Supporting Information for Proteomics DOI 10.1002/Pmic.200500725

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information for Proteomics DOI 10.1002/Pmic.200500725 Supporting Information for Proteomics DOI 10.1002/pmic.200500725 Iveta Klouckova, Petra Hrncirova, Yehia Mechref, Randy J. Arnold, Ting-Kai Li, William J. McBride and Milos V. Novotny Changes in liver protein abundance in inbred alcohol-preferring rats due to chronic alcohol exposure, as measured through a proteomics approach ª 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com 113 significant proteins GROUP1 GROUP2 ratio of ratio of Coverage average iP1- average iP7- Coverage average iP1- average iP7- Name Abbreviation ssp extract denzity_iP7- ssp extract denzity_iP7- [%] 6" ± "stdev 12" ± "stdev [%] 6" ± "stdev 12" ± "stdev 12/ iP1-6 12/ iP1-6 14-3-3 protein gamma 143G_HUMAN 3209 ex1 24 89 ± 26 53 ± 12 0.59 ± 0.22 2214 ex1 N/A 154 ± 15 136 ± 49 0.89 ± 0.33 Sodium/potassium- transporting ATPase A1A3_RAT 5607 ex1 2 183 ± 119 140 ± 101 0.77 ± 0.75 4727 ex1 2 288 ± 122 100 ± 63 0.35 ± 0.26 alpha-3 chain Aspartate aminotransferase, AATC_RAT 6438 A ex1 8 99 ± 27 67 ± 17 0.67 ± 0.25 6426 ex1 8 348 ± 65 158 ± 61 0.45 ± 0.19 cytoplasmic Acyl-CoA 5328 ex1 14 91 ± 73 48 ± 13 0.53 ± 0.44 5414 ex1 14 486 ± 96 286 ± 99 0.59 ± 0.24 dehydrogenase, ACDB_RAT 7210 ex1 15 181 ± 62 126 ± 32 0.70 ± 0.3 7303 ex1 15 605 ± 125 452 ± 69 0.75 ± 0.19 short/branched chain 5337 B ex1 19 117 ± 60 90 ± 18 0.77 ± 0.43 5429 ex1 19 531 ± 83 273 ± 71 0.52 ± 0.16 Acyl-CoA dehydrogenase, long- ACDL_RAT 5421 C ex1 9 669 ± 151 474 ± 118 0.71 ± 0.24 5417 ex1 N/A 903 ± 267 963 ± 160 1.07 ± 0.36 chain specific Acyl-CoA dehydrogenase, ACDM_RAT 7413 D ex1 19 762 ± 129 606 ± 158 0.80 ± 0.25 7406 ex1 19 1,598 ± 278 1,113 ± 323 0.70 ± 0.24 medium-chain specific Acyl-CoA 6312 E ex1 8 166 ± 45 91 ± 64 0.55 ± 0.41 6407 ex1 8 232 ± 38 176 ± 32 0.76 ± 0.18 dehydrogenase, short - ACDS_RAT 5337 B ex1 9 117 ± 60 90 ± 18 0.77 ± 0.43 5429 ex1 9 531 ± 83 273 ± 71 0.52 ± 0.16 chain specific 5332 F ex3 N/A 154 ± 44 179 ± 88 1.17 ± 0.66 6330 ex3 9 137 ± 36 88 ± 33 0.65 ± 0.29 2441 G ex1 7 86 ± 17 43 ± 13 0.50 ± 0.18 2537 ex1 0 168 ± 20 97 ± 43 0.58 ± 0.27 3343 H ex1 4 187 ± 44 125 ± 18 0.67 ± 0.18 3430 ex1 N/A 298 ± 65 270 ± 50 0.91 ± 0.26 Actin aortic, smooth ACTA_HUMAN 3304 I ex1 N/A 362 ± 265 313 ± 292 0.87 ± 1.03 2315 