Mollusca, Gastropoda) Mit Hilfe Molekularer Methoden

Total Page:16

File Type:pdf, Size:1020Kb

Mollusca, Gastropoda) Mit Hilfe Molekularer Methoden Rekonstruktion der Phylogenie der Opisthobranchia (Mollusca, Gastropoda) mit Hilfe molekularer Methoden Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie der Ruhr-Universität Bochum angefertigt am Lehrstuhl für Spezielle Zoologie vorgelegt von Verena Vonnemann aus Essen Bochum, 2005 Inhaltsverzeichnis 1 Einleitung 1 1.1 Die Systematik 1 1.2 Die phylogenetische Systematik 3 1.3 Die molekulare Phylogenetik 3 1.4 Die Gastropoda 4 1.5 Die Opisthobranchia 6 1.6 Bisherige Erkenntnisse über die Phylogenie der Opisthobranchia 12 1.7 Molekulare Marker 15 1.8 Ziele der vorliegenden Arbeit 18 2 Material und Methoden 23 2.1 Untersuchte Taxa und Herkunft des Tiermaterials 23 2.2 Untersuchte Gene 29 2.3 Labormethoden 32 2.3.1 Fixierung des Tiermaterials 32 2.3.2 DNA-Isolierung 32 2.3.3 Die Polymerase-Kettenreaktion 33 2.3.4 Aufreinigung von PCR-Produkten 36 2.3.5 Klonierung von PCR-Fragmenten 36 2.3.6 Aufreinigung der Plasmid-DNA 37 2.3.7 DNA-Sequenzierung 38 2.4 Methoden der Auswertung 42 2.4.1 Erstellen einer Konsensussequenz 42 2.4.2 Kontrolle der erzeugten Sequenzen 42 2.4.3 Alinierung der DNA-Sequenzen 43 2.4.4 Verfahren zur Erstellung von Dendrogrammen 44 2.4.4.1 Distanzmethoden 44 2.4.4.2 Maximum Parsimonie-Verfahren 47 2.4.4.3 maximum likelihood-Verfahren 48 2.4.4.4 Bayes’sche Verfahren 49 2.5 bootstrap-Verfahren 50 2.6 Prüfung der Plausibilität von Dendrogrammen 51 2.6.1 Vergleich mit Dendrogrammen auf der Basis alternativer Daten 51 2.6.2 Vergleich mit Fossilfunden 51 2.6.3 Vergleich mit biologischen Daten 52 2.7 Statistische Tests 52 2.7.1 Analyse der Basenzusammensetzung 52 2.7.2 Berechnung der Substitutionssättigung 52 2.7.3 Der relative rate test 53 2.8 Phylogenetisches Signal 53 3 Ergebnisse 55 3.1 Alinierungsergebnisse 55 3.2 Statistische Tests 57 3.2.1 Sequenzlängen, Basenzusammensetzung und X2-Test 57 3.2.2 Berechnung der Substitutionssättigung 64 3.2.3 relative rate test 69 3.3 Phylogenetisches Signal 71 3.4 Intragenomische Variabilität 73 3.5 Phylogenie der Opisthobranchia 74 3.5.1 18S rDNA 74 3.5.1.1 Maximum Parsimonie-Analyse 74 3.5.1.2 Distanzanalyse 75 3.5.1.3 maximum likelihood-Analyse 80 3.5.1.4 Bayes’sche Analyse 80 3.5.1.5 Zusammenfassung 18S rDNA 80 3.5.2 28S rDNA 81 3.5.2.1 Maximum Parsimonie-Analyse 81 3.5.2.2 Distanzanalyse 81 3.5.2.3 maximum likelihood-Analyse 82 3.5.2.4 Bayes’sche Analyse 82 3.5.2.5 Zusammenfassung 88 3.5.3 16S rDNA 88 3.5.3.1 Maximum Parsimonie-Analyse 88 3.5.3.2 Distanzanalyse 89 3.5.3.3 maximum likelihood-Analyse 89 3.5.3.4 Bayes’sche Analyse 90 3.5.3.5 Zusammenfassung 16S rDNA 90 3.6 Phylogenie der Anaspidea (inklusive Pteropoda) 96 3.6.1 18S rDNA 96 3.6.1.1 Maximum Parsimonie-Analyse 96 3.6.1.2 Distanzanalyse 96 3.6.1.3 maximum likelihood-Analyse 101 3.6.1.4 Bayes’sche Analyse 101 3.6.1.5 Zusammenfassung 101 3.6.2 ITS1-5.8S-ITS2 102 3.6.2.1 Maximum Parsimonie-Analyse 102 3.6.2.2 Distanzanalyse 102 3.6.2.3 maximum likelihood-Analyse 102 3.6.2.4 Bayes’sche Analyse 102 3.2.6.5 Zusammenfassung 104 3.7 Phylogenie von Phyllodesmium 104 3.8 Umbraculum 107 4 Diskussion 108 4.1 Auswahl der Taxa 108 4.2 Untersuchte Gene 109 4.3 Maximum Parsimonie-Analysen 114 4.4 Distanzanalysen 115 4.5 maximum likelihood-Analysen 116 4.6 Bayes’sche