(12) United States Patent (10) Patent No.: US 9,517,936 B2 Jeong Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 9,517,936 B2 Jeong Et Al USO09517936 B2 (12) United States Patent (10) Patent No.: US 9,517,936 B2 Jeong et al. (45) Date of Patent: Dec. 13, 2016 (54) QUANTUM DOT STABILIZED BY HALOGEN (2013.01); COIB 21/06 (2013.01); COIB SALT AND METHOD FOR 21/0632 (2013.01); COIB 21/072 (2013.01); MANUFACTURING THE SAME C07C 51/418 (2013.01); C07C 57/12 (2013.01); B82Y 30/00 (2013.01); B82Y 40/00 (71) Applicant: KOREA INSTITUTE OF (2013.01); COIP 2004/64 (2013.01); Y10S MACHINERY & MATERIALS, 977/774 (2013.01); Y10S 977/896 (2013.01) Daejeon (KR) (58) Field of Classification Search CPC ............................. C01B 19/002: C07C 51/418 (72) Inventors: Sohee Jeong, Daejeon (KR); Ju Young USPC .......................................................... 55.6/105 Woo, Gyeonggi-do (KR); Doh Chang See application file for complete search history. Lee, Daejeon (KR); Won Seok Chang, Daejeon (KR); Duck Jong Kim, Daejeon (KR) (56) References Cited KOREA INSTITUTE OF (73) Assignee: PUBLICATIONS MACHINERY & MATERIALS, Daejeon (KR) Traub et al., J. Am. Chem. Soc. 2008, 130,955-964.* Peng et al., J. Am. Chem. Soc. 1997, 119, 7019-7029.* (*) Notice: Subject to any disclaimer, the term of this Bae et al., J. Am. Chem. Soc. 2012, 134, 20160-20168.* patent is extended or adjusted under 35 Wan Ki Bae et al., “Highly Effective Surface Passivation of PbSe U.S.C. 154(b) by 0 days. Quantum Dots through Reaction with Molecular Chlorine,” J. Am. Chem.Soc., 2012, 134, pp. 20160-20168. (21) Appl. No.: 14/677.999 Aaron T. Fafarman et al., “Air-Stable, Nanostructured Electronic and Plasmonic Materials from Solution-Processable, Silver Filed: Apr. 3, 2015 Nanocrystal Building Blocks.” American Chemical Society, 2014. (22) vol. 8, No. 3, pp. 2746-2754. www.acsnano.org. Prior Publication Data (65) * cited by examiner US 2015/0291422 A1 Oct. 15, 2015 Primary Examiner — Porfirio Nazario Gonzalez (30) Foreign Application Priority Data Assistant Examiner — Kofi Adzamli Apr. 11, 2014 (KR) ........................ 10-2014-0043.638 (74) Attorney, Agent, or Firm — Hauptman Ham, LLP (51) Int. C. (57) ABSTRACT C07F 7/00 (2006.01) COIB 9/00 (2006.01) A quantum dot stabilized by a halogen salt includes a C07C 57/12 (2006.01) compound of Group 13 and Group 15, a compound of Group CD7C5L/4I (2006.01) 12 and Group 16 or a compound of Group 14 and Group 16. COIB 2/06 (2006.01) The quantum dot has a crystalline structure and at least a COB 21/072 (2006.01) portion of a surface of the quantum dot is combined with a B82Y 4O/OO (2011.01) halogen salt. Thus, the quantum dot has a high Stability in an B82Y 3O/OO (2011.01) a1. (52) U.S. C. CPC ........... COIB 19/002 (2013.01); COIB 19/007 6 Claims, 7 Drawing Sheets U.S. Patent Dec. 13, 2016 Sheet 1 of 7 US 9,517,936 B2 - X /10xygen X X-Pb Se202,sey SeO2 X X X U.S. Patent Dec. 13, 2016 Sheet 2 of 7 US 9,517,936 B2 F. G. 2 REACTING FIRST PRECURSOR WITH ORGANIC ACD S10 REACTING SECOND PRECURSOR WITH REACT ON PRODUCT OF THE FIRST PRECURSOR AND THE ORGANIC ACID PROVIDING HALOGEN COMPOUND STABILIZE QUANTUM DOT S30 U.S. Patent Dec. 13, 2016 Sheet 3 of 7 US 9,517,936 B2 U.S. Patent Dec. 13, 2016 Sheet 4 of 7 US 9,517,936 B2 FIG 4A Pb 4f, AS prepared NH4C treated 155 150 145 140 135 130 Binding Energy (eV) FG. 4B Pb 4f, AS prepared PriStine 155 150 145 140 135 130 Binding Energy (eV) U.S. Patent Dec. 13, 2016 Sheet 5 of 7 US 9,517,936 B2 FG 5A Se 3d NH4C treated AS prepared 70 65 60 55 50 45 Binding Energy (eV) FIG 5B Se 3d PriStine AS prepared 70 65 60 55 50 45 Binding Energy (eV) U.S. Patent Dec. 13, 2016 Sheet 6 of 7 US 9,517,936 B2 F.G. 6A -100 -- Pristine -150- -O-NH4F -A-NH4C - V - NH4Br O 7 14. Time (day) F.G. 6B 5 O -100 -150 -- Pristine -200 -250- 7 14 21 Time(day) U.S. Patent Dec. 13, 2016 Sheet 7 Of 7 US 9,517,936 B2 FG 60 -- Pristine -O-NH4Br/MeOH -A- TBABr/MeOH - V - CTAB/MeOH -(- TBABr/MeCN O 2 4 6 8 10 Time(day) US 9,517,936 B2 1. 2 QUANTUM DOT STABILIZED BY HALOGEN germanium Sulfide (GeS), germanium selenide (GeSe), ger SALT AND METHOD FOR manium telluride (GeTe), tin selenium sulfide (SnSeS), tin MANUFACTURING THE SAME selenium telluride (SnSeTe), tin sulfide telluride (SnSTe), lead selenium sulfide (PbSeS), lead selenium telluride (Pb CROSS-REFERENCE TO RELATED SeTe), lead sulfide telluride (PbSTe), tin lead sulfide (Sn APPLICATIONS PbS), tin lead selenide (SnPbSe), tin lead telluride (SnPbTe), tin oxide sulfide (SnOS), tin oxide selenide (SnOSe), tin This application claims priority under 35 U.S.C. S 119 to oxide telluride (SnOTe), germanium oxide sulfide (GeOS), Korean Patent Application No. 10-2014-0043638, filed on germanium oxide selenide (GeOSe), germanium oxide tel Apr. 11, 2014, and all the benefits accruing therefrom, the 10 luride (GeOTe), tin lead sulfide selenide (SnPbSSe), tin lead content of which is herein incorporated by reference in its selenium telluride (SnPbSeTe) and tin lead sulfide telluride entirety. (SnRbSTe). In an exemplary embodiment, the compound of Group 13 BACKGROUND and Group 15 includes at least one selected from the group 15 consisting of gallium phosphide (GaP), gallium arsenide 1. Field (GaAs), gallium antimonide (GaSb), gallium nitride (GaN), Exemplary embodiments relate to a quantum dot. More aluminum phosphide (AlP), aluminum arsenide (AlAS), particularly, exemplary embodiments relate to a quantum aluminum antimonide (AISb), aluminum nitride (AIN), dot stabilized by a halogen salt and a method for manufac indium phosphide (InP), indium arsenide (InAs), indium turing the quantum dot. antimonide (InSb), indium nitride (InN), gallium phosphide 2. Description of the Related Art arsenide (GaPAs), gallium phosphide antimonide (GaPSb), A quantum dot is a nano-particle having semiconductive gallium phosphide nitride (GaPN), gallium arsenide nitride properties and having a size less than tens of nanometers. (GaAsN), gallium antimonide nitride (GaSbN), aluminum The quantum dot has properties different from a bulk particle phosphide arsenide (AlPAS), aluminum phosphide anti due to quantum confinement effect. For example, the quan 25 monide (AlPSb), aluminum phosphide nitride (AlPN), alu tum dot can change a wavelength of a light, which the minum arsenide nitride (AlASN), aluminum antimonide quantum dot absorbs, according to a size thereof. Further nitride (AISbN), indium phosphide arsenide (InPAs), indium more, the quantum dot has novel optical, electrical and phosphide antimonide (InPSb), indium phosphide nitride physical properties that the bulk particle does not have. (InPN), indium arsenide nitride (InAsN), indium antimonide Thus, researches are being conducted for manufacturing a 30 nitride (InSbN), aluminum gallium phosphide (AlGaP), alu photoelectric conversion device Such as a Solar cell, a minum gallium arsenide (AlGaAs), aluminum gallium anti light-emitting diode or the like. monide (AlGaSb), aluminum gallium nitride (AlGaN), alu Recently, a colloidal chemosynthesis has been developed minum arsenide nitride (AlASN), aluminum antimonide for controlling a size and a shape of the quantum dot. nitride (AISbN), indium gallium phosphide (InGaP), indium However, the quantum dot manufactured by the colloidal 35 gallium arsenide (InGaAs), indium gallium antimonide (In chemosynthesis has a low stability in an air. A core-shell GaSb), indium gallium nitride (InGaN), indium arsenide quantum dot having a thick skin may be relatively stable in nitride (InAsN), indium antimonide nitride (InSbN), alumi an air. However, the core-shell quantum dot is hardly num indium phosphide (AlInP), aluminum indium arsenide applicable for the photoelectric conversion device, and (AlInAs), aluminum indium antimonide (AlInSb), alumi manufacturing processes for the core-shell quantum dot are 40 num indium nitride (AlInN), aluminum arsenide nitride complicated. (AlAsN), aluminum antimonide nitride (AISbN), aluminum phosphide nitride (AlPN), gallium aluminum phosphide SUMMARY arsenide (GaAlPAS), gallium aluminum phosphide anti monide (GaAlPSb), gallium indium phosphide arsenide Exemplary embodiments provide a quantum dot stable in 45 (GalinPAS), gallium indium aluminum arsenide (GanAlAS), an air. gallium aluminum phosphide nitride (GaAlPN), gallium Exemplary embodiments also provide a method for manu aluminum arsenide nitride (GaA1ASN), gallium aluminum facturing the quantum dot. antimonide nitride (GaA1SbN), gallium indium phosphide According to an exemplary embodiment, a quantum dot nitride (GainPN), gallium indium arsenide nitride (Gain stabilized by a halogen salt includes a compound of Group 50 ASN), gallium indium aluminum nitride (GanAIN), gallium 13 and Group 15, a compound of Group 12 and Group 16 or antimonide phosphide nitride (GaSbPN), gallium arsenide a compound of Group 14 and Group 16. The quantum dot phosphide nitride (GaAsPN), gallium arsenide antimonide has a crystalline structure, and at least a portion of a surface nitride (GaAsSbN), gallium indium phosphide antimonide of the quantum dot is combined with a halogen salt. (GalnPSb), gallium indium phosphide nitride (GalnPN), In an exemplary embodiment, a diameter of the quantum 55 gallium indium antimonide nitride (GainSbN), gallium dot is 1 nm to 20 nm. phosphide antimonide nitride (GaPSbN), indium aluminum In an exemplary embodiment, the quantum dot has a first phosphide arsenide (InAlPAS), indium aluminum phosphide Surface combined with the halogen salt and a second Surface nitride (InAlPN), indium phosphide arsenide nitride (In combined with an organic ligand. PASN), indium aluminum antimonide nitride (InAlSbN), In an exemplary embodiment, a (100) surface is combined 60 indium
Recommended publications
  • