Zinc Oxide: New Insights Into a Material for All Ages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synthesis and Characterization of Nano Zinc Peroxide Photocatalyst for the Removal of Brilliant Green Dye from Textile Waste Water
International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.9, pp 477-486, 2017 Synthesis and characterization of nano zinc peroxide photocatalyst for the removal of brilliant green dye from textile waste water. Prashant L. Chaudhari*, Pallavi C. Kale Department of Chemical Engineering, BharatiVidyapeeth University College of Engineering, Pune, India Abstract : The zinc peroxide nanoparticles were synthesized by using oxidation-hydrolysis- precipitation process.With zinc acetate as a predecessor, Hydrogen peroxide used as a oxidizing agent and polyethylene glycol 200 (PEG 200) was used as a surface modifier. Characterization of zinc peroxide nanoparticles was done by X-ray diffraction [XRD], Fourier transformer infra red [FTIR] and transmission electron microscope [TEM]. The parameters like pH, dye concentration, dosage of nanoparticle catalyst, temperature and contact time were studied for the application of Zinc peroxide nanopaticle as a catalyst for removal of a Brilliant green dye from synthetic sample. Excellent degradation efficiency of brilliant green dye was 86.68% achieved by zinc peroxide with PEG as a catalyst and 84.16% achieved by zinc peroxide without PEG as a catalyst at 120 min of photo catalytic reaction. The maximum degradation efficiency of brilliant green dye (86.68%) was achieved at the optimum operational conditions: initial concentration of dye 9mg/l, catalyst dosage of 200 mg, pH of solution will be in between 6-7. Keywords : Zinc peroxide nanoparticles, Brilliant green dye, Zinc oxide, Textile waste. Introduction The consumption of dyes was highly increased by textile industries in recent years and because of this scenario large amount of coloured wastewater from such industries create serious problems to the environment. -
(12) Patent Application Publication (10) Pub. No.: US 2011/0027386 A1 Kurihara Et Al
US 20110027386A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0027386 A1 Kurihara et al. (43) Pub. Date: Feb. 3, 2011 (54) ANTMICROBAL. ZEOLITE AND (30) Foreign Application Priority Data ANTMICROBAL COMPOSITION Feb. 22, 2006 (JP) ................................. 2006-045241 (75) Inventors: Yasuo Kurihara, Nagoya-shi (JP); Kumiko Miyake, Nagoya-shi (JP); Publication Classification Masashi Uchida, Nagoya-shi (JP) (51) Int. Cl. Correspondence Address: AOIN 59/6 (2006.01) NIXON & VANDERHYE, PC COB 39/02 (2006.01) 901 NORTH GLEBE ROAD, 11TH FLOOR AOIP I/00 (2006.01) ARLINGTON, VA 22203 (US) (52) U.S. Cl. .......................... 424/618; 423/701; 423/700 (73) Assignee: Sinanen Zeomic Co., Ltd., (57) ABSTRACT Nagoya-Shi (JP) The present invention relates to antimicrobial zeolite which comprises zeolite whereina hardly soluble zinc salt is formed (21) Appl. No.: 12/923,854 within fine pores present therein and an antimicrobial com position which comprises the foregoing antimicrobial Zeolite (22) Filed: Oct. 12, 2010 in an amount ranging from 0.05 to 80% by mass. The antimi crobial Zeolite according to the present invention can widely Related U.S. Application Data be applied, without causing any color change, even to the (63) Continuation of application No. 1 1/705,460, filed on goods which undergo color changes with the elapse of time Feb. 13, 2007. when the conventional antimicrobial zeolite is added. US 2011/002738.6 A1 Feb. 3, 2011 ANTMICROBAL. ZEOLITE AND 3. An antimicrobial composition comprising the foregoing ANTMICROBAL COMPOSITION antimicrobial zeolite as set forth in the foregoing item 1 or 2 in an amount ranging from 0.05 to 80% by mass. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
Zinc Oxide—From Synthesis to Application: a Review
