Identification of Oxidative Stress-Related Proteins for Predictive Screening of Hepatotoxicity Using a Proteomic Approach

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Oxidative Stress-Related Proteins for Predictive Screening of Hepatotoxicity Using a Proteomic Approach The Journal of Toxicological Sciences, 213 Vol.30, No.3, 213-227, 2005 IDENTIFICATION OF OXIDATIVE STRESS-RELATED PROTEINS FOR PREDICTIVE SCREENING OF HEPATOTOXICITY USING A PROTEOMIC APPROACH Toshinori YAMAMOTO, Rie KIKKAWA, Hiroshi YAMADA and Ikuo HORII Worldwide Safety Sciences, Pfizer Global Research & Development, Nagoya Laboratories, Pfizer Inc., 5-2 Taketoyo, Aichi 470-2393, Japan (Received January 15, 2005; Accepted April 19, 2005) ABSTRACT — We investigated the effects of three hepatotoxicants, acetaminophen (APAP), amio- darone (AD) and tetracycline (TC), on protein expression in primary cultured rat hepatocytes with toxi- coproteomic approach, which is two-dimensional gel electrophoresis (2DE) and mass spectrometry. The objectives of this study were to search for alternative toxicity biomarkers which could be detected with high sensitivity prior to the appearance of morphological changes or alterations of analytical conventional biomarkers. The related proteins in the process of cell degeneration/necrosis such as cell death, lipid metabolism and lipid/carbohydrate metabolism were mainly affected under exposure to APAP, AD and TC, respectively. Among the differentially expressed proteins, several oxidative stress-related proteins were clearly identified after 24-hr exposure, even though they were not affected for 6-hr exposure. They were glutathione peroxidase (GPX) as a down-regulated protein as well as peroxiredoxin 1 (PRX1) and peroxiredoxin 2 (PRX2) as up-regulated proteins, which are known to serve as antioxidative enzymes in cells. These findings suggested that the focused proteins, GPX and PRXs, could be utilized as biomarkers of hepatotoxicity, and they were useful for setting high throughput screening methods to assess hepato- toxicity in the early stage of drug discovery. KEY WORDS: Rat hepatocyte, Proteomics, Oxidative stress, Glutathione peroxidase, Peroxiredoxin, Biomarker INTRODUCTION the early stage of drug discovery. Several approaches for the estimation of gene expression have been made Recent advances in new technologies such as to search for the appropriate genomic biomarkers combinatorial chemistry and high throughput pharma- (Jessen et al., 2003; Boess et al., 2003; Longueville et cological assay require high throughput screening al., 2003). However, there have been only a few reports procedures on safety evaluations in the early stage of on the protein expression related to hepatotoxicity drug discovery. In this context, the use of in vitro cyto- (Fountoulakis et al., 2002; Ruepp et al., 2002). In this toxicity assays to predict general toxicity in vivo is study, we have investigated protein expression as a reli- usually requested (Fry et al., 1990; Paillard et al., 1999; able biomarker in primary cultured rat hepatocytes Bugelski et al., 2000; Luber-Narod et al., 2001). exposed to several hepatotoxicants. We used acetami- The liver is one of the important organs for toxi- nophen (APAP), amiodarone (AD) and tetracycline cological evaluation from the aspects of the major (TC), whose mechanisms of hepatotoxicity are well metabolism site of xenobiotics as a primary target of known [APAP: hepatic necrosis is mediated by the drugs (Fautrel et al., 1991; Alden et al., 1999). More toxic metabolite, N-acetyl-p-benzoquinone imine sensitive and reliable endpoints as toxicologically (NAPQI) (Holme et al., 1984; Nelson, 1990); AD: responsible biomarkers were required for setting the phospholipidosis caused by phospholipid accumulation high throughput screening system of hepatotoxicity in (Dake et al., 1985; Sirajudeen et al., 2002); TC: steato- Correspondence: Toshinori YAMAMOTO Vo l . 