Analysen 117 4.7 Statistische Tests 118 4.8 Phylogenetisches Signal 119 4.9 Phylogenie der Opisthobranchia 119 4.9.1 Wahl der Außengruppe 119 4.9.2 Status der Opisthobranchia, Pulmonata und Euthyneura 120 4.9.3 Pulmonata 121 4.9.4 Pyramidellidae 125 4.9.5 Opisthobranchia 126 4.9.5.1 Nudibranchia 126 4.9.5.2 Pleurobranchoidea 127 4.9.5.3 Nudipleura 129 4.9.5.4 Tylodinoidea 130 4.9.5.5 Acteonoidea 132 4.9.5.6 Anaspidea und Pteropoda 134 4.9.5.7 Cephalaspidea s.str. 136 4.9.5.8 Cephalaspidea und Anaspidea 138 4.9.5.9 Sacoglossa 139 4.9.5.10 Acochlidiacea 141 4.10 Prüfung der Plausibilität der rekonstruierten Verwandtschaftshypothesen 142 4.10.1 Vergleich mit Fossilfunden 142 4.10.2 Ernährungsweise 145 4.10.3 Chromosomenzahlen 152 4.11 Phylogenie der Anaspidea 153 4.12 Phylogenie von Phyllodesmium 156 4.13 Umbraculum 158 4.14 Zusammenfassung, Schlusswort und Ausblick 158 Literaturverzeichnis 162 Danksagung 184 Lebenslauf 185 Anhang 186 I Abkürzungen und Symbole 186 II Chemikalien, Lösungen, Medien, Geräte und Kits 187 Chemikalien 187 Rezepte für Lösungen und Medien 187 Kits 188 Geräte 189 III relative rate test 189 Opisthobranchia-Datensatz (18S rDNA) 189 Opisthobranchia-Datensatz (28S rDNA) 217 Opisthobranchia-Datensatz (16S rDNA) 229 Anaspidea-Datensatz (18S rDNA) 240 Anaspidea-Datensatz (ITS1-5.8S-ITS2) 242 Aeolidoidea-Datensatz (18S rDNA) 243 IV Distanzen 247 Opisthobranchia-Datensatz (18S rDNA) 247 Opisthobranchia-Datensatz (16S rDNA) 258 Opisthobranchia-Datensatz (28S rDNA) 262 Anaspidea-Datensatz (18S rDNA) 264 Anaspidea-Datensatz (ITS1-5.8S-ITS2) 264 Aeolidoidea-Datensatz (18S rDNA) 265 V Chromosomenzahlen 266 1 Einleitung 1.1 Die Systematik Überall in unserem Alltag begegnen uns die verschiedensten systematischen Klassifikationen, z.B. bei der Anordnung der Produkte in einem Supermarkt oder der Bücher in einer Bibliothek. Diese Klassifikationen sind nicht nur nützliche, sondern essentielle Werkzeuge, um sich in unserer komplexen Umwelt zurechtfinden zu können. Dabei können durchaus verschiedene, sich überschneidende Ordnungen nebeneinander existieren, die je nach Situationen herangezogen werden. Der Ausgangspunkt für das Errichten solcher Ordnungen ist die systematische Klassifikation der Sinneseindrücke, denen unterschiedliche Konzepte von Dingen gegenübergestellt werden. Zu den Methoden für die Erstellung von Begriffs- konzeptionen gehören das Beobachten und Vergleichen, sowie das Erkennen und Beschreiben. Als zentrales Prinzip zur Klassifikation dient dabei die wahrgenommene Ähnlichkeit. Das Ziel einer Klassifikation ist das Erstellen einer allgemeinen und natürlichen Ordnung der Dinge. Sie beinhaltet im Idealfall eine komplette Auflistung aller natürlichen Klassen von Dingen und darüber hinaus alle Wechselbeziehungen der Dinge untereinander. Die Systematik in der Biologie hat sich den Versuch einer Klassifikation auf der Grundlage der phylogenetischen Beziehungen aller Organismen zur Aufgabe gestellt. Dabei stellt die Systematik eine historische Wissenschaft dar, da man die Stammesgeschichte der Organismen ohne Zeitmaschine nicht beobachten, sondern nur rekonstruieren kann. Daher werden alle Verwandtschaftshypothesen immer Hypothesen bleiben. Die Geschichte der Systematik entstand wohl mit Beginn der Menschheitsgeschichte selbst, durch die Fähigkeit des Menschen, im Gedächtnis Gespeichertes willentlich und