Organellar Proteomics of the Golgi Apparatus and Golgi Derived COPI Vesicles

Total Page:16

File Type:pdf, Size:1020Kb

Organellar Proteomics of the Golgi Apparatus and Golgi Derived COPI Vesicles Organellar Proteomics of the Golgi Apparatus and Golgi Derived COPI Vesicles. Catherine Elaine Au Department of Anatomy and Cell Biology McGill University, Montreal January 2008 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy. ©Catherine Elaine Au 2008 Table of Contents Table of Contents .................................................................................................1 List of Figures .......................................................................................................7 List of Tables ........................................................................................................9 List of Abbreviations ...........................................................................................10 Abstract...............................................................................................................13 Resumé ..............................................................................................................14 Original Contributions .........................................................................................18 Acknowledgements.............................................................................................19 Chapter 1 -- Introduction.....................................................................................21 Chapter 2 -- Literature Review............................................................................24 2.1 The early secretory pathway. ........................................................ 24 2.1.1 The endoplasmic reticulum. ........................................................... 24 2.1.1.1 The rough endoplasmic reticulum. ................................... 24 2.1.1.2 The smooth endoplasmic reticulum.................................. 25 2.1.1.3 The transitional endoplasmic reticulum. ........................... 26 2.1.2 The ER Golgi intermediate compartment....................................... 26 2.1.3 The Golgi apparatus. ..................................................................... 26 2.1.3.1 Golgi ultrastructure........................................................... 27 2.1.3.2 Post-translational modification and the Golgi. .................. 27 2.1.3.3 Other Golgi components. ................................................. 28 2.1.4 COPI vesicles. ............................................................................... 28 2.2 Cisternal maturation and vesicular transport. ................................ 31 2.3 Mass Spectrometry Based Proteomics. ........................................ 34 2.3.1 Mass spectrometric techniques used in proteomics....................... 34 2.3.1.1 Time of Flight (ToF).......................................................... 34 2.3.1.2 Fourier transform ion cyclotron resonance (FTICR). ........ 34 2.3.1.3 Tandem MS (MS/MS)....................................................... 35 2.3.1.4 Gas chromatography/MS (GC MS). ................................. 35 2.3.1.5 Liquid chromatography/MS (LC MS). ............................... 35 2.3.1.6 Electrospray ionization (ESI)............................................ 35 2.3.1.7 Matrix-assisted laser desorption/ionization (MALDI). ....... 36 2.3.2 Interpretation of mass spectra. ...................................................... 36 2.3.3 Quantitation and proteomics. ......................................................... 37 2.3.4 Sample preparation for proteomics................................................ 38 2.4 Proteomics and Cell Biology. ........................................................ 40 2.4.1 Organellar proteomics.................................................................... 40 2.4.1.1 Synaptic vesicles and clathrin coated vesicles from rat brain. ............................................................................................. 40 2.4.1.2 ER-phagosome controversy............................................. 41 2.4.1.3 Endosomes and p14. ....................................................... 42 2.4.1.4 The exosome. .................................................................. 42 2.4.1.5 The mitochondria. ............................................................ 43 2.4.1.6 The peroxisome. .............................................................. 44 1 2.4.1.7 The endoplasmic reticulum. ............................................. 44 2.4.1.8 The ERGIC....................................................................... 45 2.4.1.9 The Golgi apparatus......................................................... 45 2.4.1.10 The COPI vesicles. ........................................................ 46 2.4.1.11 The lysosome................................................................. 46 2.4.1.11 The nuclear envelope..................................................... 46 2.4.2. Organelle contamination. .............................................................. 47 Chapter 3 -- Validity of a quantitative proteomics method for organellar proteomics. .........................................................................................................50 3.1 Abstract ......................................................................................... 50 3.2 Introduction ................................................................................... 52 3.3 Methods ........................................................................................ 54 3.3.1 Organelle isolation. ........................................................................ 54 3.3.2 Enzyme assays.............................................................................. 