Materials 2014, 7, 2833-2881; doi:10.3390/ma7042833 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Zinc Oxide—From Synthesis to Application: A Review Agnieszka Kołodziejczak-Radzimska * and Teofil Jesionowski Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Sklodowskiej-Curie 2, PL-60965 Poznan, Poland; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-61-665-3626; Fax: +48-61-665-3649. Received: 17 December 2013; in revised form; 25 March 2014 / Accepted: 27 March 2014 / Published: 9 April 2014 Abstract: Zinc oxide can be called a multifunctional material thanks to its unique physical and chemical properties. The first part of this paper presents the most important methods of preparation of ZnO divided into metallurgical and chemical methods. The mechanochemical process, controlled precipitation, sol-gel method, solvothermal and hydrothermal method, method using emulsion and microemulsion enviroment and other methods of obtaining zinc oxide were classified as chemical methods. In the next part of this review, the modification methods of ZnO were characterized. The modification with organic (carboxylic acid, silanes) and inroganic (metal oxides) compounds, and polymer matrices were mainly described. Finally, we present possible applications in various branches of industry: rubber, pharmaceutical, cosmetics, textile, electronic and electrotechnology, photocatalysis were introduced. This review provides useful information for specialist dealings with zinc oxide. Keywords: zinc oxide; synthesis; modification; application 1. Introduction Zinc oxide, with its unique physical and chemical properties, such as high chemical stability, high electrochemical coupling coefficient, broad range of radiation absorption and high photostability, is a multifunctional material [1,2]. -
RISK ASSESSMENT REPORT ZINC OXIDE CAS-No
RISK ASSESSMENT REPORT ZINC OXIDE CAS-No.: 1314-13-2 EINECS-No.: 215-222-5 GENERAL NOTE This document contains: - part I Environment (pages 74) - part II Human Health (pages 162) R073_0805_env RISK ASSESSMENT ZINC OXIDE CAS-No.: 1314-13-2 EINECS-No.: 215-222-5 Final report, May 2008 PART 1 Environment Rapporteur for the risk evaluation of zinc oxide is the Ministry of Housing, Spatial Planning and the Environment (VROM) in consultation with the Ministry of Social Affairs and Employment (SZW) and the Ministry of Public Health, Welfare and Sport (VWS). Responsible for the risk evaluation and subsequently for the contents of this report is the rapporteur. The scientific work on this report has been prepared by the Netherlands Organization for Applied Scientific Research (TNO) and the National Institute of Public Health and Environment (RIVM), by order of the rapporteur. Contact point: Bureau Reach P.O. Box 1 3720 BA Bilthoven The Netherlands R073_0805_env PREFACE For zinc metal (CAS No. 7440-66-6), zinc distearate (CAS No. 557-05-1 / 91051-01-3), zinc oxide (CAS No.1314-13-2), zinc chloride (CAS No.7646-85-7), zinc sulphate (CAS No.7733- 02-0) and trizinc bis(orthophospate) (CAS No.7779-90-0) risk assessments were carried out within the framework of EU Existing Chemicals Regulation 793/93. For each compound a separate report has been prepared. It should be noted, however, that the risk assessment on zinc metal contains specific sections (as well in the exposure part as in the effect part) that are relevant for the other zinc compounds as well. -
F1y3x SECTION VI PRODUCTS of the CHEMICAL OR
)&f1y3X SECTION VI PRODUCTS OF THE CHEMICAL OR ALLIED INDUSTRIES VI-1 Notes 1. (a) Goods (other than radioactive ores) answering to a description in heading 2844 or 2845 are to be classified in those headings and in no other heading of the tariff schedule. (b) Subject to paragraph (a) above, goods answering to a description in heading 2843 or 2846 are to be classified in those headings and in no other heading of this section. 2. Subject to note 1 above, goods classifiable in heading 3004, 3005, 3006, 3212, 3303, 3304, 3305, 3306, 3307, 3506, 3707 or 3808 by reason of being put up in measured doses or for retail sale are to be classified in those headings and in no other heading of the tariff schedule. 3. Goods put up in sets consisting of two or more separate constituents, some or all of which fall in this section and are intended to be mixed together to obtain a product of section VI or VII, are to be classified in the heading appropriate to that product, provided that the constituents are: (a) Having regard to the manner in which they are put up, clearly identifiable as being intended to be used together without first being repacked; (b) Entered together; and (c) Identifiable, whether by their nature or by the relative proportions in which they are present, as being complementary one to another. Additional U.S. Notes 1. In determining the amount of duty applicable to a solution of a single compound in water subject to duty in this section at a specific rate, an allowance in weight or volume, as the case may be, shall be made for the water in excess of any water of crystallization which may be present in the undissolved compound. -
