The Cuboctahedron from Spheres

The Cuboctahedron from Spheres

CPS Geometry Part 4 – Archimedean Solids 18. The Cuboctahedron in CPS 19. Truncated Tetrahedron in CPS 20. Truncated Octahedron in CPS 21. Truncated Cube in CPS 22. Truncated Icosahedron in CPS Nick Trif Ottawa, Ontario, Canada – 2018 www.platonicstructures.com CPS Geometry Part 4 – Archimedean Solids – 18: The Cuboctahedron from Spheres YouTube: https://youtu.be/SIl7zn1_ncE A cuboctahedron is a solid body with 8 triangular faces and 6 square faces. A cuboctahedron is a solid body with 8 triangular faces and 6 square faces. It has 12 identical vertices and 24 identical edges. As we have seen already, a sphere can be completely surrounded by exactly twelve identical spheres. These 13 spheres define the simplest cuboctohedron in the close packing of spheres arrangement Let's have a look at the evolution of this pattern, by adding more and more layers of spheres. Let's have a look at the evolution of this pattern, by adding more and more layers of spheres. As the number of spheres increases, the cuboctahedron shape becomes clearer. Buckminster Fuler has given a special place to this pattern in his investigation of close packing of spheres. Buckminster Fuler has given a special place to this pattern in his investigation of close packing of spheres. He introduced the term "vector equilibrium" to refer to this arrangement. All 12 distances from the center sphere to the spheres defining each vertex, are equal. The faces of this pattern can be used to see the seven planes identified before in the CPS arrangement. One can easily imagine variation of this pattern - for example a wire frame. We have mentioned before that all the patterns in CPS, when viewed as Platonic Structures, are expandable. The lengths of the struts do not contribute in any way to the shape of a Platonic Structure. Two Platonic Structures assembled from struts of different lengths, are Similar Structures. The Euclidian geometry is based on the similarity theorem, also known as the Proportionality Theorem, or Thales Theorem. The Euclidian geometry is based on the similarity theorem, also known as the Proportionality Theorem, or Thales Theorem. The preservation of patterns in CPS provides a nice explanation of this fundamental property of space. The Platonic Structure View, where the spheres are connected using identical struts, provides a better visualization of the nature of these patterns and the inside connections between nodes. The Platonic Structure View, where the spheres are connected using identical struts, provides a better visualization of the nature of these patterns and the inside connections between nodes. www.platonicstructures.com Beauty makes beautiful things beautiful!.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us