spontan abrufen zu können. Nur wenn man sich daran erinnern kann etwas Ähnliches bereits wahrgenommen zu haben, kann man auf die Idee kommen, es handele sich um Vertreter des gleichen Typs von Wahrnehmung und sich so einen Begriff davon machen. Vielleicht bildete aber auch erst die Entstehung der Sprache das notwendige Werkzeug für die Entwicklung der Systematik. Erste Überlieferungen biologischer Klassifikationen stammen aus der Antike, von Aristoteles. Er teilte die ihm bekannten Lebewesen auf der Grundlage von vergleichenden Untersuchungen in „Bluttiere“ (Fische, Amphibien, Säuger, Vögel) einerseits und „blutlose Tiere“ (Schalen-, Krusten-, Weichtiere) andererseits und nahm damit bereits die auch heute noch gültige Unterscheidung von Vertebraten und Invertebraten vorweg. Mit dem Zusammenbruch der griechisch-römischen Kultur allerdings sollte die Beobachtung und der empirische Vergleich nicht länger als Basis für die Klassifikation dienen. Während des Mittelalters wurde nicht zwischen Beobachtung, Dokument und Fabel unterschieden. Verfasser von Enzyklopädien verließen sich nicht auf ihre eigene Augen sondern stützten sich auf Erzählungen und Werke 1 anderer Autoren. Berichte von seltsamen Tieren und Fabelwesen wurden als beobachtete Fakten behandelt. Darüber hinaus galt ein grundlegend anderes Verständnis von Natur. Man war beispielsweise der Auffassung, dass Lebewesen Markierungen besitzen, die Aussagen über dessen Wesen und Eigenschaften machen, z.B. herzförmige Blätter – Einfluss auf das menschliche Herz, oder dass Verwandtschaft sich in räumlicher Nähe ausdrückt. Aus diesen „Geschichten der Natur“ wurde in der Mitte des 17. Jahrhunderts durch Jan Jonston und seine „Historia naturalis de quadripedibus libri“ die Naturgeschichte. Beobachtung, Dokument und Fabel waren von da an klar voneinander getrennt, es ging um die eindeutige Benennung des Sichtbaren. Dies war auch die Geburtsstunde der großen Zeit biologischer Klassifikationen, z.B. von Carl von Linné und Georges Louis de Buffon. Das Ziel war die Entwicklung einer Art „Primärsprache“, durch die Beobachtung und Beschreibung vom jeweiligen Beobachter unabhängig werden sollen. Damit war der Begriff der Struktur geboren, der zwischen Wahrnehmung und Sprache vermitteln sollte. Die Theorie des taxonomischen Merkmals entstand. Ein solches Merkmal beschreibt gleichzeitig das Einzelwesen und seine Stellung im System aller Lebewesen. Das Binomen wurde als Artbezeichnung eingeführt. Nicht alle Strukturen können naturgemäß als taxonomisches Merkmal dienen. Die Schwierigkeit besteht darin, die geeigneten unter einer unermesslichen Zahl von möglichen Merkmalen auszuwählen. Wegen der klaren und häufig sehr stabilen Formen der Pflanzen kam es zu einem „Boom“ der Botanik zu dieser Zeit. Mit Hilfe der Naturgeschichte sollte der göttliche Schöpfungsplan aufgedeckt werden, der Evolutionsgedanke war zu dieser Zeit noch nicht gedacht. Durch eine Wende in der Philosophie durch Kant Ende des 18. Jahrhunderts rückte die Zoologie in den Mittelpunkt der Klassifikationsforschung. Anfang des 19. Jahrhunderts kam der Begriff der Organisation auf, er bezeichnete den inneren Körperbau eines Lebewesens. Der Begriff der Funktion erhielt eine zentrale Bedeutung, da durch ihn eine Wertung der Merkmale in wichtige und weniger wichtige möglich wurde. Lamarck trennte schließlich die Nomenklatur von der Klassifikation, d.h. die Stellung im künstlichen Ordnungssystem von der natürlichen Stellung im „System des Lebens“.