Environmental Health Criteria 221
This report contains the collective views of international groups of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Environmental Health Criteria 221 ZINC First draft prepared by Drs B. Simon-Hettich and A. Wibbertmann, Fraunhofer Institute of Toxicology and Aerosol Research, Hanover, Germany, Mr D. Wagner, Department of Health and Family Services, Canberra, Australia, Dr L. Tomaska, Australia New Zealand Food Authority, Canberra, Australia, and Mr H. Malcolm, Institute of Terrestrial Ecology, Monks Wood, England. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2001 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer-review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management -
Interaction of Zinc Peroxide Nanoparticle with Fibrobalast Cell
Research Article 2017, 2(7), 440-444 Advanced Materials Proceedings Interaction of zinc peroxide nanoparticle with fibroblast cell Bharti Sharma1, Nahar Singh2, Ram P. Tandon1, Ajit K. Mahapatro1* 1Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India 2Analytical Chemistry Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India *Corresponding author: Tel: (+91) 9871074984; E-mail: [email protected] Received: 09 April 2016, Revised: 23 August 2016 and Accepted: 17 April 2017 DOI: 10.5185/amp.2017/708 www.vbripress.com/amp Abstract This work demonstrates the structural interaction of the as-synthesized zinc peroxide (ZnO2) nanoparticles with fibroblast cells (FBC). The ZnO2 nanoparticles (ZNP) of desired sizes (10-20 nm) are synthesized, and the purity and structural confirmations are studied using various imaging and spectroscopic techniques. FBC (buffalo) lines are cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and penicillin (100 µg/mL), and with non- essential amino acid and vitamin as additional ingredients, followed by incubation at 37°C with continuous purging of the chamber using 5% CO2. The fluorescent microscopic images are captured for the initial healthy and cultured FBCs, and after pouring the nanoparticles in the cultured FBCs. Healthy cell-growth is noticed during the cell culture process suggesting the formation of ZNP-FBC complexes without contamination and coagulation. After allowing the interaction of ZNPs with the FBCs, the presence of ZNPs only on the cell sites are observed without coagulation of ZNPs in the cell areas, suggesting the selective interference of ZNPs on the surface of the grown cell. -
Guidance for Responding to the Paragraph 71(1)(B) Notice Of
Guidance for responding to the Notice with respect to certain nanomaterials in Canadian Commerce Published in the Canada Gazette, Part I, on July 25, 2015 TABLE OF CONTENTS 1. OVERVIEW ........................................................................................................................ 3 1.1- PURPOSE OF THE NOTICE .............................................................................................................................. 3 1.2- REPORTABLE SUBSTANCES ........................................................................................................................... 4 1.3- DETERMINING IF A SUBSTANCE IS AT THE NANOSCALE ............................................................................... 12 2. WHO DOES THE NOTICE APPLY TO? ...........................................................................13 2.1- REPORTING CRITERIA ................................................................................................................................. 13 2.2- EXCLUSIONS ............................................................................................................................................... 14 2.3- FLOWCHART ............................................................................................................................................... 15 Figure 1: Reporting Diagram for Nanomaterials. ............................................................................................ 15 2.4- EXAMPLES OF HOW TO DETERMINE WHETHER THE REPORTING CRITERIA ARE MET -
