The Cuboctahedron from Spheres

Total Page:16

File Type:pdf, Size:1020Kb

The Cuboctahedron from Spheres CPS Geometry Part 4 – Archimedean Solids 18. The Cuboctahedron in CPS 19. Truncated Tetrahedron in CPS 20. Truncated Octahedron in CPS 21. Truncated Cube in CPS 22. Truncated Icosahedron in CPS Nick Trif Ottawa, Ontario, Canada – 2018 www.platonicstructures.com CPS Geometry Part 4 – Archimedean Solids – 18: The Cuboctahedron from Spheres YouTube: https://youtu.be/SIl7zn1_ncE A cuboctahedron is a solid body with 8 triangular faces and 6 square faces. A cuboctahedron is a solid body with 8 triangular faces and 6 square faces. It has 12 identical vertices and 24 identical edges. As we have seen already, a sphere can be completely surrounded by exactly twelve identical spheres. These 13 spheres define the simplest cuboctohedron in the close packing of spheres arrangement Let's have a look at the evolution of this pattern, by adding more and more layers of spheres. Let's have a look at the evolution of this pattern, by adding more and more layers of spheres. As the number of spheres increases, the cuboctahedron shape becomes clearer. Buckminster Fuler has given a special place to this pattern in his investigation of close packing of spheres. Buckminster Fuler has given a special place to this pattern in his investigation of close packing of spheres. He introduced the term "vector equilibrium" to refer to this arrangement. All 12 distances from the center sphere to the spheres defining each vertex, are equal. The faces of this pattern can be used to see the seven planes identified before in the CPS arrangement. One can easily imagine variation of this pattern - for example a wire frame. We have mentioned before that all the patterns in CPS, when viewed as Platonic Structures, are expandable. The lengths of the struts do not contribute in any way to the shape of a Platonic Structure. Two Platonic Structures assembled from struts of different lengths, are Similar Structures. The Euclidian geometry is based on the similarity theorem, also known as the Proportionality Theorem, or Thales Theorem. The Euclidian geometry is based on the similarity theorem, also known as the Proportionality Theorem, or Thales Theorem. The preservation of patterns in CPS provides a nice explanation of this fundamental property of space. The Platonic Structure View, where the spheres are connected using identical struts, provides a better visualization of the nature of these patterns and the inside connections between nodes. The Platonic Structure View, where the spheres are connected using identical struts, provides a better visualization of the nature of these patterns and the inside connections between nodes. www.platonicstructures.com Beauty makes beautiful things beautiful!.
Recommended publications
  • Archimedean Solids
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat).
    [Show full text]
  • The Truncated Icosahedron As an Inflatable Ball
    https://doi.org/10.3311/PPar.12375 Creative Commons Attribution b |99 Periodica Polytechnica Architecture, 49(2), pp. 99–108, 2018 The Truncated Icosahedron as an Inflatable Ball Tibor Tarnai1, András Lengyel1* 1 Department of Structural Mechanics, Faculty of Civil Engineering, Budapest University of Technology and Economics, H-1521 Budapest, P.O.B. 91, Hungary * Corresponding author, e-mail: [email protected] Received: 09 April 2018, Accepted: 20 June 2018, Published online: 29 October 2018 Abstract In the late 1930s, an inflatable truncated icosahedral beach-ball was made such that its hexagonal faces were coloured with five different colours. This ball was an unnoticed invention. It appeared more than twenty years earlier than the first truncated icosahedral soccer ball. In connection with the colouring of this beach-ball, the present paper investigates the following problem: How many colourings of the dodecahedron with five colours exist such that all vertices of each face are coloured differently? The paper shows that four ways of colouring exist and refers to other colouring problems, pointing out a defect in the colouring of the original beach-ball. Keywords polyhedron, truncated icosahedron, compound of five tetrahedra, colouring of polyhedra, permutation, inflatable ball 1 Introduction Spherical forms play an important role in different fields – not even among the relics of the Romans who inherited of science and technology, and in different areas of every- many ball games from the Greeks. day life. For example, spherical domes are quite com- The Romans mainly used balls composed of equal mon in architecture, and spherical balls are used in most digonal panels, forming a regular hosohedron (Coxeter, 1973, ball games.
