Uniform Polychora
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometry of Generalized Permutohedra
Geometry of Generalized Permutohedra by Jeffrey Samuel Doker A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Federico Ardila, Co-chair Lior Pachter, Co-chair Matthias Beck Bernd Sturmfels Lauren Williams Satish Rao Fall 2011 Geometry of Generalized Permutohedra Copyright 2011 by Jeffrey Samuel Doker 1 Abstract Geometry of Generalized Permutohedra by Jeffrey Samuel Doker Doctor of Philosophy in Mathematics University of California, Berkeley Federico Ardila and Lior Pachter, Co-chairs We study generalized permutohedra and some of the geometric properties they exhibit. We decompose matroid polytopes (and several related polytopes) into signed Minkowski sums of simplices and compute their volumes. We define the associahedron and multiplihe- dron in terms of trees and show them to be generalized permutohedra. We also generalize the multiplihedron to a broader class of generalized permutohedra, and describe their face lattices, vertices, and volumes. A family of interesting polynomials that we call composition polynomials arises from the study of multiplihedra, and we analyze several of their surprising properties. Finally, we look at generalized permutohedra of different root systems and study the Minkowski sums of faces of the crosspolytope. i To Joe and Sue ii Contents List of Figures iii 1 Introduction 1 2 Matroid polytopes and their volumes 3 2.1 Introduction . .3 2.2 Matroid polytopes are generalized permutohedra . .4 2.3 The volume of a matroid polytope . .8 2.4 Independent set polytopes . 11 2.5 Truncation flag matroids . 14 3 Geometry and generalizations of multiplihedra 18 3.1 Introduction . -
Two Poset Polytopes
Discrete Comput Geom 1:9-23 (1986) G eometrv)i.~.reh, ~ ( :*mllmlati~ml © l~fi $1~ter-Vtrlq New Yorklu¢. t¢ Two Poset Polytopes Richard P. Stanley* Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 Abstract. Two convex polytopes, called the order polytope d)(P) and chain polytope <~(P), are associated with a finite poset P. There is a close interplay between the combinatorial structure of P and the geometric structure of E~(P). For instance, the order polynomial fl(P, m) of P and Ehrhart poly- nomial i(~9(P),m) of O(P) are related by f~(P,m+l)=i(d)(P),m). A "transfer map" then allows us to transfer properties of O(P) to W(P). In particular, we transfer known inequalities involving linear extensions of P to some new inequalities. I. The Order Polytope Our aim is to investigate two convex polytopes associated with a finite partially ordered set (poset) P. The first of these, which we call the "order polytope" and denote by O(P), has been the subject of considerable scrutiny, both explicit and implicit, Much of what we say about the order polytope will be essentially a review of well-known results, albeit ones scattered throughout the literature, sometimes in a rather obscure form. The second polytope, called the "chain polytope" and denoted if(P), seems never to have been previously considered per se. It is a special case of the vertex-packing polytope of a graph (see Section 2) but has many special properties not in general valid or meaningful for graphs. -
1 Lifts of Polytopes
Lecture 5: Lifts of polytopes and non-negative rank CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Lifts of polytopes 1.1 Polytopes and inequalities Recall that the convex hull of a subset X n is defined by ⊆ conv X λx + 1 λ x0 : x; x0 X; λ 0; 1 : ( ) f ( − ) 2 2 [ ]g A d-dimensional convex polytope P d is the convex hull of a finite set of points in d: ⊆ P conv x1;:::; xk (f g) d for some x1;:::; xk . 2 Every polytope has a dual representation: It is a closed and bounded set defined by a family of linear inequalities P x d : Ax 6 b f 2 g for some matrix A m d. 2 × Let us define a measure of complexity for P: Define γ P to be the smallest number m such that for some C s d ; y s ; A m d ; b m, we have ( ) 2 × 2 2 × 2 P x d : Cx y and Ax 6 b : f 2 g In other words, this is the minimum number of inequalities needed to describe P. If P is full- dimensional, then this is precisely the number of facets of P (a facet is a maximal proper face of P). Thinking of γ P as a measure of complexity makes sense from the point of view of optimization: Interior point( methods) can efficiently optimize linear functions over P (to arbitrary accuracy) in time that is polynomial in γ P . ( ) 1.2 Lifts of polytopes Many simple polytopes require a large number of inequalities to describe. -