ex1 10 172 ± 25 127 ± 35 0.74 ± 0.23 muscle 3340 J ex1 4 68 ± 52 32 ± 80 0.46 ± 0.37 3328 ex1 4 153 ± 33 107 ± 18 0.70 ± 0.19 4509 ex2 N/A 362 ± 265 313 ± 292 0.87 ± 1.03 3426 ex2 7 1,105 ± 199 600 ± 271 0.54 ± 0.26 Actin, cytoplasmic 2 ACTG_HUMAN 3515 K ex1 N/A 106 ± 33 116 ± 20 1.09 ± 0.39 3501 ex1 12 164 ± 26 226 ± 62 1.37 ± 0.44 (Gamma-actin) Alcohol 7311 ex1 2 349 ± 74 255 ± 43 0.73 ± 0.2 7405 ex1 2 903 ± 124 676 ± 232 0.75 ± 0.28 ADHA_RAT dehydrogenase A 6238 L ex1 N/A 950 ± 242 866 ± 189 0.91 ± 0.31 6335 ex1 5 2,577 ± 379 2,043 ± 286 0.79 ± 0.16 Alcohol AKA1_RAT 6320 M ex1 N/A 572 ± 201 503 ± 226 0.88 ± 0.5 6333 ex1 19 720 ± 266 389 ± 136 0.54 ± 0.27 dehydrogenase 3-oxo-5-beta-steroid 4- 5325 ex1 23 205 ± 83 71 ± 45 0.35 ± 0.26 too weak ex1 AKD1_RAT dehydrogenase 5333 N ex1 32 1,110 ± 366 748 ± 190 0.67 ± 0.28 5323 ex1 39 2,515 ± 478 1,642 ± 401 0.65 ± 0.2 Fructose- 7329 ex1 4 212 ± 62 123 ± 56 0.58 ± 0.31 7330 ex1 3 424 ± 146 186 ± 151 0.44 ± 0.39 bisphosphate aldolase ALFB_RAT 7303 O ex1 17 246 ± 79 124 ± 40 0.51 ± 0.23 6109 ex2 0 206 ± 90 138 ± 56 0.67 ± 0.4 B 8229 P ex3 2 42 ± 25 147 ± 84 3.52 ± 2.93 8209 ex3 4 196 ± 91 390 ± 168 1.99 ± 1.26 Alpha-methylacyl-CoA AMAC_RAT 5337 B ex1 20 117 ± 60 90 ± 18 0.77 ± 0.43 5429 ex1 20 531 ± 83 273 ± 71 0.52 ± 0.16 racemase Annexin A3 (Annexin ANX3_RAT 4226 ex3 5 779 ± 285 342 ± 124 0.44 ± 0.23 5220 ex3 N/A 217 ± 97 189 ± 57 0.87 ± 0.47 III) (Lipocortin III) Aflatoxin B1 aldehyde 5315 ex1 10 226 ± 29 174 ± 46 0.77 ± 0.23 5310 ex1 N/A 466 ± 62 429 ± 70 0.92 ± 0.19 AR72_RAT reductase member 2 too weak ex1 4324 ff ex1 4 110 ± 29 33 ± 21 0.30 ± 0.2 6320 M ex1 N/A 572 ± 201 503 ± 226 0.88 ± 0.5 6333 ex1 22 720 ± 266 389 ± 136 0.54 ± 0.27 6325 ex3 15 790 ± 503 581 ± 323 0.74 ± 0.62 7310 ex3 15 549 ± 123 244 ± 115 0.45 ± 0.23 Arginase 1 ARGI_RAT 7418 ex2 N/A 331 ± 204 297 ± 134 0.90 ± 0.69 6347 ex2 31 603 ± 254 307 ± 108 0.51 ± 0.28 5332 F ex3 N/A 154 ± 44 179 ± 88 1.17 ± 0.66 6330 ex3 11 137 ± 36 88 ± 33 0.65 ± 0.29 5353 Q ex3 N/A 186 ± 129 154 ± 101 0.83 ± 0.79 6343 ex3 22 187 ± 46 72 ± 47 0.39 ± 0.27 Argininosuccinate ASSY_RAT 6444 R ex1 18 783 ± 290 469 ± 154 0.60 ± 0.3 6430 ex1 15 1,252 ± 331 895 ± 231 0.71 ± 0.26 synthase ATP synthase alpha 6524 S ex3 3 1,061 ± 284 707 ± 184 0.67 ± 0.25 7413 ex3 N/A 561 ± 166 482 ± 204 0.86 ± 0.44 ATPA_RAT chain, m.p. 6527 T ex3 13 354 ± 120 190 ± 35 0.54 ± 0.21 7418 ex3 N/A 255 ± 150 240 ± 103 0.94 ± 0.68 ATP synthase beta 3527 U ex1 19 503 ± 148 309 ± 79 0.62 ± 0.24 3509 ex1 19 553 ± 199 814 ± 267 1.47 ± 0.72 ATPB_RAT chain, m.p. 3513 V ex2 52 8,069 ± 2,811 4,659 ± 3,058 0.58 ± 0.43 3405 ex2 52 3,347 ± 817 2,247 ± 615 0.67 ± 0.25 D-beta- hydroxybutyrate BDH_RAT 8311 W ex2 6 188 ± 68 360 ± 130 1.91 ± 0.98 8201 ex2 N/A 618 ± 139 615 ± 207 0.99 ± 0.4 dehydrogenase, m.p. 6432 X ex1 6 108 ± 25 56 ± 16 0.52 ± 0.19 6420 ex1 6 210 ± 78 121 ± 53 0.58 ± 0.33 Betaine-homocysteine BHMT_RAT S-methyltransferase 8210 ex1 N/A 583 ± 227 615 ± 129 1.06 ± 0.47 7350 ex1 7 1,798 ± 325 2,542 ± 469 1.41 ± 0.37 Beta- BUP1_RAT 5436 Y ex1 17 1,312 ± 382 777 ± 211 0.59 ± 0.24 5425 ex1 12 2,599 ± 754 1,287 ± 430 0.50 ± 0.22 ureidopropionase 6231 ex1 N/A 448 ± 161 425 ± 241 0.95 ± 0.64 6221 ex1 16 1,316 ± 415 793 ± 207 0.60 ± 0.25 Carbonic anhydrase III CAH3_RAT 7306 ex2 N/A 56 ± 51 55 ± 14 0.99 ± 0.93 6241 ex2 7 65 ± 18 107 ± 30 1.65 ± 0.65 6514 ex1 6 1,685 ± 403 1,188 ± 174 0.71 ± 0.2 6610 ex1 36 2,198 ± 557 1,314 ± 636 0.60 ± 0.33 5529 Z ex3 6 197 ± 64 67 ± 32 0.34 ± 0.2 too weak ex3 Catalase CATA_RAT 5537 ex3 3 195 ± 80 68 ± 35 0.35 ± 0.23 too weak ex3 6506 a ex1 8 605 ± 151 460 ± 86 0.76 ± 0.24 6603 ex1 17 559 ± 164 342 ± 147 0.61 ± 0.32 Cystathionine gamma- 6438 A ex1 7 99 ± 27 67 ± 17 0.67 ± 0.25 6426 ex1 7 348 ± 65 158 ± 61 0.45 ± 0.19 CGL_RAT lyase 7413 D ex1 21 762 ± 129 606 ± 158 0.80 ± 0.25 7406 ex1 21 1,598 ± 278 1,113 ± 323 0.70 ± 0.24 3545 b ex1 21 168 ± 17 124 ± 44 0.74 ± 0.27 3627 ex1 N/A 383 ± 62 332 ± 66 0.87 ± 0.22 61 kDa heat shock 4525 c ex1 N/A 111 ± 49 92 ± 35 0.83 ± 0.48 4606 ex1 2 119 ± 48 58 ± 25 0.49 ± 0.29 CH60_MOUSE protein, m.p. too weak ex2 3538 ex2 12 416 ± 142 169 ± 58 0.41 ± 0.2 4506 ex1 N/A 320 ± 124 307 ± 78 0.96 ± 0.44 3634 ex1 13 320 ± 49 640 ± 109 2.00 ± 0.46 Cytochrome P450 CPDI_RAT 3515 K ex1 N/A 106 ± 33 116 ± 20 1.09 ± 0.39 3501 ex1 7 164 ± 26 226 ± 62 1.37 ± 0.44 2D18 Contrapsin-like protease inhibitor 1 CPI1_RAT 4520 d ex1 N/A 153 ± 75 174 ± 53 1.13 ± 0.65 4501 ex1 21 236 ± 51 152 ± 43 0.65 ± 0.23 precursor Calreticulin precursor CRTC_RAT 2549 ex1 28 745 ± 180 447 ± 117 0.60 ± 0.21 2528 ex1 28 2,114 ± 343 1,425 ± 522 0.67 ± 0.27 (CRP55) 3-hydroxyisobutyrate D3HI_RAT 5209 ex3 5 316 ± 48 150 ± 66 0.48 ± 0.22 5225 ex1 26 1,470 ± 185 961 ± 156 0.65 ± 0.13 dehydrogenase, m.p.
