Wythoffian Skeletal Polyhedra

Total Page:16

File Type:pdf, Size:1020Kb

Wythoffian Skeletal Polyhedra Wythoffian Skeletal Polyhedra by Abigail Williams B.S. in Mathematics, Bates College M.S. in Mathematics, Northeastern University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 14, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Dedication I would like to dedicate this dissertation to my Meme. She has always been my loudest cheerleader and has supported me in all that I have done. Thank you, Meme. ii Abstract of Dissertation Wythoff's construction can be used to generate new polyhedra from the symmetry groups of the regular polyhedra. In this dissertation we examine all polyhedra that can be generated through this construction from the 48 regular polyhedra. We also examine when the construction produces uniform polyhedra and then discuss other methods for finding uniform polyhedra. iii Acknowledgements I would like to start by thanking Professor Schulte for all of the guidance he has provided me over the last few years. He has given me interesting articles to read, provided invaluable commentary on this thesis, had many helpful and insightful discussions with me about my work, and invited me to wonderful conferences. I truly cannot thank him enough for all of his help. I am also very thankful to my committee members for their time and attention. Additionally, I want to thank my family and friends who, for years, have supported me and pretended to care everytime I start talking about math. Finally, I want to thank my husband, Keith. Whenever I have doubted myself he has always been there with a hug and an encouraging word. Everyday I am thankful for his love and support. iv Table of Contents Dedication ii Abstract of Dissertation ii Acknowledgements iii Table of Contents iv 1 Background 1 1.1 Introduction . 1 1.2 Abstract polytopes . 2 1.3 Regularity . 5 1.4 Operations on regular polyhedra . 8 1.4.1 Duality - δ ..................................... 8 1.4.2 Petrie duality - π .................................. 9 1.4.3 Facetting - 'k ................................... 10 1.4.4 Halving - η ..................................... 11 1.4.5 Skewing - σ ..................................... 11 1.4.6 Mixing . 11 1.5 Realizations . 12 1.5.1 Blends of realizations . 14 1.6 Uniform polyhedra . 14 1.7 Fundamental regions . 19 1.8 Polygonal complexes . 20 2 Wythoff's construction 21 2.1 Expanding Wythoff's construction . 21 2.2 Properties of Wythoffians . 27 3 Finite regular polyhedra and their Wythoffians 33 3.1 Regular polyhedra with tetrahedral symmetry . 34 3.1.1 f3; 3g ........................................ 34 v 3.1.2 f4; 3g3 ........................................ 36 3.2 Regular polyhedra with octahedral symmetry . 38 3.2.1 f3; 4g ........................................ 38 3.2.2 f4; 3g ........................................ 39 3.2.3 f6; 4g3 ........................................ 41 3.2.4 f6; 3g4 ........................................ 42 3.3 Regular polyhedra with icosahedral symmetry . 44 3.3.1 f3; 5g ........................................ 44 3.3.2 f5; 3g ........................................ 46 3.3.3 f10; 5g3 ....................................... 47 3.3.4 f10; 3g5 ....................................... 49 5 3.3.5 f5; 2 g ........................................ 50 5 3.3.6 f 2 ; 5g ........................................ 52 5 3.3.7 f6; 2 g ........................................ 54 3.3.8 f6; 5g ........................................ 56 5 3.3.9 f3; 2 g ........................................ 57 5 3.3.10 f 2 ; 3g ........................................ 59 10 5 3.3.11 f 3 ; 2 g ........................................ 61 10 3.3.12 f 3 ; 3g ........................................ 63 4 Planar regular apeirohedra and their Wythoffians 65 4.1 Square tiling . 65 4.1.1 f4; 4g ........................................ 65 4.1.2 f1; 4g4 ....................................... 67 4.2 Triangular tiling . 68 4.2.1 f3; 6g ........................................ 68 4.2.2 f1; 6g3 ....................................... 70 4.3 Hexagonal tiling . 71 4.3.1 f6; 3g ........................................ 71 4.3.2 f1; 3g6 ....................................... 72 5 Blended regular apeirohedra and their Wythoffians 75 5.1 Blended apeirohedra related to the square tiling of the plane . 76 5.1.1 f4; 4g#fg ...................................... 