54 3.3.3 SDS-PAGE and immunoblots. ....................................................... 54 3.3.4 Cryoimmune electron microscopy.................................................. 54 3.3.5 Peptide Counting. .......................................................................... 55 3.3.5.1 The principle of peptide counting. .................................... 55 3.3.5.2 Comparison between samples. ........................................ 56 3.4 Results .......................................................................................... 57 3.4.1 Sensitivity of the approach............................................................. 57 3.4.2 Complex protein mixtures. ............................................................. 57 3.4.3 In situ distribution of albumin in rat liver parenchyma. ................... 57 3.4.4 Comparison of marker enzyme enrichment and marker protein peptides detected by tandem MS. ........................................................... 58 3.5 Discussion..................................................................................... 60 Figures ................................................................................................. 63 Figure 3.1. Sensitivity of the in-gel trypsin digested 1D SDS-PAGE tandem MS method. ................................................................................ 63 Figure 3.2. Characterization of albumin content in RM, SM and Golgi fractions. .................................................................................................. 65 Figure 3.3. Albumin is concentrated in the Golgi apparatus from the CGN. ................................................................................................................. 67 Figure 3.4. Distribution of albumin and β-COP in isolated rat liver Golgi fractions. .................................................................................................. 70 Figure 3.5. Comparison of marker enzyme activities and peptide counts for cognate marker proteins. .................................................................... 72 Figure 3.6. Marker proteins as detected by immunoblotting and peptide counting. .................................................................................................. 74 Chapter 4 -- The Pipeline....................................................................................76 4.1 Abstract ......................................................................................... 76 4.2 Introduction ................................................................................... 77 4.3 Methods ........................................................................................ 78 4.3.1 Sample preparation........................................................................ 78 4.3.1.1 Rough and smooth microsomes....................................... 78 4.3.1.2 Golgi apparatus................................................................ 78 2 4.3.1.3 COPI vesicles................................................................... 79 4.3.2 Sample characterization. ............................................................... 81 4.3.2.1 Preparation of samples for electron microscopy. ............. 81 4.3.2.2 Quantification of vesicle profiles on electron micrographs. ...................................................................................................... 82 4.3.2.3 Enzyme assays. ............................................................... 82 4.3.2.4 SDS-PAGE and immunoblots. ......................................... 83 4.3.3 Tandem MS (MS/MS) analysis and data processing. .................... 83 4.3.4 Data processing............................................................................. 86 4.3.5 Data analysis. ................................................................................ 87 4.3.5.1 Principal coordinates
Recommended publications
  • Studies on the Proteome of Human Hair - Identifcation of Histones and Deamidated Keratins Received: 15 August 2017 Sunil S
    www.nature.com/scientificreports OPEN Studies on the Proteome of Human Hair - Identifcation of Histones and Deamidated Keratins Received: 15 August 2017 Sunil S. Adav 1, Roopa S. Subbaiaih2, Swat Kim Kerk 2, Amelia Yilin Lee 2,3, Hui Ying Lai3,4, Accepted: 12 January 2018 Kee Woei Ng3,4,7, Siu Kwan Sze 1 & Artur Schmidtchen2,5,6 Published: xx xx xxxx Human hair is laminar-fbrous tissue and an evolutionarily old keratinization product of follicle trichocytes. Studies on the hair proteome can give new insights into hair function and lead to the development of novel biomarkers for hair in health and disease. Human hair proteins were extracted by detergent and detergent-free techniques. We adopted a shotgun proteomics approach, which demonstrated a large extractability and variety of hair proteins after detergent extraction. We found an enrichment of keratin, keratin-associated proteins (KAPs), and intermediate flament proteins, which were part of protein networks associated with response to stress, innate immunity, epidermis development, and the hair cycle. Our analysis also revealed a signifcant deamidation of keratin type I and II, and KAPs. The hair shafts were found to contain several types of histones, which are well known to exert antimicrobial activity. Analysis of the hair proteome, particularly its composition, protein abundances, deamidated hair proteins, and modifcation sites, may ofer a novel approach to explore potential biomarkers of hair health quality, hair diseases, and aging. Hair is an important and evolutionarily conserved structure. It originates from hair follicles deep within the der- mis and is mainly composed of hair keratins and KAPs, which form a complex network that contributes to the rigidity and mechanical properties.