Recommended publications
  • The Systematics and Ecology of the Mangrove-Dwelling Littoraria Species (Gastropoda: Littorinidae) in the Indo-Pacific
    ResearchOnline@JCU This file is part of the following reference: Reid, David Gordon (1984) The systematics and ecology of the mangrove-dwelling Littoraria species (Gastropoda: Littorinidae) in the Indo-Pacific. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24120/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24120/ THE SYSTEMATICS AND ECOLOGY OF THE MANGROVE-DWELLING LITTORARIA SPECIES (GASTROPODA: LITTORINIDAE) IN THE INDO-PACIFIC VOLUME I Thesis submitted by David Gordon REID MA (Cantab.) in May 1984 . for the Degree of Doctor of Philosophy in the Department of Zoology at James Cook University of North Queensland STATEMENT ON ACCESS I, the undersigned, the author of this thesis, understand that the following restriction placed by me on access to this thesis will not extend beyond three years from the date on which the thesis is submitted to the University. I wish to place restriction on access to this thesis as follows: Access not to be permitted for a period of 3 years. After this period has elapsed I understand that James Cook. University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All uses consulting this thesis will have to sign the following statement: 'In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it.' David G.
    [Show full text]
  • Checklist of Marine Gastropods Around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1
    www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com ISSN Online: 2475-4706 Research Article International Journal of Marine Biology and Research Open Access Checklist of Marine Gastropods around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1 1ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai - 400061 2Center for Environmental Nuclear Research, Directorate of Research SRM Institute of Science and Technology, Kattankulathur-603 203 Received: July 30, 2018; Accepted: August 10, 2018; Published: September 04, 2018 *Corresponding author: Ambekar AA, Senior Research Fellow, ICAR-Central Institute of Fisheries Education, Off Yari Road, Versova, Andheri West, Mumbai-400061, Maharashtra, India, E-mail: [email protected] The change in spatial scale often supposed to alter the Abstract The present study was carried out to assess the marine gastropods checklist around ecologically importance area of Tarapur atomic diversity pattern, in the sense that an increased in scale could power station intertidal area. In three tidal zone areas, quadrate provide more resources to species and that promote an increased sampling method was adopted and the intertidal marine gastropods arein diversity interlinks [9]. for Inthe case study of invertebratesof morphological the secondand ecological largest group on earth is Mollusc [7]. Intertidal molluscan communities parameters of water and sediments are also done. A total of 51 were collected and identified up to species level. Physico chemical convergence between geographically and temporally isolated family dominant it composed 20% followed by Neritidae (12%), intertidal gastropods species were identified; among them Muricidae communities [13].