76 5.1.2 f1; 4g4#fg ..................................... 78 5.1.3 f4; 4g#f1g ..................................... 80 5.1.4 f1; 4g4#f1g .................................... 83 5.2 Blended apeirohedra related to the hexagonal tiling of the plane . 86 5.2.1 f6; 3g#fg ...................................... 86 5.2.2 f1; 3g6#fg ..................................... 88 vi 5.2.3 f6; 3g#f1g ..................................... 89 5.2.4 f1; 3g6#f1g .................................... 93 5.3 Blended apeirohedra related to the triangular tiling of the plane . 95 5.3.1 f3; 6g#fg ...................................... 95 5.3.2 f1; 6g3#fg ..................................... 98 5.3.3 f3; 6g#f1g ..................................... 99 5.3.4 f1; 6g3#f1g ....................................102 5.4 Remarks on blended apeirohedra . 104 6 Pure regular apeirohedra and their Wythoffians 105 6.1 f4; 6j4g ...........................................106 6.2 f6; 4j4g ...........................................108 6.3 f1; 6g4;4 ..........................................110 6.4 f1; 4g6;4 ..........................................112 6.5 f1; 4g·;∗3 ..........................................114 6.6 f6; 6g4 ............................................116 6.7 f4; 6g6 ............................................118 6.8 f6; 4g6 ............................................120 6.9 f6; 6j3g ...........................................122 6.10 f1; 6g6;3 ..........................................123 6.11 f1; 3g(a) ..........................................125 6.12 f1; 3g(b) ...........................................127 7 Uniform polyhedra 130 7.1 New uniform polyhedra resulting from Wythoff's construction . 131 7.1.1 Uniform polyhedra derived from finite regular polyhedra . 132 7.1.2 Uniform apeirohedra derived from planar regular apeirohedra . 133 7.1.3 Uniform apeirohedra derived from blended regular apeirohedra . 134 7.1.4 Uniform apeirohedra derived from pure regular apeirohedra . 139 7.2 New construction for uniform polyhedra . 146 7.3 Uniform polyhedra generated through alternate construction . 148 7.3.1 Tetrahedral family . 148 7.3.2 Octahedral family . 148 7.3.3 Icosahedral family . 151 7.4 Summary of results . 157 Appendix 159 Bibliography 208 vii Chapter 1 Background 1.1 Introduction Since ancient times, mathematicians have been studying polyhedra. Beginning with the convex regular Platonic solids, the subject then progressed to the non-regular but still convex Archimedean solids, [41]. By the 1800s, the non-convex Kepler-Poinsot star polyhedra had been discovered. In the last century, mathematicians began taking a more combinatorial approach to the study. This opened the door for the Petrie-Coxeter infinite polyhedra which have convex faces and skew vertex figures. Then came Coxeter's Regular Polytopes, which, in addition to examing the geometry of polyhedra, examined the underlying symmetries and combinatorial properties of polyhedra. By the 1970s Gr¨unbaum had extended these ideas about symmetry to allow for new types of polygons. These polygons can be skew or even infinite, [19]. To make polyhedra with these new polygons as faces, Gr¨unbaum introduced the idea of skeletal polyhedra. This allowed for the regular Gr¨unbaum- Dress apeirohedra (see [16], [17]) with skew and infinite faces. At this point, the list of regular polyhedra was complete. Then McMullen and Schulte examined and fully classified the regular polyhedra by their combinatorial properties (see [30], [31]). This study gave life to the field of abstract regular polytopes, [32]. The study of abstract regular polyhedra naturally gave rise to the study of non-regular abstract polyhedra, in particular, the study of chiral polyhedra. The chiral polyhedra have been fully classified by Schulte (see [37], [39]) and continue to be studied (see, for example, [34], [33], [25], [11]). The primary aim of this thesis is to take one of the techniques used to examine chiral polyhedra and apply it to skeletal polyhedra to find analogues of the Archimedean solids. More specifically, we take abstract regular polyhedra and realize them in Euclidean space, then based on those real- izations and their symmetry groups we generate more polyhedra. To do this, we find a symmetry group in ordinary Euclidean space corresponding to the automorphism group of an abstract poly- hedron. We then use Wythoff's construction on the symmetry group