    [Show full text]
  • Table SD1. Patient Characteristicsa
    Table SD1. Patient characteristicsa Patient Sex Age Esophageal Treatment Maximum Cell Maximum Maximum Genotype Food SPT/Ab SPT/F b RAST b Rhinitisc Atopicc Asthmac Alternative diagnosis Dated (year) Disease eosinophils thickness in mast cells lymphocytes anaphylaxis (positive dermatitis /hpf basal layer /hpf /hpf reaction) 1 M 11 NL None 0 3 5 3 Unk No ND ND ND Yes No No Recurrent croup December 2 M 11 NL LTRA 0 3 4 3 Unk No ND ND ND No No Yes Functional abdominal pain May 3 F 9 NL None 0 3 4 3 Unk Unk ND ND ND Unk Unk Unk Functional abdominal pain March 4 M 14 NL None 0 2 6 4 Unk No ND ND ND No No No Vomiting/diarrhea Febuary 5 F 7 NL LTRA 0 3 5 6 Unk Yes 1 3 ND Unk Unk Yes Functional abdominal pain March 6 F 13 NL None 0 2 4 2 Unk No 0 4 ND No No No Functional abdominal pain August 7 M 17 CE PPI 0 4 7 12 Unk Yes 17 4 ND No No Yes None November 8 M 6 CE PPI 0 4 6 10 Unk Unk ND ND ND Unk Unk Unk None June 9 F 16 CE LTRA 3 4 6 8 Unk No ND ND ND No No Yes None January 10 F 13 CE LTRA+PPI 3 5 4 8 Unk No 0 0 ND No No No None August 11 F 11 CE LTRA+PPI 6 4 6 9 Unk Unk ND ND ND Unk Unk Unk None May 12 M 11 EE PPI 24 6 6 12 TT No 2 5 3 Yes No Yes None November 13 F 4 EE PPI 25 6 15 15 TT No 0 0 ND No No No None November 14 M 15 EE None 30 6 24 6 TG Unk 1 1 ND Unk Unk Yes None February 15 M 15 EE None 31 6 15 11 TT No 8 2 ND Yes No Yes None March 16 M 13 EE PPI 32 6 10 25 TG No 0 0 ND No No No None June 17 M 6 EE PPI 40 7 10 21 TT Yes 5 3 0 Unk Unk No None November 18 M 13 EE LTRA 42 7 10 5 TT No 4 5 2 Yes Yes Yes None November 19 F 16 EE LTRA+PPI
    [Show full text]
  • Summary & Conclusions
    Enzymatic functionalization and degradation of natural and synthetic polymers Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Shohana Subrin Islam M. Sc. Biotechnologie aus Dhaka, Bangladesch Berichter: Univ. -Prof. Dr. Ulrich Schwaneberg Univ. -Prof. Dr. Lothar Elling Tag der mündlichen Prüfung: 23.01.2019 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar. To my mom & my sister-the two persons in the world who always stand by me Table of content Table of content Table of content _______________________________________________________________ v Publications and patents ________________________________________________________ ix Abstract _____________________________________________________________________ xi 1. General introduction _______________________________________________________ 1 1.1 Enzymatic functionalization of (bio)polymers _______________________________________ 1 1.2 Enzymatic degradation of polymers _______________________________________________ 3 1.3 Protein engineering ____________________________________________________________ 5 1.3.1 Directed evolution of enzymes _________________________________________________________ 6 1.3.2 KnowVolution – Directed Evolution 2.0 __________________________________________________ 9 1.4 Aims of the dissertation _______________________________________________________ 11 2. Engineering of
    [Show full text]
  • Gene Network and Pathway Analysis of Transcriptional Signatures Characterizing Sole Ulcer and Digital Dermatitis in Dairy Cows
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2021 Gene Network and Pathway Analysis of Transcriptional Signatures Characterizing Sole Ulcer and Digital Dermatitis in Dairy Cows Roshin Anie Mohan South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Dairy Science Commons Recommended Citation Mohan, Roshin Anie, "Gene Network and Pathway Analysis of Transcriptional Signatures Characterizing Sole Ulcer and Digital Dermatitis in Dairy Cows" (2021). Electronic Theses and Dissertations. 5278. https://openprairie.sdstate.edu/etd/5278 This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. GENE NETWORK AND PATHWAY ANALYSIS OF TRANSCRIPTIONAL SIGNATURES CHARACTERIZING SOLE ULCER AND DIGITAL DERMATITIS IN DAIRY COWS BY ROSHIN ANIE MOHAN A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Major in Biological Sciences Specialization in Dairy Science South Dakota State University 2021 ii DISSERTATION ACCEPTANCE PAGE Roshin Anie Mohan This dissertation is approved as a creditable and independent investigation by a candidate for the Doctor of Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department.
