bioRxiv preprint doi: https://doi.org/10.1101/2021.06.15.448144; this version posted June 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Seascape genomics reveals population structure and local adaptation in a widespread coral 2 reef snail, Coralliophila violacea (Kiener, 1836) 3 4 Sara E. Simmonds1*, Samantha H. Cheng1,2, Allison L. Fritts-Penniman1, Gusti Ngurah 5 Mahardika3, Paul H. Barber1 6 7 1Department of Ecology and Evolutionary Biology, University of California Los Angeles, 612 8 Charles E. Young Dr. East, Los Angeles, CA 90095, USA; 9 2Center for Biodiversity and Conservation, American Museum of Natural History, 200 Central 10 Park West, New York, NY 10024, USA; 11 3Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine, 12 Udayana University Bali, Jl. Raya Sesetan, Gg. Markisa 6, Denpasar, Bali 80223, Indonesia; 13 14 *Corresponding author’s current address:
[email protected], Department of Biological 15 Sciences, Boise State University, Boise, ID 83725-1515 16 17 18 ABSTRACT 19 Local adaptation to different environments may reinforce neutral evolutionary 20 divergence, especially in populations in the periphery of a species’ geographic range. 21 Seascape genomics (high-throughput genomics coupled with ocean climate databases) 22 facilitates the exploration of neutral and adaptive variation in concert, developing a 23 clearer picture of processes driving local adaptation in marine populations. This study 24 used a seascape genomics approach to test the relative roles of neutral and adaptive 25 processes shaping population divergence of a widespread coral reef snail, Coralliophila 26 violacea.