    [Show full text]
  • Are Your Polyhedra the Same As My Polyhedra?
    Are Your Polyhedra the Same as My Polyhedra? Branko Gr¨unbaum 1 Introduction “Polyhedron” means different things to different people. There is very little in common between the meaning of the word in topology and in geometry. But even if we confine attention to geometry of the 3-dimensional Euclidean space – as we shall do from now on – “polyhedron” can mean either a solid (as in “Platonic solids”, convex polyhedron, and other contexts), or a surface (such as the polyhedral models constructed from cardboard using “nets”, which were introduced by Albrecht D¨urer [17] in 1525, or, in a more mod- ern version, by Aleksandrov [1]), or the 1-dimensional complex consisting of points (“vertices”) and line-segments (“edges”) organized in a suitable way into polygons (“faces”) subject to certain restrictions (“skeletal polyhedra”, diagrams of which have been presented first by Luca Pacioli [44] in 1498 and attributed to Leonardo da Vinci). The last alternative is the least usual one – but it is close to what seems to be the most useful approach to the theory of general polyhedra. Indeed, it does not restrict faces to be planar, and it makes possible to retrieve the other characterizations in circumstances in which they reasonably apply: If the faces of a “surface” polyhedron are sim- ple polygons, in most cases the polyhedron is unambiguously determined by the boundary circuits of the faces. And if the polyhedron itself is without selfintersections, then the “solid” can be found from the faces. These reasons, as well as some others, seem to warrant the choice of our approach.
    [Show full text]
  • New Perspectives on Polyhedral Molecules and Their Crystal Structures Santiago Alvarez, Jorge Echeverria
    New Perspectives on Polyhedral Molecules and their Crystal Structures Santiago Alvarez, Jorge Echeverria To cite this version: Santiago Alvarez, Jorge Echeverria. New Perspectives on Polyhedral Molecules and their Crystal Structures. Journal of Physical Organic Chemistry, Wiley, 2010, 23 (11), pp.1080. 10.1002/poc.1735. hal-00589441 HAL Id: hal-00589441 https://hal.archives-ouvertes.fr/hal-00589441 Submitted on 29 Apr 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Physical Organic Chemistry New Perspectives on Polyhedral Molecules and their Crystal Structures For Peer Review Journal: Journal of Physical Organic Chemistry Manuscript ID: POC-09-0305.R1 Wiley - Manuscript type: Research Article Date Submitted by the 06-Apr-2010 Author: Complete List of Authors: Alvarez, Santiago; Universitat de Barcelona, Departament de Quimica Inorganica Echeverria, Jorge; Universitat de Barcelona, Departament de Quimica Inorganica continuous shape measures, stereochemistry, shape maps, Keywords: polyhedranes http://mc.manuscriptcentral.com/poc Page 1 of 20 Journal of Physical Organic Chemistry 1 2 3 4 5 6 7 8 9 10 New Perspectives on Polyhedral Molecules and their Crystal Structures 11 12 Santiago Alvarez, Jorge Echeverría 13 14 15 Departament de Química Inorgànica and Institut de Química Teòrica i Computacional, 16 Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain).
    [Show full text]
  • Chapter 2 Figures and Shapes 2.1 Polyhedron in N-Dimension in Linear
    Chapter 2 Figures and Shapes 2.1 Polyhedron in n-dimension In linear programming we know about the simplex method which is so named because the feasible region can be decomposed into simplexes. A zero-dimensional simplex is a point, an 1D simplex is a straight line segment, a 2D simplex is a triangle, a 3D simplex is a tetrahedron. In general, a n-dimensional simplex has n+1 vertices not all contained in a (n-1)- dimensional hyperplane. Therefore simplex is the simplest building block in the space it belongs. An n-dimensional polyhedron can be constructed from simplexes with only possible common face as their intersections. Such a definition is a bit vague and such a figure need not be connected. Connected polyhedron is the prototype of a closed manifold. We may use vertices, edges and faces (hyperplanes) to define a polyhedron. A polyhedron is convex if all convex linear combinations of the vertices Vi are inside itself, i.e. i Vi is contained inside for all i 0 and all _ i i 1. i If a polyhedron is not convex, then the smallest convex set which contains it is called the convex hull of the polyhedron. Separating hyperplane Theorem For any given point outside a convex set, there exists a hyperplane with this given point on one side of it and the entire convex set on the other. Proof: Because the given point will be outside one of the supporting hyperplanes of the convex set. 2.2 Platonic Solids Known to Plato (about 500 B.C.) and explained in the Elements (Book XIII) of Euclid (about 300 B.C.), these solids are governed by the rules that the faces are the regular polygons of a single species and the corners (vertices) are all alike.