to generate a realization of the abstract regular polyhedron and to generate other polyhedra with the same symmetries. These realizations are based on abstract objects, so their geometric properties only need fulfill the most basic combinatorial properties of an abstract polyhedron. As such, we need to refine our 1 definitions of polygon and polyhedron to account for the realizations of the abstract polyhedra. Based on Gr¨unbaum's work, polygons are viewed as sequences of connected edges, and polyhedra are viewed as skeletons comprised of vertices and edges, [19]. This allows us to look at polyhedra with skew faces and infinite faces. While the regular polyhedra with finite, planar faces have been studied extensively, there
Recommended publications
  • Islamic Geometric Ornaments in Istanbul
    ►SKETCH 2 CONSTRUCTIONS OF REGULAR POLYGONS Regular polygons are the base elements for constructing the majority of Islamic geometric ornaments. Of course, in Islamic art there are geometric ornaments that may have different genesis, but those that can be created from regular polygons are the most frequently seen in Istanbul. We can also notice that many of the Islamic geometric ornaments can be recreated using rectangular grids like the ornament in our first example. Sometimes methods using rectangular grids are much simpler than those based or regular polygons. Therefore, we should not omit these methods. However, because methods for constructing geometric ornaments based on regular polygons are the most popular, we will spend relatively more time explor- ing them. Before, we start developing some concrete constructions it would be worthwhile to look into a few issues of a general nature. As we have no- ticed while developing construction of the ornament from the floor in the Sultan Ahmed Mosque, these constructions are not always simple, and in order to create them we need some knowledge of elementary geometry. On the other hand, computer programs for geometry or for computer graphics can give us a number of simpler ways to develop geometric fig- ures. Some of them may not require any knowledge of geometry. For ex- ample, we can create a regular polygon with any number of sides by rotat- ing a point around another point by using rotations 360/n degrees. This is a very simple task if we use a computer program and the only knowledge of geometry we need here is that the full angle is 360 degrees.
    [Show full text]
  • Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur Si Muove: Biomimetic Embedding of N-Tuple Helices in Spherical Polyhedra - /
    Alternative view of segmented documents via Kairos 23 October 2017 | Draft Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur si muove: Biomimetic embedding of N-tuple helices in spherical polyhedra - / - Introduction Symbolic stars vs Strategic pillars; Polyhedra vs Helices; Logic vs Comprehension? Dynamic bonding patterns in n-tuple helices engendering n-fold rotating symbols Embedding the triple helix in a spherical octahedron Embedding the quadruple helix in a spherical cube Embedding the quintuple helix in a spherical dodecahedron and a Pentagramma Mirificum Embedding six-fold, eight-fold and ten-fold helices in appropriately encircled polyhedra Embedding twelve-fold, eleven-fold, nine-fold and seven-fold helices in appropriately encircled polyhedra Neglected recognition of logical patterns -- especially of opposition Dynamic relationship between polyhedra engendered by circles -- variously implying forms of unity Symbol rotation as dynamic essential to engaging with value-inversion References Introduction The contrast to the geocentric model of the solar system was framed by the Italian mathematician, physicist and philosopher Galileo Galilei (1564-1642). His much-cited phrase, " And yet it moves" (E pur si muove or Eppur si muove) was allegedly pronounced in 1633 when he was forced to recant his claims that the Earth moves around the immovable Sun rather than the converse -- known as the Galileo affair. Such a shift in perspective might usefully inspire the recognition that the stasis attributed so widely to logos and other much-valued cultural and heraldic symbols obscures the manner in which they imply a fundamental cognitive dynamic. Cultural symbols fundamental to the identity of a group might then be understood as variously moving and transforming in ways which currently elude comprehension.
