Hydrologic Soil Groups

Total Page:16

File Type:pdf, Size:1020Kb

Hydrologic Soil Groups AppendixExhibitAppendix A: Hydrologic AB Soil Synthetic Groups Hydrologic for theRainfall United SoilStates Distributions Groups and Rainfall Data Sources Soils are classified into hydrologic soil groups (HSG’s) Disturbed soil profiles to indicate the minimum rate of infiltration obtained for bareThe highest soil after peak prolonged discharges wetting. from Thesmall HSG watersheds’s, which arein the UnitedAs a result States of areurbanization, usually caused the soil by profileintense, may brief be rain- con- A,falls B, that C, and may D, occur are one as distinctelement eventsused in or determining as part of a longersiderably storm. These altered intense and the rainstorms listed group do not classification usually ex- may runofftended curve over anumbers large area (see and chapter intensities 2). For vary the greatly. conve- One commonno longer practice apply. inIn rainfall-runoffthese circumstances, analysis use is tothe develop follow- niencea synthetic of TR-55 rainfall users, distribution exhibit A-1 to uselists in the lieu HSG of actualclassifi- storming events. to determine This distribution HSG according includes to themaximum texture rainfall of the cationintensities of United for the States selected soils. design frequency arranged in a sequencenew surface that soil, is critical provided for thatproducing significant peak compaction runoff. has not occurred (Brakensiek and Rawls 1983). TheSynthetic infiltration raterainfall is the rate distributions at which water enters the soil at the soil surface. It is controlled by surface condi- HSG Soil textures tions.The length HSG ofalso the indicates most intense the transmission rainfall period rate contributing—the rate to the peak runoff rate is related to the time of concen- A Sand, loamy sand, or sandy loam attration which (T thec) for water the watershed.moves within In thea hydrograph soil. This rate created is with NRCS procedures, th controlled by the soil profile. Approximate numerical B Silt loam or loam ranges for transmission rates shown in the HSG defini- C Sandy clay loam tions were first published by Musgrave (USDA 1955). D Clay loam, silty clay loam, sandy clay, silty The four groups are defined by SCS soil scientists as clay, or clay follows: Group A soils have low runoff potential and high infil- Drainage and group D soils tration rates even when thoroughly wetted. They consist chiefly of deep, well to excessively drained sand or Some soils in the list are in group D because of a high gravel and have a high rate of water transmission water table that creates a drainage problem. Once these (greater than 0.30 in/hr). soils are effectively drained, they are placed in a differ- ent group. For example, Ackerman soil is classified as Group B soils have moderate infiltration rates when A/D. This indicates that the drained Ackerman soil is in thoroughly wetted and consist chiefly of moderately group A and the undrained soil is in group D. deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission (0.15- 0.30 in/hr). Group C soils have low infiltration rates when thor- oughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine texture. These soils have a low rate of water transmission (0.05-0.15 in/hr). Group D soils have high runoff potential. They have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high swelling poten- tial, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very low rate of water transmission (0-0.05 in/hr). In exhibit A-1, some of the listed soils have an added modifier; for example, “Abrazo, gravelly.” This refers to a gravelly phase of the Abrazo series that is found in SCS soil map legends. A–1 ExhibitExhibit A: Hydrologic A: Hydrologic Soil Groups forSoil the UnitedGroups States for the United States AABAB ............................................ D ACTI................................................ D AGUILITA ....................................... B ALBUS ............................................ B AABERG......................................... D ACTON ........................................... B AGUIRRE ....................................... D ALCALDE ....................................... D AARON ........................................... C ACUFF ............................................ B AGUSTIN ....................................... B ALCAN ............................................ D AARUP ........................................... D ACUNA ........................................... C AHART ........................................... B ALCESTER .................................... B AASTAD ......................................... B ACY ................................................ C AHCHEW........................................ D ALCOA ........................................... B AAZDAHL ....................................... B ADA ................................................ C AHL ................................................. C ALCONA ......................................... B ABAC .............................................. D ADABOI .......................................... C AHLSTROM ................................... D ALCOT ............................................ A ABAJO ............................................ C ADAIR ............................................. C AHMEEK ........................................ C ALCOVA ......................................... B ABALAN ......................................... D ADAMANT ...................................... B AHOLT ............................................ D ALCOVY ......................................... C ABALOBADIAH .............................. B ADAMS ........................................... A AHPAH ........................................... C ALDA, Saline.............................. B/D ABARCA ......................................... B ADAMSLAKE ................................. B AHREN ........................................... B ALDA .............................................. C ABBAYE ......................................... B ADAMSON ..................................... B AHRNKLIN ..................................... C ALDAPE ......................................... D ABBEYLAKE .................................. A ADAMSVILLE................................. C AHRS .............................................. B ALDAX ............................................ D ABBIE ............................................. B ADATON......................................... D AHSAHKA ...................................... C ALDEN ............................................ D ABBOTT ......................................... D ADAVEN ......................................... C AHTANUM .................................. C/D ALDENLAKE .................................. B ABBOTTSPRING ........................... B ADCO ............................................. D AHWAHNEE................................... B ALDER ............................................ C ABBOTTSTOWN ........................... C ADDER ....................................... A/D AIBONITO ...................................... D ALDERDALE .................................. C ABEGG ........................................... B ADDERTON ................................... B AIDO ............................................... D ALDERFLATS ................................ D ABELA ............................................ B ADDICKS ....................................... D AIKEN ............................................. B ALDERMAND ................................. B ABELL ............................................ B ADDIELOU ..................................... B AIKMAN .......................................... D ALDERON ...................................... B ABENAKI ........................................ B ADE ................................................ A AILEY ............................................. B ALDERWOOD ................................ C ABERDEEN ................................... C ADEK .............................................. B AIMELIIK ........................................ B ALDI ................................................ D ABERONE ...................................... B ADEL .............................................. B AINAKEA ........................................ B ALDINE .......................................... D ABERSITO ..................................... C ADEL, Wet ..................................... D AINSLEY ........................................ B ALDING .......................................... D ABERT ............................................ B ADELAIDE...................................... D AINSWORTH ................................. B ALDINO .......................................... C ABES .............................................. D ADELANTO .................................... B AIRMONT ....................................... C ALDO .............................................. A ABGESE ......................................... B ADELINO ........................................ B AIRPORT, Wet............................... C ALDRICH ........................................ C ABILENE .......................................
Recommended publications
  • Nixon Slates Soviet Talks BRUSSELS (AP) - Presi- Soviet - American Talks
    own School Board Asks Budget Defeat SEfe STORY BELOW * Snow Ending Mixed snow and rain ending 1WDAILY FINAL - today. Partly cloudy and cold ) Red Bank, Freehold 7" tonight and tomorrow. 1 Long Branch EDITION MM Monmouth County's Home Newspaper for 90 Years VOL. 91, NO. 169 RED BANK, N. J., MONDAY, FEBRUARY 24, 1969 18 PAGES 10 CENTS SAIGON (AP) - Viet Cong and North Vietnamese provincial capitals, and 29 district capitals. Some towns tian frontier Sunday in an operation to cut enemy supply Saigon was shelled twice yesterday, for the first time troops raked more than 50 towns and military posts with were hit several times. lines. There were no casualties, but the two losses raised since the halt in the bombing of. North Vietnam last Nov. 1. rockets, mortars and. light ground attacks today in the sec- Vice President Nguyen Cao Ky, taking a plane to return to 2,362 the number of American helicopters lost in the war. Fifteen civilians were killed and 48 were wounded. But ond day of countrywide attacks. American officers said to the Paris peace talks, said he would recommend a re- AROUND U.S. BASES the capital was spared any shelling today. the enemy had started a spring offensive intended to gen- sumption of the bombing of North Vietnam if shelling of The bulk of the fighting occurred north and northwest of 'A BRAZEN THING' erate pressure from the American public for concessions at South Vietnam's cities continued. He said his South Viet- Saigon, around the big American bases at Long Blnh, Bien An American official said the rocket attacks on the .
    [Show full text]
  • Evaluation of Humic Substances Used in Commercial Fertilizer Formulations
    Final report FREP Project 07-0174 Evaluation of humic substances used in commercial fertilizer formulations T.K. Hartz Extension Specialist Department of Plant Sciences University of California 1 Shields Ave Davis, CA 95616 (530) 752-1738 [email protected] Executive summary: This project examined the effects of five commercial humic acid formulations on soil microbial activity, seed germination, early growth, nutrient uptake and crop productivity of lettuce and processing tomato. Humic acid solutions ranging from 250-750 PPM a.i. were used to imbibe coated lettuce seed; those seeds germinated at the same rate and frequency as seed imbibed with deionized water. In a greenhouse trial lettuce plants were grown from seed in pots of four field soils differing in phosphorus availability. The pots received pre-seeding banded application of humic acid alone, P fertilization (liquid 10-34- 0) alone, both humic acid and P fertilization, or neither treatment. In one of the four soils humic acid plus P increased lettuce growth above that of P fertilization alone. In the absence of P fertilization, no humic acid formulation increased lettuce growth in any soil. P fertilization increased plant P uptake in all soils, but humic acid did not increase P uptake in any soil. The effect of humic acid on soil microbial activity was evaluated in a laboratory assay using a low organic matter soil and a high organic matter soil (0.8 and 2.5% organic matter, respectively). The soils were wetted with tap water alone, P fertilizer solution, humic acid solution, or a solution containing both humic acid and P fertilizer.