    [Show full text]
  • Dissection of Rhombic Solids with Octahedral Symmetry to Archimedean Solids, Part 2
    Dissection of rhombic solids with octahedral symmetry to Archimedean solids, Part 2 Izidor Hafner In [5] we found "best approximate" by "rhombic solids" for certain Platonic and Archimedean solids with octahedral symmetry. In this paper we treat the remaining solids: truncated cube, rhombicubocahedron and truncated cuboctahedron. For this purpose we extend the notion of rhombic solid so, that it is also possible to add to them 1/4 and 1/8 of the rhombic dodecahedron and 1/6 of the cube. These last solids can be dissected to cubes. The authors of [1, pg. 331] produced the table of the Dehn invariants for the non-snub unit edge Archimedean polyhedra. We have considered the icosahedral part in [7]. Results from both papers show, that each best aproximate has a surplus or a deficit measured in tetrahedrons (T): -2, -1, 0, 1, 2. Actualy 1/4 of the tetrahedron appears as a piece. The table of Dehn invariant for the non-snub unit edge Archimedean polyhedra (octahedral part) [1]: Tetrahedron -12(3)2 Truncated tetrahedron 12(3)2 Cube 0 Truncated cube -24(3)2 Octahedron 24(3)2 Truncated octahedron 0 Rhombicuboctahedron -24(3)2 ??? Cuboctahedron -24(3)2 Truncated cuboctahedron 0 Along with the above table, we produced the following one: Tetrahedron 1 Truncated tetrahedron -1 Cube 0 Truncated cube 2 Octahedron -2 Truncated octahedron 0 Rhombicuboctahedron -2 Cuboctahedron 2 Truncated cuboctahedron 0 For instance: the tetrahedron has a surplus of 1 tetrahedron relative to empty polyhedron, the octahedron has deficit of 2 tetrahedra relative to rhombic dodecahedron. Our truncated cube, rhombicuboctahedron and truncated cuboctahedron are not Archimedean, but can be enlarged to Archimedean by addition of some prisms, so the results in the table are valid for Archimedean solids as well.
    [Show full text]
  • Energy Landscapes for the Self-Assembly of Supramolecular Polyhedra
    JNonlinearSci DOI 10.1007/s00332-016-9286-9 Energy Landscapes for the Self-Assembly of Supramolecular Polyhedra Emily R. Russell1 Govind Menon2 · Received: 16 June 2015 / Accepted: 23 January 2016 ©SpringerScience+BusinessMediaNewYork2016 Abstract We develop a mathematical model for the energy landscape of polyhedral supramolecular cages recently synthesized by self-assembly (Sun et al. in Science 328:1144–1147, 2010). Our model includes two essential features of the experiment: (1) geometry of the organic ligands and metallic ions; and (2) combinatorics. The molecular geometry is used to introduce an energy that favors square-planar vertices 2 (modeling Pd + ions) and bent edges with one of two preferred opening angles (model- ing boomerang-shaped ligands of two types). The combinatorics of the model involve two-colorings of edges of polyhedra with four-valent vertices. The set of such two- colorings, quotiented by the octahedral symmetry group, has a natural graph structure and is called the combinatorial configuration space. The energy landscape of our model is the energy of each state in the combinatorial configuration space. The challenge in the computation of the energy landscape is a combinatorial explosion in the number of two-colorings of edges. We describe sampling methods based on the symmetries Communicated by Robert V. Kohn. ERR acknowledges the support and hospitality of the Institute for Computational and Experimental Research in Mathematics (ICERM) at Brown University, where she was a postdoctoral fellow while carrying out this work. GM acknowledges partial support from NSF grant DMS 14-11278. This research was conducted using computational resources at the Center for Computation and Visualization, Brown University.