    [Show full text]
  • Applying the Polygon Angle
    POLYGONS 8.1.1 – 8.1.5 After studying triangles and quadrilaterals, students now extend their study to all polygons. A polygon is a closed, two-dimensional figure made of three or more non- intersecting straight line segments connected end-to-end. Using the fact that the sum of the measures of the angles in a triangle is 180°, students learn a method to determine the sum of the measures of the interior angles of any polygon. Next they explore the sum of the measures of the exterior angles of a polygon. Finally they use the information about the angles of polygons along with their Triangle Toolkits to find the areas of regular polygons. See the Math Notes boxes in Lessons 8.1.1, 8.1.5, and 8.3.1. Example 1 4x + 7 3x + 1 x + 1 The figure at right is a hexagon. What is the sum of the measures of the interior angles of a hexagon? Explain how you know. Then write an equation and solve for x. 2x 3x – 5 5x – 4 One way to find the sum of the interior angles of the 9 hexagon is to divide the figure into triangles. There are 11 several different ways to do this, but keep in mind that we 8 are trying to add the interior angles at the vertices. One 6 12 way to divide the hexagon into triangles is to draw in all of 10 the diagonals from a single vertex, as shown at right. 7 Doing this forms four triangles, each with angle measures 5 4 3 1 summing to 180°.
    [Show full text]
  • Polygon Review and Puzzlers in the Above, Those Are Names to the Polygons: Fill in the Blank Parts. Names: Number of Sides
    Polygon review and puzzlers ÆReview to the classification of polygons: Is it a Polygon? Polygons are 2-dimensional shapes. They are made of straight lines, and the shape is "closed" (all the lines connect up). Polygon Not a Polygon Not a Polygon (straight sides) (has a curve) (open, not closed) Regular polygons have equal length sides and equal interior angles. Polygons are named according to their number of sides. Name of Degree of Degree of triangle total angles regular angles Triangle 180 60 In the above, those are names to the polygons: Quadrilateral 360 90 fill in the blank parts. Pentagon Hexagon Heptagon 900 129 Names: number of sides: Octagon Nonagon hendecagon, 11 dodecagon, _____________ Decagon 1440 144 tetradecagon, 13 hexadecagon, 15 Do you see a pattern in the calculation of the heptadecagon, _____________ total degree of angles of the polygon? octadecagon, _____________ --- (n -2) x 180° enneadecagon, _____________ icosagon 20 pentadecagon, _____________ These summation of angles rules, also apply to the irregular polygons, try it out yourself !!! A point where two or more straight lines meet. Corner. Example: a corner of a polygon (2D) or of a polyhedron (3D) as shown. The plural of vertex is "vertices” Test them out yourself, by drawing diagonals on the polygons. Here are some fun polygon riddles; could you come up with the answer? Geometry polygon riddles I: My first is in shape and also in space; My second is in line and also in place; My third is in point and also in line; My fourth in operation but not in sign; My fifth is in angle but not in degree; My sixth is in glide but not symmetry; Geometry polygon riddles II: I am a polygon all my angles have the same measure all my five sides have the same measure, what general shape am I? Geometry polygon riddles III: I am a polygon.
    [Show full text]
  • The Volumes of a Compact Hyperbolic Antiprism
    The volumes of a compact hyperbolic antiprism Vuong Huu Bao joint work with Nikolay Abrosimov Novosibirsk State University G2R2 August 6-18, Novosibirsk, 2018 Vuong Huu Bao (NSU) The volumes of a compact hyperbolic antiprism Aug. 6-18,2018 1/14 Introduction Calculating volumes of polyhedra is a classical problem, that has been well known since Euclid and remains relevant nowadays. This is partly due to the fact that the volume of a fundamental polyhedron is one of the main geometrical invariants for a 3-dimensional manifold. Every 3-manifold can be presented by a fundamental polyhedron. That means we can pair-wise identify the faces of some polyhedron to obtain a 3-manifold. Thus the volume of 3-manifold is the volume of prescribed fundamental polyhedron. Theorem (Thurston, Jørgensen) The volumes of hyperbolic 3-dimensional hyperbolic manifolds form a closed non-discrete set on the real line. This set is well ordered. There are only finitely many manifolds with a given volume. Vuong Huu Bao (NSU) The volumes of a compact hyperbolic antiprism Aug. 6-18,2018 2/14 Introduction 1835, Lobachevsky and 1982, Milnor computed the volume of an ideal hyperbolic tetrahedron in terms of Lobachevsky function. 1993, Vinberg computed the volume of hyperbolic tetrahedron with at least one vertex at infinity. 1907, Gaetano Sforza; 1999, Yano, Cho ; 2005 Murakami; 2005 Derevnin, Mednykh gave different formulae for general hyperbolic tetrahedron. 2009, N. Abrosimov, M. Godoy and A. Mednykh found the volumes of spherical octahedron with mmm or 2 m-symmetry. | 2013, N. Abrosimov and G. Baigonakova, found the volume of hyperbolic octahedron with mmm-symmetry.