3 0 N o . 3 214 T. YAMAMOTO et al. sis induced by accumulation of fat in the liver (Breen et (Eugene, OR, USA). HPLC grade solvents and 3-[(3- al., 1975; Deboyser et al., 1989)]. cholamidopropyl) dimethylammonio]-1-propane- In this paper, we have investigated the effects of sulphonate (CHAPS) were purchased from Wako Pure the hepatotoxicants on protein expression in the pri- Chemicals. Sequencing grade-modified trypsin was mary cultured rat hepatocytes. Among the differentially obtained from Promega (Madison, WI, USA). An LC- µ expressed proteins, we have focused on oxidative Packings PepMap C18 -precolumn cartridge and a stress-related proteins, and discussed the feasibility of PepMap C18 capillary column were obtained from these protein biomarkers for application to high Dionex (San Francisco, CA, USA). throughput screening systems of hepatotoxicity. As a result, it is suggested that the focused proteins would Preparation of primary cultures of rat hepatocytes be utilized as biomarkers of hepatotoxicity for setting Primary hepatocytes were isolated from Sprague- high throughput screening methods to assess hepato- Dawley male rats (Charles River Japan, Yokohama, toxicity in the early stage of drug discovery. Japan) using the two-step collagenase perfusion method (Seglen, 1976; Kikkawa et al., 2005). Rat MATERIALS AND METHODS hepatocytes were cultured in Williams’ E culture medium (WEM, Invitrogen, Carlsbad, CA, USA) sup- Experimental design plemented with 10 mM 2-[4-(2-hydroxyethyl)-1- Primary cultured rat hepatocytes were exposed to piperazinyl]ethanesulfonic acid (HEPES, Invitrogen) three hepatotoxicants, APAP, AD and TC, for 6 and 24 buffer,pH7.4,10%fetalbovineserum(FBS,Invitro- hr. Concentrations of the test compounds (APAP: 10 gen), 100 U/mL penicillin, 100 µg/mL streptomycin mM, AD: 50 µM, TC: 500 µM) were determined based (Invitrogen), and insulin-transferring-selenium-A sup- on our previous cytotoxicity study in primary rat hepa- plement (Invitrogen). Rat hepatocytes were seeded on tocytes (Kikkawa et al., 2005). Protein expression was six-well type-I collagen coated plates (BD Bio- examined by two-dimensional gel electrophoresis sciences, Bedford, MA, USA) at a density of 105 cells/ (2DE), and proteins that expressed differentially in cm2. Prior to treatment with test compounds, hepato- ° control and treated cells were identified by mass spec- cytes were incubated at 37 Cundera5%CO2/95% air- trometric analysis following In-gel tryptic digestion. humidified atmosphere for 3 hr to attain cell attach- Eventually, our goal was to address several proteins ment. Viability of cultured rat hepatocytes was tested that were affected in common among the treatments of by LDH leakage (Roche Diagnostics GmbH, Man- compounds, because these proteins were potential can- nheim, Germany), mitochondrial respiration ability didates as hepatotoxicity markers. [water-soluble tetrazolium salts (WST-1) reduction assay, Roche Diagnostics GmbH] and morphological Test compounds observations. Acetaminophen (APAP) was purchased from Sigma (St. Louis, MO, USA). Amiodarone hydrochlo- Treatment conditions ride (AD) was obtained from ICN Biomedicals Inc. The test compounds were dissolved in dimethyl (Aurora, OH, USA). Tetracycline hydrochloride (TC) sulfoxide (DMSO, Wako Pure Chemicals), and the was purchased from Wako Pure Chemicals (Osaka, final concentration of DMSO in medium (FBS(−)) was Japan). adjusted to 1% for test solutions. After pre-incubation, the medium was replaced with a medium containing Chemicals and reagents test compounds, and hepatocytes cultured in 6-well Electrophoresis grade reagents [acrylamide, aga- plates