    [Show full text]
  • Linking Behaviour and Climate Change in Intertidal Ectotherms: Insights from 1 Littorinid Snails 2 3 Terence P.T. Ng , Sarah
    1 Linking behaviour and climate change in intertidal ectotherms: insights from 2 littorinid snails 3 4 Terence P.T. Nga, Sarah L.Y. Laua, Laurent Seurontb, Mark S. Daviesc, Richard 5 Staffordd, David J. Marshalle, Gray A.Williamsa* 6 7 a The Swire Institute of Marine Science and School of Biological Sciences, The 8 University of Hong Kong, Pokfulam Road, Hong Kong SAR, China 9 b Centre National de la Recherche Scientifique, Laboratoire d’Oceanologie et de 10 Geosciences, UMR LOG 8187, 28 Avenue Foch, BP 80, 62930 Wimereux, France 11 c Faculty of Applied Sciences, University of Sunderland, Sunderland, U.K. 12 d Faculty of Science and Technology, Bournemouth University, U.K. 13 e Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, 14 Gadong BE1410, Brunei Darussalam 15 16 Corresponding author: The Swire Institute of Marine Science, The University of Hong 17 Kong, Cape d' Aguilar, Shek O, Hong Kong; [email protected] (G.A. Williams) 18 19 Keywords: gastropod, global warming, lethal temperature, thermal safety margin, 20 thermoregulation 21 22 Abstract 23 A key element missing from many predictive models of the impacts of climate change 24 on intertidal ectotherms is the role of individual behaviour. In this synthesis, using 25 littorinid snails as a case study, we show how thermoregulatory behaviours may 26 buffer changes in environmental temperatures. These behaviours include either a 27 flight response, to escape the most extreme conditions and utilize warmer or cooler 28 environments; or a fight response, where individuals modify their own environments 29 to minimize thermal extremes. A conceptual model, generated from studies of 30 littorinid snails, shows that various flight and fight thermoregulatory behaviours may 31 allow an individual to widen its thermal safety margin (TSM) under warming or 32 cooling environmental conditions and hence increase species’ resilience to climate 33 change.
    [Show full text]
  • First Observation and Range Extension of the Nudibranch Tenellia Catachroma (Burn, 1963) in Western Australia (Mollusca: Gastropoda)
    CSIRO Publishing The Royal Society of Victoria, 129, 37–40, 2017 www.publish.csiro.au/journals/rs 10.1071/RS17003 A VICTORIAN EMIGRANT: FIRST OBSERVATION AND RANGE EXTENSION OF THE NUDIBRANCH TENELLIA CATACHROMA (BURN, 1963) IN WESTERN AUSTRALIA (MOLLUSCA: GASTROPODA) Matt J. NiMbs National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia Correspondence: [email protected] ABSTRACT: The southwest coast of Western Australia is heavily influenced by the south-flowing Leeuwin Current. In summer, the current shifts and the north-flowing Capes Current delivers water from the south to nearshore environments and with it a supply of larvae from cooler waters. The nudibranch Tenellia catachroma (Burn, 1963) was considered restricted to Victorian waters; however, its discovery in eastern South Australia in 2013 revealed its capacity to expand its range west. In March 2017 a single individual was observed in shallow subtidal waters at Cape Peron, Western Australia, some 2000 km to the west of its previous range limit. Moreover, its distribution has extended northwards, possibly aided by the Capes Current, into a location of warming. This observation significantly increases the range for this Victorian emigrant to encompass most of the southern Australian coast, and also represents an equatorward shift at a time when the reverse is expected. Keywords: climate change, Cape Peron, range extension, Leeuwin Current, Capes Current The fionid nudibranch Tenellia catachroma (Burn, 1963) first found in southern NSW in 1979 (Rudman 1998), has was first described from two specimens found at Point been observed only a handful of times since and was also Danger, near Torquay, Victoria, in 1961 (Burn 1963).