    [Show full text]
  • Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
    SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA.
    [Show full text]
  • Identification of Oxidative Stress-Related Proteins for Predictive Screening of Hepatotoxicity Using a Proteomic Approach
    The Journal of Toxicological Sciences, 213 Vol.30, No.3, 213-227, 2005 IDENTIFICATION OF OXIDATIVE STRESS-RELATED PROTEINS FOR PREDICTIVE SCREENING OF HEPATOTOXICITY USING A PROTEOMIC APPROACH Toshinori YAMAMOTO, Rie KIKKAWA, Hiroshi YAMADA and Ikuo HORII Worldwide Safety Sciences, Pfizer Global Research & Development, Nagoya Laboratories, Pfizer Inc., 5-2 Taketoyo, Aichi 470-2393, Japan (Received January 15, 2005; Accepted April 19, 2005) ABSTRACT — We investigated the effects of three hepatotoxicants, acetaminophen (APAP), amio- darone (AD) and tetracycline (TC), on protein expression in primary cultured rat hepatocytes with toxi- coproteomic approach, which is two-dimensional gel electrophoresis (2DE) and mass spectrometry. The objectives of this study were to search for alternative toxicity biomarkers which could be detected with high sensitivity prior to the appearance of morphological changes or alterations of analytical conventional biomarkers. The related proteins in the process of cell degeneration/necrosis such as cell death, lipid metabolism and lipid/carbohydrate metabolism were mainly affected under exposure to APAP, AD and TC, respectively. Among the differentially expressed proteins, several oxidative stress-related proteins were clearly identified after 24-hr exposure, even though they were not affected for 6-hr exposure. They were glutathione peroxidase (GPX) as a down-regulated protein as well as peroxiredoxin 1 (PRX1) and peroxiredoxin 2 (PRX2) as up-regulated proteins, which are known to serve as antioxidative enzymes in cells. These findings suggested that the focused proteins, GPX and PRXs, could be utilized as biomarkers of hepatotoxicity, and they were useful for setting high throughput screening methods to assess hepato- toxicity in the early stage of drug discovery.
    [Show full text]
  • Lym. Phoid Enhancer Factor 1 Directs Hair Folhcle Patterning and Epithelial
    Lym.phoid enhancer factor 1 directs hair folhcle patterning and epithelial cell fate Pengbo Zhou, Carolyn Byrne, Jennifer Jacobs, and Elaine Fuchs 1 Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637 USA T cell-specific transcription factor (TCF-1) and lymphoid enhancer factor 1 (LEF-1) have been implicated exclusively in the regulation of T cell-specific genes. The only adult tissue other than thymus known to express these factors is spleen and lymph node, which contain low levels of LEF-1 and no TCF-1. We noticed that genes involved in hair-specific gene expression possess LEF-I/TCF-1 consensus motifs located in similar positions relative to their TATA box. We show that of the two factors only LEF-1 is expressed in hair follicles; it can be cloned in both splice forms from human skin keratinocytes and it can bind to these sites in the hair promoters. We show that LEF-1 mRNA is present in pluripotent ectoderm, and it is up-regulated in a highly restricted pattern just before the formation of underlying mesenchymal condensates and commitment of overlying ectodermal cells to invaginate and become hair follicles. New waves of ectodermal LEF-1 spots appear concomitant with new waves of follicle morphogenesis. To test whether LEF-1 patterning might be functionally important for hair patterning and morphogenesis, we used transgenic technology to alter the patterning and timing of LEF-1 over the surface ectoderm. Striking abnormalities arose in the positioning and orientation of hair follicles, leaving a marked disruption of this normally uniform patterning.
