydney College!, Benzion Kozlovsky ~U. Tel such as acting as project scientists and providing technical Aviv!, Richard Kroeger ~NRL!, Hideyo Kunieda ~Nagoya assistance to various space missions. Also at any one time, U.!, Eugene Loh ~U. Utah!, Masaki Mori ~Miyagi U.!, Rob- there are typically between twelve and eighteen graduate stu- ert Nemiroff ~Mich. Tech. U.!, Hagai Netzer ~U. Tel Aviv!, dents involved in Ph.D. research work in this Laboratory. Yasushi Ogasaka ~JSPS!, Lev Titarchuk ~George Mason U.!, Currently these are graduate students from Catholic U., Stan- Alan Tylka ~NRL!, Robert Warwick ~U.
    [Show full text]
  • Hydrologic Soil Groups
    AppendixExhibitAppendix A: Hydrologic AB Soil Synthetic Groups Hydrologic for theRainfall United SoilStates Distributions Groups and Rainfall Data Sources Soils are classified into hydrologic soil groups (HSG’s) Disturbed soil profiles to indicate the minimum rate of infiltration obtained for bareThe highest soil after peak prolonged discharges wetting. from Thesmall HSG watersheds’s, which arein the UnitedAs a result States of areurbanization, usually caused the soil by profileintense, may brief be rain- con- A,falls B, that C, and may D, occur are one as distinctelement eventsused in or determining as part of a longersiderably storm. These altered intense and the rainstorms listed group do not classification usually ex- may runofftended curve over anumbers large area (see and chapter intensities 2). For vary the greatly. conve- One commonno longer practice apply. inIn rainfall-runoffthese circumstances, analysis use is tothe develop follow- niencea synthetic of TR-55 rainfall users, distribution exhibit A-1 to uselists in the lieu HSG of actualclassifi- storming events. to determine This distribution HSG according includes to themaximum texture rainfall of the cationintensities of United for the States selected soils. design frequency arranged in a sequencenew surface that soil, is critical provided for thatproducing significant peak compaction runoff. has not occurred (Brakensiek and Rawls 1983). TheSynthetic infiltration raterainfall is the rate distributions at which water enters the soil at the soil surface. It is controlled by surface condi- HSG Soil textures tions.The length HSG ofalso the indicates most intense the transmission rainfall period rate contributing—the rate to the peak runoff rate is related to the time of concen- A Sand, loamy sand, or sandy loam attration which (T thec) for water the watershed.moves within In thea hydrograph soil.
    [Show full text]
  • Impact Melt Emplacement on Mercury
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 7-24-2018 2:00 PM Impact Melt Emplacement on Mercury Jeffrey Daniels The University of Western Ontario Supervisor Neish, Catherine D. The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Jeffrey Daniels 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons, Physical Processes Commons, and the The Sun and the Solar System Commons Recommended Citation Daniels, Jeffrey, "Impact Melt Emplacement on Mercury" (2018). Electronic Thesis and Dissertation Repository. 5657. https://ir.lib.uwo.ca/etd/5657 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Impact cratering is an abrupt, spectacular process that occurs on any world with a solid surface. On Earth, these craters are easily eroded or destroyed through endogenic processes. The Moon and Mercury, however, lack a significant atmosphere, meaning craters on these worlds remain intact longer, geologically. In this thesis, remote-sensing techniques were used to investigate impact melt emplacement about Mercury’s fresh, complex craters. For complex lunar craters, impact melt is preferentially ejected from the lowest rim elevation, implying topographic control. On Venus, impact melt is preferentially ejected downrange from the impact site, implying impactor-direction control. Mercury, despite its heavily-cratered surface, trends more like Venus than like the Moon.
    [Show full text]
  • THE STUDY of SATURN's RINGS 1 Thesis Presented for the Degree Of
    1 THE STUDY OF SATURN'S RINGS 1610-1675, Thesis presented for the Degree of Doctor of Philosophy in the Field of History of Science by Albert Van Haden Department of History of Science and Technology Imperial College of Science and Teohnology University of London May, 1970 2 ABSTRACT Shortly after the publication of his Starry Messenger, Galileo observed the planet Saturn for the first time through a telescope. To his surprise he discovered that the planet does.not exhibit a single disc, as all other planets do, but rather a central disc flanked by two smaller ones. In the following years, Galileo found that Sa- turn sometimes also appears without these lateral discs, and at other times with handle-like appendages istead of round discs. These ap- pearances posed a great problem to scientists, and this problem was not solved until 1656, while the solution was not fully accepted until about 1670. This thesis traces the problem of Saturn, from its initial form- ulation, through the period of gathering information, to the final stage in which theories were proposed, ending with the acceptance of one of these theories: the ring-theory of Christiaan Huygens. Although the improvement of the telescope had great bearing on the problem of Saturn, and is dealt with to some extent, many other factors were in- volved in the solution of the problem. It was as much a perceptual problem as a technical problem of telescopes, and the mental processes that led Huygens to its solution were symptomatic of the state of science in the 1650's and would have been out of place and perhaps impossible before Descartes.
    [Show full text]
  • GEOLOGY THEME STUDY Page 1
    NATIONAL HISTORIC LANDMARKS Dr. Harry A. Butowsky GEOLOGY THEME STUDY Page 1 Geology National Historic Landmark Theme Study (Draft 1990) Introduction by Dr. Harry A. Butowsky Historian, History Division National Park Service, Washington, DC The Geology National Historic Landmark Theme Study represents the second phase of the National Park Service's thematic study of the history of American science. Phase one of this study, Astronomy and Astrophysics: A National Historic Landmark Theme Study was completed in l989. Subsequent phases of the science theme study will include the disciplines of biology, chemistry, mathematics, physics and other related sciences. The Science Theme Study is being completed by the National Historic Landmarks Survey of the National Park Service in compliance with the requirements of the Historic Sites Act of l935. The Historic Sites Act established "a national policy to preserve for public use historic sites, buildings and objects of national significance for the inspiration and benefit of the American people." Under the terms of the Act, the service is required to survey, study, protect, preserve, maintain, or operate nationally significant historic buildings, sites & objects. The National Historic Landmarks Survey of the National Park Service is charged with the responsibility of identifying America's nationally significant historic property. The survey meets this obligation through a comprehensive process involving thematic study of the facets of American History. In recent years, the survey has completed National Historic Landmark theme studies on topics as diverse as the American space program, World War II in the Pacific, the US Constitution, recreation in the United States and architecture in the National Parks.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • National Blue Ribbon Schools Recognized 1982-2015
    NATIONAL BLUE RIBBON SCHOOLS PROGRAM Schools Recognized 1982 Through 2015 School Name City Year ALABAMA Academy for Academics and Arts Huntsville 87-88 Anna F. Booth Elementary School Irvington 2010 Auburn Early Education Center Auburn 98-99 Barkley Bridge Elementary School Hartselle 2011 Bear Exploration Center for Mathematics, Science Montgomery 2015 and Technology School Beverlye Magnet School Dothan 2014 Bob Jones High School Madison 92-93 Brewbaker Technology Magnet High School Montgomery 2009 Brookwood Forest Elementary School Birmingham 98-99 Buckhorn High School New Market 01-02 Bush Middle School Birmingham 83-84 C.F. Vigor High School Prichard 83-84 Cahaba Heights Community School Birmingham 85-86 Calcedeaver Elementary School Mount Vernon 2006 Cherokee Bend Elementary School Mountain Brook 2009 Clark-Shaw Magnet School Mobile 2015 Corpus Christi School Mobile 89-90 Crestline Elementary School Mountain Brook 01-02, 2015 Daphne High School Daphne 2012 Demopolis High School Demopolis 2008 East Highland Middle School Sylacauga 84-85 Edgewood Elementary School Homewood 91-92 Elvin Hill Elementary School Columbiana 87-88 Enterprise High School Enterprise 83-84 EPIC Elementary School Birmingham 93-94 Eura Brown Elementary School Gadsden 91-92 Forest Avenue Academic Magnet Elementary School Montgomery 2007 Forest Hills School Florence 2012 Fruithurst Elementary School Fruithurst 2010 George Hall Elementary School Mobile 96-97 George Hall Elementary School Mobile 2008 1 of 216 School Name City Year Grantswood Community School Irondale 91-92 Guntersville Elementary School Guntersville 98-99 Heard Magnet School Dothan 2014 Hewitt-Trussville High School Trussville 92-93 Holtville High School Deatsville 2013 Holy Spirit Regional Catholic School Huntsville 2013 Homewood High School Homewood 83-84 Homewood Middle School Homewood 83-84, 96-97 Indian Valley Elementary School Sylacauga 89-90 Inverness Elementary School Birmingham 96-97 Ira F.
    [Show full text]