    [Show full text]
  • Local Symmetry Preserving Operations on Polyhedra
    Local Symmetry Preserving Operations on Polyhedra Pieter Goetschalckx Submitted to the Faculty of Sciences of Ghent University in fulfilment of the requirements for the degree of Doctor of Science: Mathematics. Supervisors prof. dr. dr. Kris Coolsaet dr. Nico Van Cleemput Chair prof. dr. Marnix Van Daele Examination Board prof. dr. Tomaž Pisanski prof. dr. Jan De Beule prof. dr. Tom De Medts dr. Carol T. Zamfirescu dr. Jan Goedgebeur © 2020 Pieter Goetschalckx Department of Applied Mathematics, Computer Science and Statistics Faculty of Sciences, Ghent University This work is licensed under a “CC BY 4.0” licence. https://creativecommons.org/licenses/by/4.0/deed.en In memory of John Horton Conway (1937–2020) Contents Acknowledgements 9 Dutch summary 13 Summary 17 List of publications 21 1 A brief history of operations on polyhedra 23 1 Platonic, Archimedean and Catalan solids . 23 2 Conway polyhedron notation . 31 3 The Goldberg-Coxeter construction . 32 3.1 Goldberg ....................... 32 3.2 Buckminster Fuller . 37 3.3 Caspar and Klug ................... 40 3.4 Coxeter ........................ 44 4 Other approaches ....................... 45 References ............................... 46 2 Embedded graphs, tilings and polyhedra 49 1 Combinatorial graphs .................... 49 2 Embedded graphs ....................... 51 3 Symmetry and isomorphisms . 55 4 Tilings .............................. 57 5 Polyhedra ............................ 59 6 Chamber systems ....................... 60 7 Connectivity .......................... 62 References
    [Show full text]
  • Paper Models of Polyhedra
    Paper Models of Polyhedra Gijs Korthals Altes Polyhedra are beautiful 3-D geometrical figures that have fascinated philosophers, mathematicians and artists for millennia Copyrights © 1998-2001 Gijs.Korthals Altes All rights reserved . It's permitted to make copies for non-commercial purposes only email: [email protected] Paper Models of Polyhedra Platonic Solids Dodecahedron Cube and Tetrahedron Octahedron Icosahedron Archimedean Solids Cuboctahedron Icosidodecahedron Truncated Tetrahedron Truncated Octahedron Truncated Cube Truncated Icosahedron (soccer ball) Truncated dodecahedron Rhombicuboctahedron Truncated Cuboctahedron Rhombicosidodecahedron Truncated Icosidodecahedron Snub Cube Snub Dodecahedron Kepler-Poinsot Polyhedra Great Stellated Dodecahedron Small Stellated Dodecahedron Great Icosahedron Great Dodecahedron Other Uniform Polyhedra Tetrahemihexahedron Octahemioctahedron Cubohemioctahedron Small Rhombihexahedron Small Rhombidodecahedron S mall Dodecahemiododecahedron Small Ditrigonal Icosidodecahedron Great Dodecahedron Compounds Stella Octangula Compound of Cube and Octahedron Compound of Dodecahedron and Icosahedron Compound of Two Cubes Compound of Three Cubes Compound of Five Cubes Compound of Five Octahedra Compound of Five Tetrahedra Compound of Truncated Icosahedron and Pentakisdodecahedron Other Polyhedra Pentagonal Hexecontahedron Pentagonalconsitetrahedron Pyramid Pentagonal Pyramid Decahedron Rhombic Dodecahedron Great Rhombihexacron Pentagonal Dipyramid Pentakisdodecahedron Small Triakisoctahedron Small Triambic
    [Show full text]
  • Wythoffian Skeletal Polyhedra
    Wythoffian Skeletal Polyhedra by Abigail Williams B.S. in Mathematics, Bates College M.S. in Mathematics, Northeastern University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 14, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Dedication I would like to dedicate this dissertation to my Meme. She has always been my loudest cheerleader and has supported me in all that I have done. Thank you, Meme. ii Abstract of Dissertation Wythoff's construction can be used to generate new polyhedra from the symmetry groups of the regular polyhedra. In this dissertation we examine all polyhedra that can be generated through this construction from the 48 regular polyhedra. We also examine when the construction produces uniform polyhedra and then discuss other methods for finding uniform polyhedra. iii Acknowledgements I would like to start by thanking Professor Schulte for all of the guidance he has provided me over the last few years. He has given me interesting articles to read, provided invaluable commentary on this thesis, had many helpful and insightful discussions with me about my work, and invited me to wonderful conferences. I truly cannot thank him enough for all of his help. I am also very thankful to my committee members for their time and attention. Additionally, I want to thank my family and friends who, for years, have supported me and pretended to care everytime I start talking about math. Finally, I want to thank my husband, Keith.