    [Show full text]
  • Supporting Information for Proteomics DOI 10.1002/Pmic.200500725
    Supporting Information for Proteomics DOI 10.1002/pmic.200500725 Iveta Klouckova, Petra Hrncirova, Yehia Mechref, Randy J. Arnold, Ting-Kai Li, William J. McBride and Milos V. Novotny Changes in liver protein abundance in inbred alcohol-preferring rats due to chronic alcohol exposure, as measured through a proteomics approach ª 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com 113 significant proteins GROUP1 GROUP2 ratio of ratio of Coverage average iP1- average iP7- Coverage average iP1- average iP7- Name Abbreviation ssp extract denzity_iP7- ssp extract denzity_iP7- [%] 6" ± "stdev 12" ± "stdev [%] 6" ± "stdev 12" ± "stdev 12/ iP1-6 12/ iP1-6 14-3-3 protein gamma 143G_HUMAN 3209 ex1 24 89 ± 26 53 ± 12 0.59 ± 0.22 2214 ex1 N/A 154 ± 15 136 ± 49 0.89 ± 0.33 Sodium/potassium- transporting ATPase A1A3_RAT 5607 ex1 2 183 ± 119 140 ± 101 0.77 ± 0.75 4727 ex1 2 288 ± 122 100 ± 63 0.35 ± 0.26 alpha-3 chain Aspartate aminotransferase, AATC_RAT 6438 A ex1 8 99 ± 27 67 ± 17 0.67 ± 0.25 6426 ex1 8 348 ± 65 158 ± 61 0.45 ± 0.19 cytoplasmic Acyl-CoA 5328 ex1 14 91 ± 73 48 ± 13 0.53 ± 0.44 5414 ex1 14 486 ± 96 286 ± 99 0.59 ± 0.24 dehydrogenase, ACDB_RAT 7210 ex1 15 181 ± 62 126 ± 32 0.70 ± 0.3 7303 ex1 15 605 ± 125 452 ± 69 0.75 ± 0.19 short/branched chain 5337 B ex1 19 117 ± 60 90 ± 18 0.77 ± 0.43 5429 ex1 19 531 ± 83 273 ± 71 0.52 ± 0.16 Acyl-CoA dehydrogenase, long- ACDL_RAT 5421 C ex1 9 669 ± 151 474 ± 118 0.71 ± 0.24 5417 ex1 N/A 903 ± 267 963 ± 160 1.07 ± 0.36 chain specific Acyl-CoA dehydrogenase, ACDM_RAT 7413 D ex1
    [Show full text]
  • Structural and Functional Analysis of Heparan Sulfate Sulfotransferases
    STRUCTURAL AND FUNCTIONAL ANALYSIS OF HEPARAN SULFATE SULFOTRANSFERASES Heather Nicole Bethea A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Pharmaceutical Sciences (Medicinal Chemistry and Natural Products) Chapel Hill 2010 Approved by: Michael Jarstfer, Ph.D. Jian Liu, Ph.D. Lars Pedersen, Ph.D. Scott Singleton, Ph.D. Qisheng Zhang, Ph.D. ABSTRACT HEATHER BETHEA: Structural and Functional Analysis of Heparan Sulfate Sulfotransferases (Under the direction of Jian Liu, Ph.D.) Heparan sulfate (HS), a major polysaccharide component of the vascular system, is involved in regulating a number of functions of the blood vessel wall including blood coagulation, cell differentiation, and the inflammatory response. The wide range of biological functions makes HS an attractive therapeutic target. The long term goal of our research involves utilizing an enzyme-based approach to develop HS-based therapeutics for treating thrombotic diseases, cancer and excessive inflammatory responses. The biosynthesis of HS involves multiple specialized sulfotransferases such as 2-O-sulfotransferase (2OST) and 6-O-sulfotransferase (6OST), which are essential for preparing HS with activities in regulating vascular development and blood coagulation. The substrate specificity of the HS sulfotransferases controls the sulfation patterns of HS, permitting HS to exhibit a specific function, however, limited knowledge regarding the mechanism of these enzymes has hindered our ability to prepare functionally-specific HS. We aim to understand the mechanism of action of these two enzymes in hopes of developing heparin/HS with improved anticoagulant efficacy. In this dissertation, we present successful crystallization of 2OST in complex with 3’- phosphoadenosine 5’-phosphate (PAP).