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Based on Food Sources in Mangrove Ecosystem
    Plant Archives Vol. 19 No. 1, 2019 pp. 913-916 e-ISSN:2581-6063 (online), ISSN:0972-5210 FOOD PREFERENCE ON TELESCOPIUM TELESCOPIUM (MOLLUSCA : GASTROPODA) BASED ON FOOD SOURCES IN MANGROVE ECOSYSTEM Dafit Ariyanto Department of Aquaculture, Agricultural Faculty, Asahan University, Kisaran, North Sumatera, 21224 Indonesia. Abstract Bacteria has a important role on mechanism nutrition and energy on ecosystem. The research was conducted September 2016 – July 2017. This purpose research was to determine a various food type on gastropods in mangrove ecosystem. The relationship between gastropod and mangrove productivity using Correspondence Analysis (CA). the sediment was taken with depth ± 10 cm and leaf litter was taken a litter trap 1 m x 1 m. The result showed that based on a chain food cycle that happened in mangrove ecosystem and tropic level. Gastropod T. telescopium choosed a food on mangrove sediment. T. telescopium has a similiar in bacteria Staphylococcus aureus. Key words : Bacteria, leaf litter, mollusca, soil sediment. Introduction Bacteria can be found on marine organisms. Banggi coast is located on the North Coast of Java, Gastropods have the highest abundance in the mangrove Central Java, Indonesia. The Banggi coast in Rembang, ecosystem. Gastropods perform symbiosis at various Central Java is fringed by various species of mangrove tropical levels to adapt with environmental conditions. such as Rhizophora mucronata Lam., Rhizophora Gastropods demonstrate a variety of feeding and apiculata Blume, Rhizophora stylosa Griff and morphological strategies and are found in areas that utilize Sonneratia alba Sm (Ariyanto et al., 2018a). The many food sources so that there will be a symbiosis mangrove ecosystem is a region rich in organic matter.
    [Show full text]
  • Status of Tree Snails (Gastropoda: Partulidae) on Guam, with a Resurvey of Sites Studied by H
    Pacific Science (1992), vol. 46, no. 1: 77-85 © 1992 by University of Hawaii Press. All rights reserved Status of Tree Snails (Gastropoda: Partulidae) on Guam, with a Resurvey of Sites Studied by H. E. Crampton in 19201 DAVID R. HOPPER 2 AND BARRY D. SMITH 2 ABSTRACT: Tree snails of the family Partulidae have declined on Guam since World War II. One species, indigenous to the western Pacific, Partu/a radio/ata, is still locally common along stream courses in southern areas of the island. The Mariana Island endemic Samoanajragilis is present but not found in abundance anywhere on Guam. Partu/a gibba, another Mariana endemic, is currently known only from one isolated coastal valley along the northwestern coast, and appears to be in a state ofdecline. The Guam endemic Partu/a sa/ifana was not found in areas where it had been previously collected by earlier researchers, and is thus believed to be extinct. The decline and extinction ofthese snails are related to human activities. The single most important factor is likely predation by snails that were introduced as biological control agents for the giant African snail, Achatina ju/ica. The current, most serious threat is probably the introduced flatworm P/atydemus manokwari. This flatworm is also the likely cause of extinctions ofother native and introduced gastropods on Guam and may be the most important threat to the Mariana Partulidae. TREE SNAILS OF TROPICAL PACIFIC islands have 1970). With the exception of the partulids of been of interest since early exploration of the Society Islands, all are lacking study.