were exposed to test compounds for 6 and 24 hr. rose, ammonium persulphate (APS), bromophenol Based on the results of our previous cytotoxicity study blue (BPB), glycerol, N,N,N',N'-tetramethylethylene- (Kikkawa et al., 2005), the concentrations of the test diamine (TEMED), sodium dodecyl sulfate (SDS) and compounds were set at 10 mM, 50 µM and 500 µMfor urea] and Immobiline DryStrip (pH3-10 L, 24 cm) APAP, AD and TC, respectively. At the end of the were purchased from Amersham Biosciences exposure periods, hepatocytes were harvested using a (Uppsala, Sweden). Pharmalyte (3-10) and TRIZMA clean cell scraper and recovered into 100 mM HEPES base were obtained from Sigma. SyproRuby protein buffer. They were frozen and stored in liquid nitrogen gel stain was purchased from Molecular Probes until protein extraction for 2DE experiments. Vo l . 3 0 N o . 3 215 Oxidative stress-related proteins for hepatotoxicity screening in rat hepatocytes. Two-dimensional gel electrophoresis (2DE) They were then rehydrated in 20 ng/mL of TPCK- Total rat hepatocytes proteins were precipitated modified trypsin at 4°C. In-gel tryptic digestion was with 10% trichloroacetic acid (TCA)/acetone, and then carried out at 37°C overnight, and digested peptides proteinpelletswereresolubilizedin2D-lysisbuffer[7 were then recovered into 5%(v/v) aqueous formic acid M urea, 2 M thiourea (Invitrogen), 4%(v/v) CHAPS, (Wako Pure Chemicals). DeStreak reagent, 1%(v/v) Pharmalyte (pH3-10) and trace BPB] after completely washing with ice-cold MS/MS analysis and protein identification acetone. The hepatocytes lysates from individual wells Tryptic peptides from 2D-gel protein gel plugs (n=3) were pooled, and then their protein concentra- were subjected to peptide sequencing tags (PSTs) for tion was determined with a modified Lowry’s method protein identification using MS/MS spectra derived (Lowry et al., 1951) using RC DC Protein Assay Kit from capillary liquid chromatography coupled to a (Bio-Rad Laboratories, Hercules, CA, USA). One hun- hybrid quadrupole orthogonal acceleration time-of- dred micrograms of proteins was applied to immobilized flight mass spectrometer (CapLC and Q-TOF Ultima pH gradient gels (pH 3-10 L, 24 cm) in triplicate using API, Micromass,
Recommended publications
  • Summary & Conclusions
    Enzymatic functionalization and degradation of natural and synthetic polymers Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Shohana Subrin Islam M. Sc. Biotechnologie aus Dhaka, Bangladesch Berichter: Univ. -Prof. Dr. Ulrich Schwaneberg Univ. -Prof. Dr. Lothar Elling Tag der mündlichen Prüfung: 23.01.2019 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar. To my mom & my sister-the two persons in the world who always stand by me Table of content Table of content Table of content _______________________________________________________________ v Publications and patents ________________________________________________________ ix Abstract _____________________________________________________________________ xi 1. General introduction _______________________________________________________ 1 1.1 Enzymatic functionalization of (bio)polymers _______________________________________ 1 1.2 Enzymatic degradation of polymers _______________________________________________ 3 1.3 Protein engineering ____________________________________________________________ 5 1.3.1 Directed evolution of enzymes _________________________________________________________ 6 1.3.2 KnowVolution – Directed Evolution 2.0 __________________________________________________ 9 1.4 Aims of the dissertation _______________________________________________________ 11 2. Engineering of
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
    US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG.