    [Show full text]
  • Identification of Keratins and Analysis of Their Expression in Carp and Goldfish: Comparison with the Zebrafish and Trout Keratin Catalog
    Cell Tissue Res DOI 10.1007/s00441-005-0031-1 REGULAR ARTICLE Dana M. García . Hermann Bauer . Thomas Dietz . Thomas Schubert . Jürgen Markl . Michael Schaffeld Identification of keratins and analysis of their expression in carp and goldfish: comparison with the zebrafish and trout keratin catalog Received: 21 March 2005 / Accepted: 23 May 2005 # Springer-Verlag Abstract With more than 50 genes in human, keratins zebrafish, and the cyprinid fishes being more similar to each make up a large gene family, but the evolutionary pres- other than to the salmonid trout. Because of the detected sure leading to their diversity remains largely unclear. Nev- similarity of keratin expression among the cyprinid fishes, ertheless, this diversity offers a means to examine the we propose that, for certain experiments, they are inter- evolutionary relationships among organisms that express changeable. Although the zebrafish distinguishes itself as keratins. Here, we report the analysis of keratins expressed being a developmental and genetic/genomic model organ- in two cyprinid fishes, goldfish and carp, by two-dimen- ism, we have found that the goldfish, in particular, is a more sional polyacrylamide gel electrophoresis, complementary suitable model for both biochemical and histological stud- keratin blot binding assay, and immunoblotting. We further ies of the cytoskeleton, especially since goldfish cytoskel- explore the expression of keratins by immunofluorescence etal preparations seem to be more resistant to degradation microscopy. Comparison is made with the keratin expres- than those from carp or zebrafish. sion and catalogs of zebrafish and rainbow trout. The keratins among these fishes exhibit a similar range of mo- Keywords Keratin .
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]
  • Regeneration of PAPS for the Enzymatic Synthesis of Sulfated Oligosaccharides
    J. Org. Chem. 2000, 65, 5565-5574 5565 Regeneration of PAPS for the Enzymatic Synthesis of Sulfated Oligosaccharides Michael D. Burkart, Masayuki Izumi, Eli Chapman, Chun-Hung Lin,† and Chi-Huey Wong* Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 [email protected] Received February 24, 2000 This paper describes the study of 3′-phosphoadenosine-5′-phosphosulfate (PAPS) regeneration from 3′-phosphoadenosine-5′-phosphate (PAP) for use in practical syntheses of carbohydrate sulfates which are catalyzed by sulfotransferases. Among the regeneration systems, the one with recombinant aryl sulfotransferase proved to be the most practical. This regeneration system was coupled with a sulfotransferase-catalyzed reaction, using a recombinant Nod factor sulfotransferase, for the synthesis of various oligosaccharide sulfates that were further glycosylated using glycosyl- transferases. Sulfated carbohydrates and glycopeptides have gener- modulation of receptor binding.1,8 Drug design for the ated interest due to their roles in specific cell signaling inhibition of these therapeutically interesting enzymes and recognition events of both normal and disease has quickly followed sulfotransferase discovery and will processes,1 such as chronic inflammation, cancer me- gain increasing importance as we have easy access to this tastasis, cartilage formation, and hormone regulation. class of molecules to study their biological roles more Recent studies
    [Show full text]