    [Show full text]
  • Operation-Based Notation for Archimedean Graph
    Operation-Based Notation for Archimedean Graph Hidetoshi Nonaka Research Group of Mathematical Information Science Division of Computer Science, Hokkaido University N14W9, Sapporo, 060 0814, Japan ABSTRACT Table 1. The list of Archimedean solids, where p, q, r are the number of vertices, edges, and faces, respectively. We introduce three graph operations corresponding to Symbol Name of polyhedron p q r polyhedral operations. By applying these operations, thirteen Archimedean graphs can be generated from Platonic graphs that A(3⋅4)2 Cuboctahedron 12 24 14 are used as seed graphs. A4610⋅⋅ Great Rhombicosidodecahedron 120 180 62 A468⋅⋅ Great Rhombicuboctahedron 48 72 26 Keyword: Archimedean graph, Polyhedral graph, Polyhedron A 2 Icosidodecahedron 30 60 32 notation, Graph operation. (3⋅ 5) A3454⋅⋅⋅ Small Rhombicosidodecahedron 60 120 62 1. INTRODUCTION A3⋅43 Small Rhombicuboctahedron 24 48 26 A34 ⋅4 Snub Cube 24 60 38 Archimedean graph is a simple planar graph isomorphic to the A354 ⋅ Snub Dodecahedron 60 150 92 skeleton or wire-frame of the Archimedean solid. There are A38⋅ 2 Truncated Cube 24 36 14 thirteen Archimedean solids, which are semi-regular polyhedra A3⋅102 Truncated Dodecahedron 60 90 32 and the subset of uniform polyhedra. Seven of them can be A56⋅ 2 Truncated Icosahedron 60 90 32 formed by truncation of Platonic solids, and all of them can be A 2 Truncated Octahedron 24 36 14 formed by polyhedral operations defined as Conway polyhedron 4⋅6 A 2 Truncated Tetrahedron 12 18 8 notation [1-2]. 36⋅ The author has recently developed an interactive modeling system of uniform polyhedra including Platonic solids, Archimedean solids and Kepler-Poinsot solids, based on graph drawing and simulated elasticity, mainly for educational purpose [3-5].
    [Show full text]
  • Polyhedra from Symmetric Placement of Regular Polygons
    Symmetrohedra: Polyhedra from Symmetric Placement of Regular Polygons Craig S. Kaplan George W. Hart University of Washington http://www.georgehart.com Box 352350, Seattle, WA 98195 USA [email protected] [email protected] Abstract In the quest for new visually interesting polyhedra with regular faces, we define and present an infinite class of solids, constructed by placing regular polygons at the rotational axes of a polyhedral symmetry group. This new technique can be used to generate many existing polyhedra, including most of the Archimedean solids. It also yields novel families of attractive symmetric polyhedra. 1 Introduction Most interesting polyhedra arise via a process that attempts to generate or preserve some measure of order. We might ask that the polyhedron be as symmetric as possible, that the symmetries act transitively on its vertices, edges or faces, or that all its faces be regular polygons. Indeed, these questions have all been asked and the resulting families of polyhedra enumerated to satisfaction. The last case, that of convex polyhedra all of whose faces are regular polygons, are the well-known Johnson solids [3]. Eager to discover new polyhedra with regular faces, but aware that the list of Johnson solids has been proven complete, we are faced with the prospect of letting some constraints slip a bit in order to innovate. We achieve this innovation by dropping the constraint that all faces be regular, asking only that many faces be regular, and that the remaining faces occur in a small number of different shapes. In this paper we define an infinite set of convex polyhedra that we call symmetrohedra.Theyare parameterized by several discrete and continuous values.
    [Show full text]