    [Show full text]
  • In TCR-Stimulated Thymocytes Induction of Chromosomal DNA Degradation Caspase-Activated Deoxyribonuclease in the Possible Involv
    Possible Involvement of Cyclophilin B and Caspase-Activated Deoxyribonuclease in the Induction of Chromosomal DNA Degradation in TCR-Stimulated Thymocytes This information is current as of September 28, 2021. Takuya Nagata, Hiroyuki Kishi, Qing Li Liu, Tomoyasu Yoshino, Tadashi Matsuda, Zhe Xiong Jin, Kimie Murayama, Kazuhiro Tsukada and Atsushi Muraguchi J Immunol 2000; 165:4281-4289; ; doi: 10.4049/jimmunol.165.8.4281 Downloaded from http://www.jimmunol.org/content/165/8/4281 References This article cites 42 articles, 23 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/165/8/4281.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Possible Involvement of Cyclophilin B and Caspase-Activated Deoxyribonuclease in the Induction of Chromosomal DNA Degradation in TCR-Stimulated Thymocytes1 Takuya Nagata,* Hiroyuki Kishi,* Qing Li Liu,* Tomoyasu Yoshino,* Tadashi Matsuda,* Zhe Xiong Jin,* Kimie Murayama,‡ Kazuhiro Tsukada,† and Atsushi Muraguchi2* TCR engagement of immature CD4؉CD8؉ thymocytes induces clonal maturation (positive selection) as well as clonal deletion (negative selection) in the thymus.
    [Show full text]
  • Curcumin Alters Gene Expression-Associated DNA Damage, Cell Cycle, Cell Survival and Cell Migration and Invasion in NCI-H460 Human Lung Cancer Cells in Vitro
    ONCOLOGY REPORTS 34: 1853-1874, 2015 Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro I-TSANG CHIANG1,2, WEI-SHU WANG3, HSIN-CHUNG LIU4, SU-TSO YANG5, NOU-YING TANG6 and JING-GUNG CHUNG4,7 1Department of Radiation Oncology, National Yang‑Ming University Hospital, Yilan 260; 2Department of Radiological Technology, Central Taiwan University of Science and Technology, Taichung 40601; 3Department of Internal Medicine, National Yang‑Ming University Hospital, Yilan 260; 4Department of Biological Science and Technology, China Medical University, Taichung 404; 5Department of Radiology, China Medical University Hospital, Taichung 404; 6Graduate Institute of Chinese Medicine, China Medical University, Taichung 404; 7Department of Biotechnology, Asia University, Taichung 404, Taiwan, R.O.C. Received March 31, 2015; Accepted June 26, 2015 DOI: 10.3892/or.2015.4159 Abstract. Lung cancer is the most common cause of cancer CARD6, ID1 and ID2 genes, associated with cell survival and mortality and new cases are on the increase worldwide. the BRMS1L, associated with cell migration and invasion. However, the treatment of lung cancer remains unsatisfactory. Additionally, 59 downregulated genes exhibited a >4-fold Curcumin has been shown to induce cell death in many human change, including the DDIT3 gene, associated with DNA cancer cells, including human lung cancer cells. However, the damage; while 97 genes had a >3- to 4-fold change including the effects of curcumin on genetic mechanisms associated with DDIT4 gene, associated with DNA damage; the CCPG1 gene, these actions remain unclear. Curcumin (2 µM) was added associated with cell cycle and 321 genes with a >2- to 3-fold to NCI-H460 human lung cancer cells and the cells were including the GADD45A and CGREF1 genes, associated with incubated for 24 h.
    [Show full text]
  • Cleavage and Nuclear Translocation of the Caspase 3 Substrate Rho GDP-Dissociation Inhibitor, D4-GDI, During Apoptosis
    Cell Death and Differentiation (1999) 6, 412 ± 419 ã 1999 Stockton Press All rights reserved 13509047/99 $12.00 http://www.stockton-press.co.uk/cdd Cleavage and nuclear translocation of the caspase 3 substrate Rho GDP-dissociation inhibitor, D4-GDI, during apoptosis 1 ,1 Ronald J Krieser and Alan Eastman* Introduction 1 Department of Pharmacology and Toxicology, Dartmouth Medical School, Apoptosis plays a central role in such processes as Hanover, New Hampshire 03755, USA development, tissue homeostasis, and thymic selection, as * corresponding author: tel: (603)-650-1501; fax: (603)-650-1129; well as pathologies ranging from neurodegenerative disease, e-mail: [email protected] autoimmune disorders, and viral infection, to cancer. Much research on apoptosis has focused on determining proteins involved in decisions of cell fate, and regulation of the Received 17.11.98; revised 15.2.99; accepted 2.3.99 execution phase of cell death involving protease and Edited by G. Salvesen endonuclease activation. A great deal of this information has been gained from the study of small organisms such as Abstract the nematode C. elegans, which has a well-defined developmental program during which specific cells die. The While investigating endonucleases potentially involved in characterization of nematodes with mutations in the cell death apoptosis, an antisera was raised to bovine deoxyribonu- process has led to identification of genes which regulate clease II, but it recognized a smaller protein of 26 kDa protein apoptosis.1 The mammalian homologs have been identified in a variety of cell lines. The 26 kDa protein underwent for many of these regulatory genes.