    [Show full text]
  • COONAWARRA \ Little Black Book Cover Image: Ben Macmahon @Macmahonimages COONAWARRA \
    COONAWARRA \ Little Black Book Cover image: Ben Macmahon @macmahonimages COONAWARRA \ A small strip of land in the heart of the Limestone Coast in South Australia. Together our landscape, our people and our passion, work in harmony to create a signature wine region that delivers on a myriad of levels - producing wines that unmistakably speak of their place and reflect the character of their makers. It’s a place that gets under your skin, leaving an indelible mark, for those who choose it as home and for those who keep coming back. We invite you to Take the Time... Visit. Savour. Indulge. You’ll smell it, taste it and experience it for yourself. COONAWARRA \ Our Story Think Coonawarra, and thoughts of There are the ruddy cheeks of those who tend the vines; sumptuous reds spring to mind – from the the crimson sunsets that sweep across a vast horizon; and of course, there’s the fiery passion in the veins of our rich rust-coloured Terra Rossa soil for which vignerons and winemakers. Almost a million years ago, it’s internationally recognised, to the prized an ocean teeming with sea-life lapped at the feet of the red wines that have made it famous. ancient Kanawinka Escarpment. Then came an ice age, and the great melt that followed led to the creation of the chalky white bedrock which is the foundation of this unique region. But nature had not finished, for with her winds, rain and sand she blanketed the plain with a soil rich in iron, silica and nutrients, to become one of the most renowned terroir soils in the world.
    [Show full text]
  • Soil Fertility Research in Sugarcane in 2007
    SOIL FERTILITY RESEARCH IN SUGARCANE IN 2007 Brenda S. Tubaña, Chuck Kennedy, Allen Arceneaux and Jasper Teboh School of Plant, Environmental and Soil Sciences In Cooperation with Sugar Research Station Summary Two experiments were conducted in 2007 to test the effect of different N rates on the yield and yield components of current sugarcane varieties. Spring application of N at rates of 0, 40, 80 and 120 lbs N ac -1 to LCP85-384, HoCP96-540 and L99-226 had no effect on plantcane yield. However, 40 and 80 lbs N ac -1 resulted in significantly higher sugar yield when compared with 120 lbs N ac -1 application rate. Stubble cane yield of LCP85-384, Ho95-988, and L97-128 showed response to spring N fertilization. Linear-plateau models estimated N rates that ranged from 42 to 80 lbs N ac -1 for optimum cane and sugar yield of these varieties. Two trials were also conducted to determine the effect of fertilizer adjuvant. Applications of Trimat, PGR and foliar NPK in addition with normal fertilization did not result in significant increases in the first- stubble cane and sugar yield of Ho95-988 and L97-128. Similarly, application of Helena Chemical products on top on standard practices did not result in significant increases in second- stubble cane and sugar yield of L97-128. Objectives This research was designed to provide information on soil fertility in an effort to help cane growers produce maximum economic yields and increase profitability in sugarcane production. This annual progress report is presented to provide the latest available data on certain practices and not as a final recommendation for growers to use all of these practices.
    [Show full text]
  • Impact Melt Emplacement on Mercury
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 7-24-2018 2:00 PM Impact Melt Emplacement on Mercury Jeffrey Daniels The University of Western Ontario Supervisor Neish, Catherine D. The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Jeffrey Daniels 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons, Physical Processes Commons, and the The Sun and the Solar System Commons Recommended Citation Daniels, Jeffrey, "Impact Melt Emplacement on Mercury" (2018). Electronic Thesis and Dissertation Repository. 5657. https://ir.lib.uwo.ca/etd/5657 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Impact cratering is an abrupt, spectacular process that occurs on any world with a solid surface. On Earth, these craters are easily eroded or destroyed through endogenic processes. The Moon and Mercury, however, lack a significant atmosphere, meaning craters on these worlds remain intact longer, geologically. In this thesis, remote-sensing techniques were used to investigate impact melt emplacement about Mercury’s fresh, complex craters. For complex lunar craters, impact melt is preferentially ejected from the lowest rim elevation, implying topographic control. On Venus, impact melt is preferentially ejected downrange from the impact site, implying impactor-direction control. Mercury, despite its heavily-cratered surface, trends more like Venus than like the Moon.
    [Show full text]
  • Soil Survey of Sequoia National Forest, California (1996) Part II of II
    622 Dome-Chaix outcrop association, 30 to 50 percent slopes. Illlil This map unit is on mountainsides and ridges. Slope is 30 to 50 percent. The native plant communities are Yellow Pine Forest and Mixed Conifer Forest. Elevation is 5,000 to 8,040 feet. The average annual precipitation is about 24 to 51 inches. This unit is 35 percent Dome sandy loam, 30 percent Chaix sandy loam, and 20 percent Rock outcrop. Dome Chaix Rock outcrop 40 to 60 in 20 to 40 in Moderate to low Low t 5 to 6 in 3 to 4 in | 2 in 2 in I Moderately rapid Moderately rapid B B Well drained Well drained or somewhat excessively drained Rapid Rapid Moderate Moderate 0.20 0.24 ^ SM SM Intermediate Intermediate 2ep 3eP 85 to 164 50 to 84 Suitable Suitable Regeneration difficulty—d and f Summer Summer Plant competition, steep slopes II II Included in this unit are small areas of Chawanakee soils and Junipero family soils. Included areas make up about 15 percent of the total acreage. The Dome soil is deep and formed in residuum derived from granitic rock. Typically, the surface layer is grayish brown sandy loam about 7 inches thick. The subsoil is pale brown sandy loam about 21 inches thick. The subsoil is very pale brown sandy loam about 22 inches thick over highly weathered granitic rock. In some areas the surface layer is coarse sandy loam. The Chaix soil is moderately deep and formed in residuum derived from granitic rock. Typically, the surface layer is brown sandy loam about 7 inches thick.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UNIVERSITY OF CALIFORNIA Santa Barbara Laser Spectroscopy and Photodynamics of Alternative Nucleobases and Organic Dyes A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Jacob Alan Berenbeim Committee in charge: Professor Mattanjah de Vries, Chair Professor Steve Buratto Professor Michael Gordon Professor Martin Moskovits December 2017 The dissertation of Jacob Alan Berenbeim is approved. ____________________________________________ Steve Buratto ____________________________________________ Michael Gordon ____________________________________________ Martin Moskovits ____________________________________________ Mattanjah de Vries, Committee Chair October 2017 Laser Spectroscopy and Photodynamics of Alternative Nucleobases and Organic Dyes Copyright © 2017 by Jacob Alan Berenbeim iii ACKNOWLEDGEMENTS To my wife Amy thank you for your endless support and for inspiring me to match your own relentless drive towards reaching our goals. To my parents and my brothers Eli and Gabe thank you for your love and visits to Santa Barbara, CA. To my advisor Mattanjah and my lab mates thank you for the incredible opportunity to share ideas and play puppets with the fabric of space. And to my cat Lola, you’re a good cat. iv VITA OF JACOB ALAN BERENBEIM October 2017 EDUCATION University of California, Santa Barbara CA Fall 2017 PhD, Physical Chemistry Advisor: Prof. Mattanjah S. de Vries University of Puget Sound, Tacoma WA 2009 BS, Chemistry Advisor: Prof. Daniel Burgard LABORATORY TECHNIQUES Photophysics by UV/VIS and IR pulsed laser spectroscopy, optical alignment, oa-TOF mass spectrometry (multiphoton ionization, MALDI, ESI+), molecular beam high vacuum apparatus, high voltage electronics, molecular computational modeling with Gaussian, data acquisition with LabView, and data manipulation with Mathematica and Origin RESEARCH EXPERIENCE Graduate Student Researcher 2012-2017 • Time dependent (transient) photo relaxation of organic molecules, including PAHs and aromatic biological molecules.
    [Show full text]
  • Concentric Lunar Craters
    The Strolling Astronomer Feature Story: Concentric Lunar Craters By Howard Eskildsen, [email protected] Online Readers Left-click your mouse on the e-mail address in blue text to contact the author of this article, and selected references also in blue text at the end of this paper for more information there. This paper by ALPO member and astrophotographer Howard Eskidsen is only one of many that ratios were calculated using Lunar averaged 0.065, much shallower than were presented at ALCon 2013, Reconnaissance Orbiter data. Crater the T/D ratio of 0.20 that is typical for held in Atlanta, Georgia. coordinates were reproducible to within non-concentric craters. Mean crater rim 0.02°. Outer rim diameters (D) ranged elevations were below the mean lunar Abstract from 2.3km to 24.2 km with the mean radius of 1737.4 km with the mean 1.5 8.2 km with error of ± 0.2 km. Inner km lower than the mean lunar radius. Fifty-five concentric caters were toroid rim diameters (T) averaged 4.3 identified and measured for diameter, km, and calculated toroid to diameter depth, toroid crest diameter, ratios (T/D ratio) averaged 0.51. The d/ coordinates, and depth/diameter (d/D) D ratios for the concentric craters Table 1: Eastern Hemisphere Diameter Data Page 36 Volume 56, No. 1, Winter 2014 The Strolling Astronomer Table 1A: Eastern Hemisphere Elevation/Depth Data Concentric Craters pure highland areas. None are found in While the most notable concentrics have A small percentage of craters that would the central maria (Wood 1978).
    [Show full text]
  • Coversheet for Thesis in Sussex Research Online
    A University of Sussex MPhil thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the aut hor, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details THE MEANING OF ICE Scientific scrutiny and the visual record obtained from the British Polar Expeditions between 1772 and 1854 Trevor David Oliver Ware M.Phil. University of Sussex September 2013 Part One of Two. Signed Declaration I hereby declare that this Thesis has not been and will not be submitted in whole or in part to another University for the Award of any other degree. Signed Trevor David Oliver Ware. CONTENTS Summary………………………………………………………….p1. Abbreviations……………………………………………………..p3 Acknowledgements…………………………………………….. ..p4 List of Illustrations……………………………………………….. p5 INTRODUCTION………………………………………….……...p27 The Voyage of Captain James Cook. R.N.1772 – 1775..…………p30 The Voyage of Captain James Cook. R.N.1776 – 1780.…………p42 CHAPTER ONE. GREAT ABILITIES, PERSEVERANCE AND INTREPIDITY…………………………………………………….p54 Section 1 William Scoresby Junior and Bernard O’Reilly. Ice and the British Whaling fleet.………………………………………………………………p60 Section 2 Naval Expeditions in search for the North West passage.1818 – 1837...........……………………………………………………………..…….p 68 2.1 John Ross R.N. Expedition of 1818 – 1819…….….…………..p72 2.2 William Edward Parry.
    [Show full text]
  • Odd Year Nur-Rn-Lic-30550 G
    LicenseNumber FirstName MiddleName LastName RenewalGroup NUR-LPN-LIC-6174 DOLORES ROSE AABERG 2019 - ODD YEAR NUR-RN-LIC-30550 GRETCHEN ELLEN AAGAARD-SHIVELY 2019 - ODD YEAR NUR-RN-LIC-128118 CAMBRIA LAUREN AANERUD 2019 - ODD YEAR NUR-RN-LIC-25862 SOPHIA SABINA AANSTAD 2018 - EVEN YEAR NUR-APRN-LIC-124944 ERIN EDWARD AAS 2018 - EVEN YEAR NUR-RN-LIC-105371 ERIN EDWARD AAS 2018 - EVEN YEAR NUR-RN-LIC-34536 BRYON AAS 2019 - ODD YEAR NUR-RN-LIC-39208 JULIA LYNN AASEN 2018 - EVEN YEAR NUR-APRN-LIC-130522 LORI ANN AASEN 2019 - ODD YEAR NUR-RN-LIC-130520 LORI ANN AASEN 2019 - ODD YEAR NUR-RN-LIC-21015 DEBBIE ABAR 2018 - EVEN YEAR NUR-APRN-LIC-130757 LUKE G ABAR 2018 - EVEN YEAR NUR-RN-LIC-130756 LUKE GORDON ABAR 2019 - ODD YEAR NUR-RN-LIC-31911 AIMEE KRISTINE ABBOTT 2018 - EVEN YEAR NUR-RN-LIC-29448 DENISE M ABBOTT 2018 - EVEN YEAR NUR-RN-LIC-131150 SARAH FRANCES ABBOTT 2018 - EVEN YEAR NUR-LPN-LIC-31701 ANGIE ABBOTT 2019 - ODD YEAR NUR-LPN-LIC-33325 HEIDI ABBOTT 2019 - ODD YEAR NUR-LPN-LIC-4920 LORI ANN ABBOTT 2019 - ODD YEAR NUR-LPN-LIC-97426 DAYMON ABBOTT Expired - 2018 - EVEN YEAR NUR-RN-LIC-13260 ROBERT C ABBOTT Expired - 2018 - EVEN YEAR NUR-RN-LIC-17858 MONICA MAY ABDALLAH 2018 - EVEN YEAR NUR-RN-LIC-48890 STEVEN P ABDALLAH 2019 - ODD YEAR NUR-APRN-LIC-101391 LANEICE LORRAINE ABDEL-SHAKUR Expired - 2018 - EVEN YEAR NUR-RN-LIC-101333 LANEICE LORRAINE ABDEL-SHAKUR Expired - 2018 - EVEN YEAR NUR-RN-LIC-96606 RENDI L ABEL 2018 - EVEN YEAR NUR-RN-LIC-97338 LAURA ANN ABEL 2019 - ODD YEAR NUR-RN-LIC-69876 LACEY ANN ABELL 2019 - ODD YEAR NUR-RN-LIC-131932