Recommended publications
  • Summary & Conclusions
    Enzymatic functionalization and degradation of natural and synthetic polymers Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Shohana Subrin Islam M. Sc. Biotechnologie aus Dhaka, Bangladesch Berichter: Univ. -Prof. Dr. Ulrich Schwaneberg Univ. -Prof. Dr. Lothar Elling Tag der mündlichen Prüfung: 23.01.2019 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar. To my mom & my sister-the two persons in the world who always stand by me Table of content Table of content Table of content _______________________________________________________________ v Publications and patents ________________________________________________________ ix Abstract _____________________________________________________________________ xi 1. General introduction _______________________________________________________ 1 1.1 Enzymatic functionalization of (bio)polymers _______________________________________ 1 1.2 Enzymatic degradation of polymers _______________________________________________ 3 1.3 Protein engineering ____________________________________________________________ 5 1.3.1 Directed evolution of enzymes _________________________________________________________ 6 1.3.2 KnowVolution – Directed Evolution 2.0 __________________________________________________ 9 1.4 Aims of the dissertation _______________________________________________________ 11 2. Engineering of
    [Show full text]
  • Identification of Oxidative Stress-Related Proteins for Predictive Screening of Hepatotoxicity Using a Proteomic Approach
    The Journal of Toxicological Sciences, 213 Vol.30, No.3, 213-227, 2005 IDENTIFICATION OF OXIDATIVE STRESS-RELATED PROTEINS FOR PREDICTIVE SCREENING OF HEPATOTOXICITY USING A PROTEOMIC APPROACH Toshinori YAMAMOTO, Rie KIKKAWA, Hiroshi YAMADA and Ikuo HORII Worldwide Safety Sciences, Pfizer Global Research & Development, Nagoya Laboratories, Pfizer Inc., 5-2 Taketoyo, Aichi 470-2393, Japan (Received January 15, 2005; Accepted April 19, 2005) ABSTRACT — We investigated the effects of three hepatotoxicants, acetaminophen (APAP), amio- darone (AD) and tetracycline (TC), on protein expression in primary cultured rat hepatocytes with toxi- coproteomic approach, which is two-dimensional gel electrophoresis (2DE) and mass spectrometry. The objectives of this study were to search for alternative toxicity biomarkers which could be detected with high sensitivity prior to the appearance of morphological changes or alterations of analytical conventional biomarkers. The related proteins in the process of cell degeneration/necrosis such as cell death, lipid metabolism and lipid/carbohydrate metabolism were mainly affected under exposure to APAP, AD and TC, respectively. Among the differentially expressed proteins, several oxidative stress-related proteins were clearly identified after 24-hr exposure, even though they were not affected for 6-hr exposure. They were glutathione peroxidase (GPX) as a down-regulated protein as well as peroxiredoxin 1 (PRX1) and peroxiredoxin 2 (PRX2) as up-regulated proteins, which are known to serve as antioxidative enzymes in cells. These findings suggested that the focused proteins, GPX and PRXs, could be utilized as biomarkers of hepatotoxicity, and they were useful for setting high throughput screening methods to assess hepato- toxicity in the early stage of drug discovery.