    [Show full text]
  • Uniform Polychora
    BRIDGES Mathematical Connections in Art, Music, and Science Uniform Polychora Jonathan Bowers 11448 Lori Ln Tyler, TX 75709 E-mail: [email protected] Abstract Like polyhedra, polychora are beautiful aesthetic structures - with one difference - polychora are four dimensional. Although they are beyond human comprehension to visualize, one can look at various projections or cross sections which are three dimensional and usually very intricate, these make outstanding pieces of art both in model form or in computer graphics. Polygons and polyhedra have been known since ancient times, but little study has gone into the next dimension - until recently. Definitions A polychoron is basically a four dimensional "polyhedron" in the same since that a polyhedron is a three dimensional "polygon". To be more precise - a polychoron is a 4-dimensional "solid" bounded by cells with the following criteria: 1) each cell is adjacent to only one other cell for each face, 2) no subset of cells fits criteria 1, 3) no two adjacent cells are corealmic. If criteria 1 fails, then the figure is degenerate. The word "polychoron" was invented by George Olshevsky with the following construction: poly = many and choron = rooms or cells. A polytope (polyhedron, polychoron, etc.) is uniform if it is vertex transitive and it's facets are uniform (a uniform polygon is a regular polygon). Degenerate figures can also be uniform under the same conditions. A vertex figure is the figure representing the shape and "solid" angle of the vertices, ex: the vertex figure of a cube is a triangle with edge length of the square root of 2.
    [Show full text]
  • Archimedean Solids
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat).
    [Show full text]
  • Systematics of Atomic Orbital Hybridization of Coordination Polyhedra: Role of F Orbitals
    molecules Article Systematics of Atomic Orbital Hybridization of Coordination Polyhedra: Role of f Orbitals R. Bruce King Department of Chemistry, University of Georgia, Athens, GA 30602, USA; [email protected] Academic Editor: Vito Lippolis Received: 4 June 2020; Accepted: 29 June 2020; Published: 8 July 2020 Abstract: The combination of atomic orbitals to form hybrid orbitals of special symmetries can be related to the individual orbital polynomials. Using this approach, 8-orbital cubic hybridization can be shown to be sp3d3f requiring an f orbital, and 12-orbital hexagonal prismatic hybridization can be shown to be sp3d5f2g requiring a g orbital. The twists to convert a cube to a square antiprism and a hexagonal prism to a hexagonal antiprism eliminate the need for the highest nodality orbitals in the resulting hybrids. A trigonal twist of an Oh octahedron into a D3h trigonal prism can involve a gradual change of the pair of d orbitals in the corresponding sp3d2 hybrids. A similar trigonal twist of an Oh cuboctahedron into a D3h anticuboctahedron can likewise involve a gradual change in the three f orbitals in the corresponding sp3d5f3 hybrids. Keywords: coordination polyhedra; hybridization; atomic orbitals; f-block elements 1. Introduction In a series of papers in the 1990s, the author focused on the most favorable coordination polyhedra for sp3dn hybrids, such as those found in transition metal complexes. Such studies included an investigation of distortions from ideal symmetries in relatively symmetrical systems with molecular orbital degeneracies [1] In the ensuing quarter century, interest in actinide chemistry has generated an increasing interest in the involvement of f orbitals in coordination chemistry [2–7].