Zinc Peroxide
Zinc peroxide sc-253850 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Zinc peroxide STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY0 HEALTH2 HAZARD INSTABILITY2 OX SUPPLIER Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 PRODUCT USE Accelerator for rubber compounds; curing agent for synthetic elastomers. Medicinal zinc peroxide is an astringent, topical antiseptic, wound deodorant and has been used as an intestinal antiseptic. Regeant SYNONYMS O2-Zn, ZnO2, ZPO, "zinc superoxide" Section 2 - HAZARDS IDENTIFICATION CANADIAN WHMIS SYMBOLS EMERGENCY OVERVIEW RISK Heating may cause an explosion. Contact with combustible material may cause fire. Irritating to eyes, respiratory system and skin. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre- existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern. -
)&F1y3x SECTION VI PRODUCTS of the CHEMICAL OR
)&f1y3X SECTION VI PRODUCTS OF THE CHEMICAL OR ALLIED INDUSTRIES VI-1 Notes 1. (a) Goods (other than radioactive ores) answering to a description in heading 2844 or 2845 are to be classified in those headings and in no other heading of the tariff schedule. (b) Subject to paragraph (a) above, goods answering to a description in heading 2843 or 2846 are to be classified in those headings and in no other heading of this section. 2. Subject to note 1 above, goods classifiable in heading 3004, 3005, 3006, 3212, 3303, 3304, 3305, 3306, 3307, 3506, 3707 or 3808 by reason of being put up in measured doses or for retail sale are to be classified in those headings and in no other heading of the tariff schedule. 3. Goods put up in sets consisting of two or more separate constituents, some or all of which fall in this section and are intended to be mixed together to obtain a product of section VI or VII, are to be classified in the heading appropriate to that product, provided that the constituents are: (a) Having regard to the manner in which they are put up, clearly identifiable as being intended to be used together without first being repacked; (b) Entered together; and (c) Identifiable, whether by their nature or by the relative proportions in which they are present, as being complementary one to another. Additional U.S. Notes 1. In determining the amount of duty applicable to a solution of a single compound in water subject to duty in this section at a specific rate, an allowance in weight or volume, as the case may be, shall be made for the water in excess of any water of crystallization which may be present in the undissolved compound. -
(12) United States Patent (10) Patent No.: US 9,517,936 B2 Jeong Et Al
USO09517936 B2 (12) United States Patent (10) Patent No.: US 9,517,936 B2 Jeong et al. (45) Date of Patent: Dec. 13, 2016 (54) QUANTUM DOT STABILIZED BY HALOGEN (2013.01); COIB 21/06 (2013.01); COIB SALT AND METHOD FOR 21/0632 (2013.01); COIB 21/072 (2013.01); MANUFACTURING THE SAME C07C 51/418 (2013.01); C07C 57/12 (2013.01); B82Y 30/00 (2013.01); B82Y 40/00 (71) Applicant: KOREA INSTITUTE OF (2013.01); COIP 2004/64 (2013.01); Y10S MACHINERY & MATERIALS, 977/774 (2013.01); Y10S 977/896 (2013.01) Daejeon (KR) (58) Field of Classification Search CPC ............................. C01B 19/002: C07C 51/418 (72) Inventors: Sohee Jeong, Daejeon (KR); Ju Young USPC .......................................................... 55.6/105 Woo, Gyeonggi-do (KR); Doh Chang See application file for complete search history. Lee, Daejeon (KR); Won Seok Chang, Daejeon (KR); Duck Jong Kim, Daejeon (KR) (56) References Cited KOREA INSTITUTE OF (73) Assignee: PUBLICATIONS MACHINERY & MATERIALS, Daejeon (KR) Traub et al., J. Am. Chem. Soc. 2008, 130,955-964.* Peng et al., J. Am. Chem. Soc. 1997, 119, 7019-7029.* (*) Notice: Subject to any disclaimer, the term of this Bae et al., J. Am. Chem. Soc. 2012, 134, 20160-20168.* patent is extended or adjusted under 35 Wan Ki Bae et al., “Highly Effective Surface Passivation of PbSe U.S.C. 154(b) by 0 days. Quantum Dots through Reaction with Molecular Chlorine,” J. Am. Chem.Soc., 2012, 134, pp. 20160-20168. (21) Appl. No.: 14/677.999 Aaron T. Fafarman et al., “Air-Stable, Nanostructured Electronic and Plasmonic Materials from Solution-Processable, Silver Filed: Apr.