    [Show full text]
  • Volcanoes? Analogues to Martian Plumes Feeding the Giant Shield Are Terrestrial Plumes from Motionless Plates
    Downloaded from http://sp.lyellcollection.org/ by guest on February 22, 2014 Geological Society, London, Special Publications Online First Are terrestrial plumes from motionless plates analogues to Martian plumes feeding the giant shield volcanoes? Christine M. Meyzen, Matteo Massironi, Riccardo Pozzobon and Luca Dal Zilio Geological Society, London, Special Publications, first published February 21, 2014; doi 10.1144/SP401.8 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection How to cite click here for further information about Online First and how to cite articles Notes © The Geological Society of London 2014 Downloaded from http://sp.lyellcollection.org/ by guest on February 22, 2014 Are terrestrial plumes from motionless plates analogues to Martian plumes feeding the giant shield volcanoes? CHRISTINE M. MEYZEN1*, MATTEO MASSIRONI1,2, RICCARDO POZZOBON1,3 & LUCA DAL ZILIO1 1Dipartimento di Geoscienze, Universita` degli Studi di Padova, via G. Gradenigo, 6, 35131 Padova, Italy 2INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 3, 35122 Padova, Italy 3IRSPS-DISPUTer, Universita’ G. d’Annunzio, Via Vestini 31, 66013 Chieti, Italy *Corresponding author (e-mail: [email protected]) Abstract: On Earth, most tectonic plates are regenerated and recycled through convection. However, the Nubian and Antarctic plates could be considered as poorly mobile surfaces of various thicknesses that are acting as conductive lids on top of Earth’s deeper convective system. Here, volcanoes do not show any linear age progression, at least not for the last 30 myr, but constitute the sites of persistent, focused, long-term magmatic activity rather than a chain of volcanoes, as observed in fast-moving plate plume environments.
    [Show full text]
  • Earth and Space Science. a Guide for Secondary Teachers. INSTITUTION Pennsylvania State Dept
    DOCUMENT RESUME ED 094 956 SE 016 611 AUTHOR Bolles, William H.; And Others TITLE Earth and Space Science. A Guide for Secondary Teachers. INSTITUTION Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services. PUB DATE 73 NOTE 200p. EDRS PRICE MF-$O.75 HC-$9.00 PLUS POSTAGE DESCRIPTORS Aerospace Education; *Astronomy; *Curriculum Guides; *Earth Science; Geology; Laboratory Experiments; Oceanology; Science Activities; Science Education; *Secondary School Science IDENTIFIERS Pennsylvania ABSTRACT Designed for use in Pennsylvania secondary school science classes, this guide is intended to provide fundamental information in each of the various disciplines of the earth sciences. Some of the material contained in the guide is intended as background material for teachers. Five units are presented: The Earth, The Oceans, The Space Environment, The Atmosphere, and The Exploration of Space. The course is organized so that students proceed from the familiar, everyday world to the atmosphere and the space environment. Teaching geology in the fall takes advantage of weather conditions which permit field study. The purpose of the Earth and Space Science course is to encourage student behaviors which will be indicative of a broad understanding of man1s physical environment of earth and space as well as an awareness of the consequences which could result from changes which man may effect.(PEB) BEST COPY AVAILABLE U S DEPARTMENT OF HEALTH. EDUCATION & WELFARE NATIONAL INSTITUTE OF 6 Fe elz+C EDUCATION Try,' DOCUMENT FIRSBEEN REPRO
    [Show full text]