    [Show full text]
  • Structural and Functional Analysis of Heparan Sulfate Sulfotransferases
    STRUCTURAL AND FUNCTIONAL ANALYSIS OF HEPARAN SULFATE SULFOTRANSFERASES Heather Nicole Bethea A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Pharmaceutical Sciences (Medicinal Chemistry and Natural Products) Chapel Hill 2010 Approved by: Michael Jarstfer, Ph.D. Jian Liu, Ph.D. Lars Pedersen, Ph.D. Scott Singleton, Ph.D. Qisheng Zhang, Ph.D. ABSTRACT HEATHER BETHEA: Structural and Functional Analysis of Heparan Sulfate Sulfotransferases (Under the direction of Jian Liu, Ph.D.) Heparan sulfate (HS), a major polysaccharide component of the vascular system, is involved in regulating a number of functions of the blood vessel wall including blood coagulation, cell differentiation, and the inflammatory response. The wide range of biological functions makes HS an attractive therapeutic target. The long term goal of our research involves utilizing an enzyme-based approach to develop HS-based therapeutics for treating thrombotic diseases, cancer and excessive inflammatory responses. The biosynthesis of HS involves multiple specialized sulfotransferases such as 2-O-sulfotransferase (2OST) and 6-O-sulfotransferase (6OST), which are essential for preparing HS with activities in regulating vascular development and blood coagulation. The substrate specificity of the HS sulfotransferases controls the sulfation patterns of HS, permitting HS to exhibit a specific function, however, limited knowledge regarding the mechanism of these enzymes has hindered our ability to prepare functionally-specific HS. We aim to understand the mechanism of action of these two enzymes in hopes of developing heparin/HS with improved anticoagulant efficacy. In this dissertation, we present successful crystallization of 2OST in complex with 3’- phosphoadenosine 5’-phosphate (PAP).
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]
  • Regeneration of PAPS for the Enzymatic Synthesis of Sulfated Oligosaccharides
    J. Org. Chem. 2000, 65, 5565-5574 5565 Regeneration of PAPS for the Enzymatic Synthesis of Sulfated Oligosaccharides Michael D. Burkart, Masayuki Izumi, Eli Chapman, Chun-Hung Lin,† and Chi-Huey Wong* Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 [email protected] Received February 24, 2000 This paper describes the study of 3′-phosphoadenosine-5′-phosphosulfate (PAPS) regeneration from 3′-phosphoadenosine-5′-phosphate (PAP) for use in practical syntheses of carbohydrate sulfates which are catalyzed by sulfotransferases. Among the regeneration systems, the one with recombinant aryl sulfotransferase proved to be the most practical. This regeneration system was coupled with a sulfotransferase-catalyzed reaction, using a recombinant Nod factor sulfotransferase, for the synthesis of various oligosaccharide sulfates that were further glycosylated using glycosyl- transferases. Sulfated carbohydrates and glycopeptides have gener- modulation of receptor binding.1,8 Drug design for the ated interest due to their roles in specific cell signaling inhibition of these therapeutically interesting enzymes and recognition events of both normal and disease has quickly followed sulfotransferase discovery and will processes,1 such as chronic inflammation, cancer me- gain increasing importance as we have easy access to this tastasis, cartilage formation, and hormone regulation. class of molecules to study their biological roles more Recent studies
    [Show full text]
  • (Sult1e1) Expression and Function in Mcf10a-Series Breast Epithelial Cells
    Wayne State University Wayne State University Dissertations 1-1-2011 Estrogen sulfotransferase (sult1e1) expression and function in mcf10a-series breast epithelial cells: role as a modifier of breast carcinogenesis and regulation by proliferation state Jiaqi Fu Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Part of the Pathology Commons, and the Toxicology Commons Recommended Citation Fu, Jiaqi, "Estrogen sulfotransferase (sult1e1) expression and function in mcf10a-series breast epithelial cells: role as a modifier of breast carcinogenesis and regulation by proliferation state" (2011). Wayne State University Dissertations. Paper 308. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. ESTROGEN SULFOTRANSFERASE (SULT1E1) EXPRESSION AND FUNCTION IN MCF10A-SERIES BREAST EPITHELIAL CELLS: ROLE AS A MODIFIER OF BREAST CARCINOGENESIS AND REGULATION BY PROLIFERATION STATE by JIAQI FU DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2011 MAJOR: MOLECULAR AND CELLULAR TOXICOLOGY Approved by: Advisor Date DEDICATION I dedicate this work to my parents for all the sacrifices they have made on my behalf. To Luan, for his love and support during the preparation of this work. ii ACKNOWLEDGEMENTS I owe my deepest gratitude to Dr. Melissa Runge-Morris and Dr. Thomas A. Kocarek, for the encouragement and support throughout all these years of study. Their guidance helped me in all the time of research and writing of this thesis.