Platonic Solids Generate Their Four-Dimensional Analogues
1 Platonic solids generate their four-dimensional analogues PIERRE-PHILIPPE DECHANT a;b;c* aInstitute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom, bPhysics Department, Arizona State University, Tempe, AZ 85287-1604, United States, and cMathematics Department, University of York, Heslington, York, YO10 5GG, United Kingdom. E-mail: [email protected] Polytopes; Platonic Solids; 4-dimensional geometry; Clifford algebras; Spinors; Coxeter groups; Root systems; Quaternions; Representations; Symmetries; Trinities; McKay correspondence Abstract In this paper, we show how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone. Via the Cartan-Dieudonne´ theorem, the reflective symmetries of the arXiv:1307.6768v1 [math-ph] 25 Jul 2013 Platonic solids generate rotations. In a Clifford algebra framework, the space of spinors gen- erating such three-dimensional rotations has a natural four-dimensional Euclidean structure. The spinors arising from the Platonic Solids can thus in turn be interpreted as vertices in four- dimensional space, giving a simple construction of the 4D polytopes 16-cell, 24-cell, the F4 root system and the 600-cell. In particular, these polytopes have ‘mysterious’ symmetries, that are almost trivial when seen from the three-dimensional spinorial point of view. In fact, all these induced polytopes are also known to be root systems and thus generate rank-4 Coxeter PREPRINT: Acta Crystallographica Section A A Journal of the International Union of Crystallography 2 groups, which can be shown to be a general property of the spinor construction. -
The View from Six Dimensions
Walls and Bridges The view from Six Dimensiosn Wendy Y. Krieger [email protected] ∗ January, Abstract Walls divide, bridges unite. This idea is applied to devising a vocabulary suited for the study of higher dimensions. Points are connected, solids divided. In higher dimensions, there are many more products and concepts visible. The four polytope products (prism, tegum, pyramid and comb), lacing and semiate figures, laminates are all discussed. Many of these become distinct in four to six dimensions. Walls and Bridges Consider a knife. Its main action is to divide solids into pieces. This is done by a sweeping action, although the presence of solid materials might make the sweep a little less graceful. What might a knife look like in four dimensions. A knife would sweep a three-dimensional space, and thus the blade is two-dimensional. The purpose of the knife is to divide, and therefore its dimension is fixed by what it divides. Walls divide, bridges unite. When things are thought about in the higher dimensions, the dividing or uniting nature of it is more important than its innate dimensionality. A six-dimensional blade has four dimensions, since its sweep must make five dimensions. There are many idioms that suggest the role of an edge or line is to divide. This most often hap pens when the referent dimension is the two-dimensional ground, but the edge of a knife makes for a three-dimensional referent. A line in the sand, a deadline, and to the edge, all suggest boundaries of two-dimensional areas, where the line or edge divides. -
Systematics of Atomic Orbital Hybridization of Coordination Polyhedra: Role of F Orbitals
molecules Article Systematics of Atomic Orbital Hybridization of Coordination Polyhedra: Role of f Orbitals R. Bruce King Department of Chemistry, University of Georgia, Athens, GA 30602, USA; [email protected] Academic Editor: Vito Lippolis Received: 4 June 2020; Accepted: 29 June 2020; Published: 8 July 2020 Abstract: The combination of atomic orbitals to form hybrid orbitals of special symmetries can be related to the individual orbital polynomials. Using this approach, 8-orbital cubic hybridization can be shown to be sp3d3f requiring an f orbital, and 12-orbital hexagonal prismatic hybridization can be shown to be sp3d5f2g requiring a g orbital. The twists to convert a cube to a square antiprism and a hexagonal prism to a hexagonal antiprism eliminate the need for the highest nodality orbitals in the resulting hybrids. A trigonal twist of an Oh octahedron into a D3h trigonal prism can involve a gradual change of the pair of d orbitals in the corresponding sp3d2 hybrids. A similar trigonal twist of an Oh cuboctahedron into a D3h anticuboctahedron can likewise involve a gradual change in the three f orbitals in the corresponding sp3d5f3 hybrids. Keywords: coordination polyhedra; hybridization; atomic orbitals; f-block elements 1. Introduction In a series of papers in the 1990s, the author focused on the most favorable coordination polyhedra for sp3dn hybrids, such as those found in transition metal complexes. Such studies included an investigation of distortions from ideal symmetries in relatively symmetrical systems with molecular orbital degeneracies [1] In the ensuing quarter century, interest in actinide chemistry has generated an increasing interest in the involvement of f orbitals in coordination chemistry [2–7]. -