    [Show full text]
  • Supplementary Material Toxicological Impacts and Likely Protein Targets Of
    Supplementary Material Toxicological impacts and likely protein targets of bisphenol A in Paramecium caudatum Marcus V. X. Senra† & Ana Lúcia Fonseca Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais – Brazil †To whom correspondence should be addressed – [email protected]; Orcid - 0000-0002-3866- 8837 Table S1. Annotation data on the P. caudatum 3D modelled proteins and their binding energies to BPA. BINDING ID DESCRIPTION CHROMOSOME NT_START NT_END ENERGIES (kcal/mol) PCAU.43c3d.1.P00010012 Tryptophan synthase beta subunit-like PLP-dependent enzyme scaffold_0001 23197 24853 -7.4 PCAU.43c3d.1.P00010015 Ribosomal protein L32e scaffold_0001 26373 26859 -6.2 PCAU.43c3d.1.P00010044 Catalase, mono-functional, haem-containing scaffold_0001 71821 73367 -6.5 PCAU.43c3d.1.P00010050 Dihydroorotate dehydrogenase, class 1/ 2 scaffold_0001 76614 79650 -6.6 PCAU.43c3d.1.P00010054 Serine/threonine/dual specificity protein kinase, catalytic domain scaffold_0001 83399 84653 -6.7 PCAU.43c3d.1.P00010070 Peptidyl-prolyl cis-trans isomerase, FKBP-type scaffold_0001 104909 105387 -5.9 PCAU.43c3d.1.P00010103 V-ATPase proteolipid subunit C-like domain scaffold_0001 168736 169346 -5.6 PCAU.43c3d.1.P00010112 DNA-directed RNA polymerase, RBP11-like dimerisation domain scaffold_0001 180310 181372 -6.0 PCAU.43c3d.1.P00010165 Vacuolar (H+)-ATPase G subunit scaffold_0001 252653 253112 -5.6 PCAU.43c3d.1.P00010176 Coproporphyrinogen III oxidase, aerobic scaffold_0001 262051 263168 -6.7 PCAU.43c3d.1.P00010205 Metalloenzyme,
    [Show full text]
  • Supporting Information for Proteomics DOI 10.1002/Pmic.200500725
    Supporting Information for Proteomics DOI 10.1002/pmic.200500725 Iveta Klouckova, Petra Hrncirova, Yehia Mechref, Randy J. Arnold, Ting-Kai Li, William J. McBride and Milos V. Novotny Changes in liver protein abundance in inbred alcohol-preferring rats due to chronic alcohol exposure, as measured through a proteomics approach ª 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com 113 significant proteins GROUP1 GROUP2 ratio of ratio of Coverage average iP1- average iP7- Coverage average iP1- average iP7- Name Abbreviation ssp extract denzity_iP7- ssp extract denzity_iP7- [%] 6" ± "stdev 12" ± "stdev [%] 6" ± "stdev 12" ± "stdev 12/ iP1-6 12/ iP1-6 14-3-3 protein gamma 143G_HUMAN 3209 ex1 24 89 ± 26 53 ± 12 0.59 ± 0.22 2214 ex1 N/A 154 ± 15 136 ± 49 0.89 ± 0.33 Sodium/potassium- transporting ATPase A1A3_RAT 5607 ex1 2 183 ± 119 140 ± 101 0.77 ± 0.75 4727 ex1 2 288 ± 122 100 ± 63 0.35 ± 0.26 alpha-3 chain Aspartate aminotransferase, AATC_RAT 6438 A ex1 8 99 ± 27 67 ± 17 0.67 ± 0.25 6426 ex1 8 348 ± 65 158 ± 61 0.45 ± 0.19 cytoplasmic Acyl-CoA 5328 ex1 14 91 ± 73 48 ± 13 0.53 ± 0.44 5414 ex1 14 486 ± 96 286 ± 99 0.59 ± 0.24 dehydrogenase, ACDB_RAT 7210 ex1 15 181 ± 62 126 ± 32 0.70 ± 0.3 7303 ex1 15 605 ± 125 452 ± 69 0.75 ± 0.19 short/branched chain 5337 B ex1 19 117 ± 60 90 ± 18 0.77 ± 0.43 5429 ex1 19 531 ± 83 273 ± 71 0.52 ± 0.16 Acyl-CoA dehydrogenase, long- ACDL_RAT 5421 C ex1 9 669 ± 151 474 ± 118 0.71 ± 0.24 5417 ex1 N/A 903 ± 267 963 ± 160 1.07 ± 0.36 chain specific Acyl-CoA dehydrogenase, ACDM_RAT 7413 D ex1
    [Show full text]
  • Structural and Functional Analysis of Heparan Sulfate Sulfotransferases