    [Show full text]
  • On Regular Polytopes Is [7]
    ON REGULAR POLYTOPES Luis J. Boya Departamento de F´ısica Te´orica Universidad de Zaragoza, E-50009 Zaragoza, SPAIN [email protected] Cristian Rivera Departamento de F´ısica Te´orica Universidad de Zaragoza, E-50009 Zaragoza, SPAIN cristian [email protected] MSC 05B45, 11R52, 51M20, 52B11, 52B15, 57S25 Keywords: Polytopes, Higher Dimensions, Orthogonal groups Abstract Regular polytopes, the generalization of the five Platonic solids in 3 space dimensions, exist in arbitrary dimension n 1; now in dim. 2, 3 and 4 there are extra polytopes, while in general≥− dimensions only the hyper-tetrahedron, the hyper-cube and its dual hyper-octahedron ex- ist. We attribute these peculiarites and exceptions to special properties of the orthogonal groups in these dimensions: the SO(2) = U(1) group being (abelian and) divisible, is related to the existence of arbitrarily- sided plane regular polygons, and the splitting of the Lie algebra of the O(4) group will be seen responsible for the Schl¨afli special polytopes in 4-dim., two of which percolate down to three. In spite of dim. 8 being also special (Cartan’s triality), we argue why there are no extra polytopes, while it has other consequences: in particular the existence of the three division algebras over the reals R: complex C, quater- nions H and octonions O is seen also as another feature of the special arXiv:1210.0601v1 [math-ph] 1 Oct 2012 properties of corresponding orthogonal groups, and of the spheres of dimension 0,1,3 and 7. 1 Introduction Regular Polytopes are the higher dimensional generalization of the (regu- lar) polygons in the plane and the (five) Platonic solids in space.
    [Show full text]
  • How Platonic and Archimedean Solids Define Natural Equilibria of Forces for Tensegrity
    How Platonic and Archimedean Solids Define Natural Equilibria of Forces for Tensegrity Martin Friedrich Eichenauer The Platonic and Archimedean solids are a well-known vehicle to describe Research Assistant certain phenomena of our surrounding world. It can be stated that they Technical University Dresden define natural equilibria of forces, which can be clarified particularly Faculty of Mathematics Institute of Geometry through the packing of spheres. [1][2] To solve the problem of the densest Germany packing, both geometrical and mechanical approach can be exploited. The mechanical approach works on the principle of minimal potential energy Daniel Lordick whereas the geometrical approach searches for the minimal distances of Professor centers of mass. The vertices of the solids are given by the centers of the Technical University Dresden spheres. Faculty of Geometry Institute of Geometry If we expand this idea by a contrary force, which pushes outwards, we Germany obtain the principle of tensegrity. We can show that we can build up regular and half-regular polyhedra by the interaction of physical forces. Every platonic and Archimedean solid can be converted into a tensegrity structure. Following this, a vast variety of shapes defined by multiple solids can also be obtained. Keywords: Platonic Solids, Archimedean Solids, Tensegrity, Force Density Method, Packing of Spheres, Modularization 1. PLATONIC AND ARCHIMEDEAN SOLIDS called “kissing number” problem. The kissing number problem is asking for the maximum possible number of Platonic and Archimedean solids have systematically congruent spheres, which touch another sphere of the been described in the antiquity. They denominate all same size without overlapping. In three dimensions the convex polyhedra with regular faces and uniform vertices kissing number is 12.
    [Show full text]
  • Petrie Schemes
    Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes.
    [Show full text]
  • Uniform Panoploid Tetracombs
    Uniform Panoploid Tetracombs George Olshevsky TETRACOMB is a four-dimensional tessellation. In any tessellation, the honeycells, which are the n-dimensional polytopes that tessellate the space, Amust by definition adjoin precisely along their facets, that is, their ( n!1)- dimensional elements, so that each facet belongs to exactly two honeycells. In the case of tetracombs, the honeycells are four-dimensional polytopes, or polychora, and their facets are polyhedra. For a tessellation to be uniform, the honeycells must all be uniform polytopes, and the vertices must be transitive on the symmetry group of the tessellation. Loosely speaking, therefore, the vertices must be “surrounded all alike” by the honeycells that meet there. If a tessellation is such that every point of its space not on a boundary between honeycells lies in the interior of exactly one honeycell, then it is panoploid. If one or more points of the space not on a boundary between honeycells lie inside more than one honeycell, the tessellation is polyploid. Tessellations may also be constructed that have “holes,” that is, regions that lie inside none of the honeycells; such tessellations are called holeycombs. It is possible for a polyploid tessellation to also be a holeycomb, but not for a panoploid tessellation, which must fill the entire space exactly once. Polyploid tessellations are also called starcombs or star-tessellations. Holeycombs usually arise when (n!1)-dimensional tessellations are themselves permitted to be honeycells; these take up the otherwise free facets that bound the “holes,” so that all the facets continue to belong to two honeycells. In this essay, as per its title, we are concerned with just the uniform panoploid tetracombs.
    [Show full text]