Report on the Comparison of Tesseract and ABBYY Finereader OCR Engines
IMPACT is supported by the European Community under the FP7 ICT Work Programme. The project is coordinated by the National Library of the Netherlands. Report on the comparison of Tesseract and ABBYY FineReader OCR engines Marcin Heliński, Miłosz Kmieciak, Tomasz Parkoła Poznań Supercomputing and Networking Center, Poland Table of contents 1. Introduction ............................................................................................................................ 2 2. Training process .................................................................................................................... 2 2.1 Tesseract training process ................................................................................................ 3 2.2 FineReader training process ............................................................................................. 8 3. Comparison of Tesseract and FineReader ............................................................................10 3.1 Evaluation scenario .........................................................................................................10 3.1.2 Evaluation criteria ......................................................................................................12 3.2. OCR recognition accuracy results ...................................................................................13 3.3 Comparison of Tesseract and FineReader recognition accuracy .....................................20 4 Conclusions ...........................................................................................................................23 -
1 Critical Noncolorings of the 600-Cell Proving the Bell-Kochen-Specker
Critical noncolorings of the 600-cell proving the Bell-Kochen-Specker theorem Mordecai Waegell* and P.K.Aravind** Physics Department Worcester Polytechnic Institute Worcester, MA 01609 *[email protected] ,** [email protected] ABSTRACT Aravind and Lee-Elkin (1998) gave a proof of the Bell-Kochen-Specker theorem by showing that it is impossible to color the 60 directions from the center of a 600-cell to its vertices in a certain way. This paper refines that result by showing that the 60 directions contain many subsets of 36 and 30 directions that cannot be similarly colored, and so provide more economical demonstrations of the theorem. Further, these subsets are shown to be critical in the sense that deleting even a single direction from any of them causes the proof to fail. The critical sets of size 36 and 30 are shown to belong to orbits of 200 and 240 members, respectively, under the symmetries of the polytope. A comparison is made between these critical sets and other such sets in four dimensions, and the significance of these results is discussed. 1. Introduction Some time back Lee-Elkin and one of us [1] gave a proof of the Bell-Kochen-Specker (BKS) theorem [2,3] by showing that it is impossible to color the 60 directions from the center of a 600- cell to its vertices in a certain way. This paper refines that result in two ways. Firstly, it shows that the 60 directions contain many subsets of 36 and 30 directions that cannot be similarly colored, and so provide more economical demonstrations of the theorem. -
On Regular Polytopes Is [7]