    STRUCTURAL AND FUNCTIONAL ANALYSIS OF HEPARAN SULFATE SULFOTRANSFERASES Heather Nicole Bethea A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Pharmaceutical Sciences (Medicinal Chemistry and Natural Products) Chapel Hill 2010 Approved by: Michael Jarstfer, Ph.D. Jian Liu, Ph.D. Lars Pedersen, Ph.D. Scott Singleton, Ph.D. Qisheng Zhang, Ph.D. ABSTRACT HEATHER BETHEA: Structural and Functional Analysis of Heparan Sulfate Sulfotransferases (Under the direction of Jian Liu, Ph.D.) Heparan sulfate (HS), a major polysaccharide component of the vascular system, is involved in regulating a number of functions of the blood vessel wall including blood coagulation, cell differentiation, and the inflammatory response. The wide range of biological functions makes HS an attractive therapeutic target. The long term goal of our research involves utilizing an enzyme-based approach to develop HS-based therapeutics for treating thrombotic diseases, cancer and excessive inflammatory responses. The biosynthesis of HS involves multiple specialized sulfotransferases such as 2-O-sulfotransferase (2OST) and 6-O-sulfotransferase (6OST), which are essential for preparing HS with activities in regulating vascular development and blood coagulation. The substrate specificity of the HS sulfotransferases controls the sulfation patterns of HS, permitting HS to exhibit a specific function, however, limited knowledge regarding the mechanism of these enzymes has hindered our ability to prepare functionally-specific HS. We aim to understand the mechanism of action of these two enzymes in hopes of developing heparin/HS with improved anticoagulant efficacy. In this dissertation, we present successful crystallization of 2OST in complex with 3’- phosphoadenosine 5’-phosphate (PAP).
    [Show full text]
  • However, There Was Substantial Falloff in Terms Of
    446 Technical Briefs accuracy; however, there was substantial falloff in terms disease, myocardial infarction, and ischemic cerebrovascular disease. Six case-control studies from the Copenhagen City Heart Study. Ann Intern Med of performance with new vs used chips. This lowers the 2001;134:941–54. cost per SNP to almost one-third of the cost of using a new 5. Twyman RM, Primrose SB. Techniques patents for SNP genotyping. Pharma- microelectronic chip and more lowers the cost compared cogenomics 2003;4:67–79. 6. Thistlethwaite WA. Rapid genotyping of common MeCP2 mutations with an with RFLP analysis by more than one-half. This is approx- electronic DNA microchip using serial differential hybridization. J Mol Diagn imately the same cost reported by others for detecting 2003;5:121–6. eight SNPs on one test site simultaneously (€1.62 per SNP) 7. Gilles PN, Wu DJ, Foster CB, Dillon PJ, Chanock SJ. Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor (6). It should be noted, however, that purchase of the microchips. Nat Biotechnol 1999;17:365–70. Nanogen NMW 1000 Nanochip Molecular Biology Work- 8. Nagan N, O’Kane DJ. Validation of a single nucleotide polymorphism station is not included in these calculations. genotyping assay for the human serum paraoxonase gene using electroni- cally active customized microarrays. Clin Biochem 2001;34:589–92. The microelectronic chip examined in this study was 9. Sohni YR, Dukek B, Taylor W, Ricart E, Sandborn WJ, O’Kane DJ. Active limited by the number of test sites per chip. Increasing the electronic arrays for genotyping of NAT2 polymorphisms.