    [Show full text]
  • Der Jasmonsäure-Metabolismus in Tomate (Solanum Lycopersicum
    Literaturverzeichnis 6 Literaturverzeichnis 141 Literaturverzeichnis Afitlhile, M. M.; Fukushige, H.; Nishimura, M.; Hildebrand, D. F. (2005): A defect in glyoxysomal fatty acid ß-oxidation reduces jasmonic acid accumulation in Arabidopsis. Plant Physiology and Biochemistry 43: 603-609. Ahn, J. A.; Miller, D.; Winter, V. J.; Banfield, M. J.; Lee, J. H.; Yoo, S. Y.; Henz, S. R.; Brady, R. L.; Wei- gel, D. (2006): A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO Journal 25: 605–614. Allen, K. D.; Sussex, I. M. (1996): Falsiflora and anantha control early stages of floral meristem develop- ment in tomato (Lycopersicon esculentum Mill). Planta 200: 254–264. Ananvoranich, S.; Varin, L.; Gulick, P.; Ibrahim, R. K. (1994) Cloning and regulation of flavonol 3-sul- fotransferasein cell suspension cultures of Flaveria bidentis. Plant Physiol. 106: 485-491. Andersson, M. X.; Hamberg, M.; Kourtchenko, O.; Brunnstrom, A.; McPhail, K. L.; Gerwick, W. H.; Gobel, C., Feussner, I.; Ellerstrom, M. (2006): Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana: formation of a novel oxo-phytodienoic acid-containing galactolipid, Arabidopside E. Journal of Biological Chemistry 281: 31528-31537. Atherton, J. G.; Harris, J. (1986): The tomato crop. London: Chapman and Hall. Barron, D.; Varin, L.; Ibrahim, R. K.; Harborne, J. B.; Williams, C. A. (1988): Sulphated flavonoids – an update. Phytochemistry 27: 2375-2395. Bäurle, I.; Dean, C. (2006): The timing of developmental transitions in plants. Cell 125: 655-664. Bell, P. R. (1992): Green plants: their origin and diversity. Cambridge: Cambridge University Press. Bergey, D. R.; Howe, G. A.; Ryan, C.
    [Show full text]
  • Comparative Gene Expression of Intestinal Metabolizing Enzymes
    BIOPHARMACEUTICS & DRUG DISPOSITION Biopharm. Drug Dispos. 30: 411–421 (2009) Published online 9 September 2009 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/bdd.675 Comparative Gene Expression of Intestinal Metabolizing Enzymes Ho-Chul Shina,Ã, Hye-Ryoung Kima, Hee-Jung Choa, Hee Yia, Soo-Min Choa, Dong-Goo Leea, A. M. Abd El-Atya, Jin-Suk Kima, Duxin Sunb and Gordon L . Amidonb aDepartment of Veterinary Pharmacology and Toxicology, Konkuk University, Seoul 143-701, Republic of Korea bDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA ABSTRACT: The purpose of this study was to compare the expression profiles of drug- metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse.
    [Show full text]
  • Organellar Proteomics of the Golgi Apparatus and Golgi Derived COPI Vesicles
    Organellar Proteomics of the Golgi Apparatus and Golgi Derived COPI Vesicles. Catherine Elaine Au Department of Anatomy and Cell Biology McGill University, Montreal January 2008 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy. ©Catherine Elaine Au 2008 Table of Contents Table of Contents .................................................................................................1 List of Figures .......................................................................................................7 List of Tables ........................................................................................................9 List of Abbreviations ...........................................................................................10 Abstract...............................................................................................................13 Resumé ..............................................................................................................14 Original Contributions .........................................................................................18 Acknowledgements.............................................................................................19 Chapter 1 -- Introduction.....................................................................................21 Chapter 2 -- Literature Review............................................................................24 2.1 The early secretory pathway. .......................................................