ON REGULAR POLYTOPES Luis J. Boya Departamento de F´ısica Te´orica Universidad de Zaragoza, E-50009 Zaragoza, SPAIN [email protected] Cristian Rivera Departamento de F´ısica Te´orica Universidad de Zaragoza, E-50009 Zaragoza, SPAIN cristian [email protected] MSC 05B45, 11R52, 51M20, 52B11, 52B15, 57S25 Keywords: Polytopes, Higher Dimensions, Orthogonal groups Abstract Regular polytopes, the generalization of the five Platonic solids in 3 space dimensions, exist in arbitrary dimension n 1; now in dim. 2, 3 and 4 there are extra polytopes, while in general≥− dimensions only the hyper-tetrahedron, the hyper-cube and its dual hyper-octahedron ex- ist. We attribute these peculiarites and exceptions to special properties of the orthogonal groups in these dimensions: the SO(2) = U(1) group being (abelian and) divisible, is related to the existence of arbitrarily- sided plane regular polygons, and the splitting of the Lie algebra of the O(4) group will be seen responsible for the Schl¨afli special polytopes in 4-dim., two of which percolate down to three. In spite of dim. 8 being also special (Cartan’s triality), we argue why there are no extra polytopes, while it has other consequences: in particular the existence of the three division algebras over the reals R: complex C, quater- nions H and octonions O is seen also as another feature of the special arXiv:1210.0601v1 [math-ph] 1 Oct 2012 properties of corresponding orthogonal groups, and of the spheres of dimension 0,1,3 and 7. 1 Introduction Regular Polytopes are the higher dimensional generalization of the (regu- lar) polygons in the plane and the (five) Platonic solids in space. -
Arxiv:1705.01294V1
Branes and Polytopes Luca Romano email address: [email protected] ABSTRACT We investigate the hierarchies of half-supersymmetric branes in maximal supergravity theories. By studying the action of the Weyl group of the U-duality group of maximal supergravities we discover a set of universal algebraic rules describing the number of independent 1/2-BPS p-branes, rank by rank, in any dimension. We show that these relations describe the symmetries of certain families of uniform polytopes. This induces a correspondence between half-supersymmetric branes and vertices of opportune uniform polytopes. We show that half-supersymmetric 0-, 1- and 2-branes are in correspondence with the vertices of the k21, 2k1 and 1k2 families of uniform polytopes, respectively, while 3-branes correspond to the vertices of the rectified version of the 2k1 family. For 4-branes and higher rank solutions we find a general behavior. The interpretation of half- supersymmetric solutions as vertices of uniform polytopes reveals some intriguing aspects. One of the most relevant is a triality relation between 0-, 1- and 2-branes. arXiv:1705.01294v1 [hep-th] 3 May 2017 Contents Introduction 2 1 Coxeter Group and Weyl Group 3 1.1 WeylGroup........................................ 6 2 Branes in E11 7 3 Algebraic Structures Behind Half-Supersymmetric Branes 12 4 Branes ad Polytopes 15 Conclusions 27 A Polytopes 30 B Petrie Polygons 30 1 Introduction Since their discovery branes gained a prominent role in the analysis of M-theories and du- alities [1]. One of the most important class of branes consists in Dirichlet branes, or D-branes. D-branes appear in string theory as boundary terms for open strings with mixed Dirichlet-Neumann boundary conditions and, due to their tension, scaling with a negative power of the string cou- pling constant, they are non-perturbative objects [2]. -
Platonic Solids Generate Their Four-Dimensional Analogues
This is a repository copy of Platonic solids generate their four-dimensional analogues. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/85590/ Version: Accepted Version Article: Dechant, Pierre-Philippe orcid.org/0000-0002-4694-4010 (2013) Platonic solids generate their four-dimensional analogues. Acta Crystallographica Section A : Foundations of Crystallography. pp. 592-602. ISSN 1600-5724 https://doi.org/10.1107/S0108767313021442 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Platonic solids generate their four-dimensional analogues PIERRE-PHILIPPE DECHANT a,b,c* aInstitute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom, bPhysics Department, Arizona State University, Tempe, AZ 85287-1604, United States, and cMathematics Department, University of York, Heslington, York, YO10 5GG, United Kingdom. E-mail: [email protected] Polytopes; Platonic Solids; 4-dimensional geometry; Clifford algebras; Spinors; Coxeter groups; Root systems; Quaternions; Representations; Symmetries; Trinities; McKay correspondence Abstract In this paper, we show how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone. -
Chains of Antiprisms
Chains of antiprisms Citation for published version (APA): Verhoeff, T., & Stoel, M. (2015). Chains of antiprisms. In Bridges Baltimore 2015 : Mathematics, Music, Art, Architecture, Culture, Baltimore, MD, USA, July 29 - August 1, 2015 (pp. 347-350). The Bridges Organization. Document status and date: Published: 01/01/2015 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.