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]
  • Regeneration of PAPS for the Enzymatic Synthesis of Sulfated Oligosaccharides
    J. Org. Chem. 2000, 65, 5565-5574 5565 Regeneration of PAPS for the Enzymatic Synthesis of Sulfated Oligosaccharides Michael D. Burkart, Masayuki Izumi, Eli Chapman, Chun-Hung Lin,† and Chi-Huey Wong* Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 [email protected] Received February 24, 2000 This paper describes the study of 3′-phosphoadenosine-5′-phosphosulfate (PAPS) regeneration from 3′-phosphoadenosine-5′-phosphate (PAP) for use in practical syntheses of carbohydrate sulfates which are catalyzed by sulfotransferases. Among the regeneration systems, the one with recombinant aryl sulfotransferase proved to be the most practical. This regeneration system was coupled with a sulfotransferase-catalyzed reaction, using a recombinant Nod factor sulfotransferase, for the synthesis of various oligosaccharide sulfates that were further glycosylated using glycosyl- transferases. Sulfated carbohydrates and glycopeptides have gener- modulation of receptor binding.1,8 Drug design for the ated interest due to their roles in specific cell signaling inhibition of these therapeutically interesting enzymes and recognition events of both normal and disease has quickly followed sulfotransferase discovery and will processes,1 such as chronic inflammation, cancer me- gain increasing importance as we have easy access to this tastasis, cartilage formation, and hormone regulation. class of molecules to study their biological roles more Recent studies
    [Show full text]
  • Papadaki Et Al., 2009 Supplementary
    Papadaki et al., 2009 Supplementary Supplemental Data Index x Supplemental Figures 1-6 x Supplemental Tables 1a, 1b, 2 Papadaki et al., 2009 Supplementary Supplemental Figure 1. Thymocyte restricted inactivation of the Elavl1 locus. + fl (A) Diagrammatic representation of the wild-type (Elavl1P P), floxed (Elavl1P P) and Cre- - recombined (Elavl1P P) Elavl1/HuR loci on mouse chromosome 8; Noted are the loxP sequences (triangles) flanking the selection marker (neo) used in gene targeting and the ATG containing exon 2 (white box); (H) denotes restriction sites for loci mapping. (B) Detection of native (+), targeted (fl) and Cre-recombinant (-) loci in thymocyte DNA extracts from control and test mice following HindIII digestion and Southern blotting. (C) Western blot of total thymic protein extracts probed with ĮHuR Ab + fl/fl indicating the loss of HuR protein in LckCreP PElavl1P P thymi. Į-actin is shown for quantitation. (D) Flow cytometric detection of intracellular mHuR protein in + fl/+ LckCreP PElavl1P P thymocytes (open histogram), and its respective loss in + fl/fl LckCreP PElavl1P P thymocytes (shaded histogram). The dotted histogram depicts the + isotype-matched background staining. (E) Flow cytometric detection of HuRP P or - + + + fl/+ HuRP P cells in gated splenic CD4P Por CD8P P T-cells from 8 week old LckCreP PElavl1P + fl/fl - Pand LckCreP PElavl1P P mice respectively. (F) Enumeration of HuRP P cells in + fl/fl LckCreP PElavl1P P thymocyte subsets and splenic T-cells; Data are percentages (+SEM) derived from the flow cytometric detection of HuR- cells in CD4/CD8/DP and DN gated populations (n=12-15) at 8-10 weeks of age.
    [Show full text]