    [Show full text]
  • Structural and Biochemical Studies of Sulphotransferase 18 From
    Structural and biochemical studies of sulphotransferase 18 from Arabidopsis thaliana explain its substrate specificity and reaction mechanism Hirschmann, Felix; Krause, Florian; Baruch, Petra; Chizhov, Igor; Mueller, Jonathan Wolf; Manstein, Dietmar J; Papenbrock, Jutta; Fedorov, Roman DOI: 10.1038/s41598-017-04539-2 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Hirschmann, F, Krause, F, Baruch, P, Chizhov, I, Mueller, JW, Manstein, DJ, Papenbrock, J & Fedorov, R 2017, 'Structural and biochemical studies of sulphotransferase 18 from Arabidopsis thaliana explain its substrate specificity and reaction mechanism', Scientific Reports, vol. 7, 4160. https://doi.org/10.1038/s41598-017-04539- 2 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • Regulations of Expressions of Rat/Human Sulfotransferases (Sults) by Anti-Cancer Drug, Nolatrexed and Micronutrients
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.19.049007; this version posted April 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Regulations of expressions of rat/human sulfotransferases (SULTs) by anti-cancer drug, nolatrexed and micronutrients. Smarajit Maitia,b Sangita MaitiDuttac, Guangping Chend, aCell and Molecular Therapeutics Laboratory, Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore-721102, West Bengal, India. bFounder and Secretary, Agricure Biotech Research Society, Epidemiology and Human Health Division, Midnapore-721101, India. cDepartment of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India. dVenture I OSU Laboratory, Oklahoma Technology & Research Park, 1110 S. Innovation Way, Stillwater, OK 74074, USA Correspondence: *Dr. Smarajit Maiti Professor and Head Post Graduate Department of Biochemistry and Biotechnology, Cell & Molecular Therapeutics Lab, OIST, Midnapore-721102, E. Mail: [email protected], Mobile: 9474504269 Running title: Nolatrexed induces Sulfotransferase expression Conflict of interests: None bioRxiv preprint doi: https://doi.org/10.1101/2020.04.19.049007; this version posted April 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Cancer is a disease related to cellular proliferative-state. Drastically increase in cell-cycle regulations augments cellular folate-pool and folate-metabolism.
    [Show full text]
  • Protein T1 C1 Accession No. Description
    Protein T1 C1 Accession No. Description SW:143B_HUMAN + + P31946 14-3-3 protein beta/alpha (protein kinase c inhibitor protein-1) (kcip-1) (protein 1054). 14-3-3 protein epsilon (mitochondrial import stimulation factor l subunit) (protein SW:143E_HUMAN + + P42655 P29360 Q63631 kinase c inhibitor protein-1) (kcip-1) (14-3-3e). SW:143S_HUMAN + - P31947 14-3-3 protein sigma (stratifin) (epithelial cell marker protein 1). SW:143T_HUMAN + - P27348 14-3-3 protein tau (14-3-3 protein theta) (14-3-3 protein t-cell) (hs1 protein). 14-3-3 protein zeta/delta (protein kinase c inhibitor protein-1) (kcip-1) (factor SW:143Z_HUMAN + + P29312 P29213 activating exoenzyme s) (fas). P01889 Q29638 Q29681 Q29854 Q29861 Q31613 hla class i histocompatibility antigen, b-7 alpha chain precursor (mhc class i antigen SW:1B07_HUMAN + - Q9GIX1 Q9TP95 b*7). hla class i histocompatibility antigen, b-14 alpha chain precursor (mhc class i antigen SW:1B14_HUMAN + - P30462 O02862 P30463 b*14). P30479 O19595 Q29848 hla class i histocompatibility antigen, b-41 alpha chain precursor (mhc class i antigen SW:1B41_HUMAN + - Q9MY79 Q9MY94 b*41) (bw-41). hla class i histocompatibility antigen, b-42 alpha chain precursor (mhc class i antigen SW:1B42_HUMAN + - P30480 P79555 b*42). P30488 O19615 O19624 O19641 O19783 O46702 hla class i histocompatibility antigen, b-50 alpha chain precursor (mhc class i antigen SW:1B50_HUMAN + - O78172 Q9TQG1 b*50) (bw-50) (b-21). hla class i histocompatibility antigen, b-54 alpha chain precursor (mhc class i antigen SW:1B54_HUMAN + - P30492 Q9TPQ9 b*54) (bw-54) (bw-22). P30495 O19758 P30496 hla class i histocompatibility antigen, b-56 alpha chain precursor (mhc class i antigen SW:1B56_HUMAN - + P79490 Q9GIM3 Q9GJ17 b*56) (bw-56) (bw-22).
    [Show full text]