    [Show full text]
  • 24 Relationships Within the Ellobiidae
    Origin atld evoltctiorzai-y radiatiotz of the Mollrisca (ed. J. Taylor) pp. 285-294, Oxford University Press. O The Malacological Sociery of London 1996 R. Clarke. 24 paleozoic .ine sna~ls. RELATIONSHIPS WITHIN THE ELLOBIIDAE ANTONIO M. DE FRIAS MARTINS Departamento de Biologia, Universidade dos Aqores, P-9502 Porzta Delgada, S6o Miguel, Agores, Portugal ssification , MusCum r Curie. INTRODUCTION complex, and an assessment is made of its relevance in :eny and phylogenetic relationships. 'ulmonata: The Ellobiidae are a group of primitive pulmonate gastropods, Although not treated in this paper, conchological features (apertural dentition, inner whorl resorption and protoconch) . in press. predominantly tropical. Mostly halophilic, they live above the 28s rRNA high-tide mark on mangrove regions, salt-marshes and rolled- and radular morphology were studied also and reference to ~t limpets stone shores. One subfamily, the Carychiinae, is terrestrial, them will be made in the Discussion. inhabiting the forest leaf-litter on mountains throughout ago1 from the world. MATERIAL AND METHODS 'finities of The Ellobiidae were elevated to family rank by Lamarck (1809) under the vernacular name "Les AuriculacCes", The anatomy of 35 species representing 19 genera was ~Ctiquedu properly latinized to Auriculidae by Gray (1840). Odhner studied (Table 24.1). )llusques). (1925), in a revision of the systematics of the family, preferred For the most part the animals were immersed directly in sciences, H. and A. Adarns' name Ellobiidae (in Pfeiffer, 1854). which 70% ethanol. Some were relaxed overnight in isotonic MgCl, ochemical has been in general use since that time. and then preserved in 70% ethanol. A reduced number of Grouping of the increasingly growing number of genera in specimens of most species was fixed in Bouin's, serially Gebriider the family was based mostly on conchological characters.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Invertebrate Fauna of Korea
    Invertebrate Fauna of Korea Volume 19, Number 4 Mollusca: Gastropoda: Vetigastropoda, Sorbeoconcha Gastropods III 2017 National Institute of Biological Resources Ministry of Environment, Korea Invertebrate Fauna of Korea Volume 19, Number 4 Mollusca: Gastropoda: Vetigastropoda, Sorbeoconcha Gastropods III Jun-Sang Lee Kangwon National University Invertebrate Fauna of Korea Volume 19, Number 4 Mollusca: Gastropoda: Vetigastropoda, Sorbeoconcha Gastropods III Copyright ⓒ 2017 by the National Institute of Biological Resources Published by the National Institute of Biological Resources Environmental Research Complex, Hwangyeong-ro 42, Seo-gu Incheon 22689, Republic of Korea www.nibr.go.kr All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the National Institute of Biological Resources. ISBN : 978-89-6811-266-9 (96470) ISBN : 978-89-94555-00-3 (세트) Government Publications Registration Number : 11-1480592-001226-01 Printed by Junghaengsa, Inc. in Korea on acid-free paper Publisher : Woonsuk Baek Author : Jun-Sang Lee Project Staff : Jin-Han Kim, Hyun Jong Kil, Eunjung Nam and Kwang-Soo Kim Published on February 7, 2017 The Flora and Fauna of Korea logo was designed to represent six major target groups of the project including vertebrates, invertebrates, insects, algae, fungi, and bacteria. The book cover and the logo were designed by Jee-Yeon Koo. Chlorococcales: 1 Preface The biological resources include all the composition of organisms and genetic resources which possess the practical and potential values essential to human live. Biological resources will be firmed competition of the nation because they will be used as fundamental sources to make highly valued products such as new lines or varieties of biological organisms, new material, and drugs.
    [Show full text]
  • MURDOCH RESEARCH REPOSITORY Http
    MURDOCH RESEARCH REPOSITORY http://researchrepository.murdoch.edu.au This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination. Peacock, R.E. , Hosgood, G. , Swindells, K.L. and Smart, L. (2013) Aplysia giganteatoxicosis in 72 dogs in Western Australia. Australian Veterinary Journal, 91 (7). pp. 292-295. http://researchrepository.murdoch.edu.au/16174 Copyright © 2013 The Authors. Australian Veterinary Journal It is posted here for your personal use. No further distribution is permitted. Aplysia gigantea toxicosis in 72 dogs RE Peacock*, G Hosgood, KL Swindells and L Smart * Corresponding author School of Veterinary and Biomedical Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150; [email protected] Objectives This study aims to: 1) confirm a temporal association between exposure to the sea hare Aplysia gigantea and the development of a neurotoxicosis in dogs, 2) further characterise the clinical signs in dogs with this suspected toxicosis, and 3) report the treatment and outcome of dogs with this suspected toxicosis. Method The medical records from four veterinary practices within the Geraldton region of Australia were searched for dogs that had been exposed to Aplysia gigantea and were subsequently presented to a veterinarian during the period of January 2001 to March 2011. Signalment, exposure history, clinical signs, treatment and outcome were recorded. Results Seventy-two dogs met the inclusion criteria. Clinical signs included ptyalism, emesis, ataxia, hyperaesthesia, tremors, muscle fasciculations, seizures, nystagmus and respiratory distress. Thirty dogs did not have abnormal clinical signs at presentation. Sixty-nine dogs presented during January to April.
    [Show full text]
  • Chec List Marine and Coastal Biodiversity of Oaxaca, Mexico
    Check List 9(2): 329–390, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution ǡ PECIES * S ǤǦ ǡÀ ÀǦǡ Ǧ ǡ OF ×±×Ǧ±ǡ ÀǦǡ Ǧ ǡ ISTS María Torres-Huerta, Alberto Montoya-Márquez and Norma A. Barrientos-Luján L ǡ ǡǡǡǤͶ͹ǡ͹ͲͻͲʹǡǡ ǡ ȗ ǤǦǣ[email protected] ćĘęėĆĈęǣ ϐ Ǣ ǡǡ ϐǤǡ ǤǣͳȌ ǢʹȌ Ǥͳͻͺ ǯϐ ʹǡͳͷ͹ ǡͳͷ ȋǡȌǤǡϐ ǡ Ǥǡϐ Ǣ ǡʹͶʹȋͳͳǤʹΨȌ ǡ groups (annelids, crustaceans and mollusks) represent about 44.0% (949 species) of all species recorded, while the ͹͸ʹ ȋ͵ͷǤ͵ΨȌǤǡ not yet been recorded on the Oaxaca coast, including some platyhelminthes, rotifers, nematodes, oligochaetes, sipunculids, echiurans, tardigrades, pycnogonids, some crustaceans, brachiopods, chaetognaths, ascidians and cephalochordates. The ϐϐǢ Ǥ ēęėĔĉĚĈęĎĔē Madrigal and Andreu-Sánchez 2010; Jarquín-González The state of Oaxaca in southern Mexico (Figure 1) is and García-Madrigal 2010), mollusks (Rodríguez-Palacios known to harbor the highest continental faunistic and et al. 1988; Holguín-Quiñones and González-Pedraza ϐ ȋ Ǧ± et al. 1989; de León-Herrera 2000; Ramírez-González and ʹͲͲͶȌǤ Ǧ Barrientos-Luján 2007; Zamorano et al. 2008, 2010; Ríos- ǡ Jara et al. 2009; Reyes-Gómez et al. 2010), echinoderms (Benítez-Villalobos 2001; Zamorano et al. 2006; Benítez- ϐ Villalobos et alǤʹͲͲͺȌǡϐȋͳͻ͹ͻǢǦ Ǥ ǡ 1982; Tapia-García et alǤ ͳͻͻͷǢ ͳͻͻͺǢ Ǧ ϐ (cf. García-Mendoza et al. 2004). ǡ ǡ studies among taxonomic groups are not homogeneous: longer than others. Some of the main taxonomic groups ȋ ÀʹͲͲʹǢǦʹͲͲ͵ǢǦet al.
    [Show full text]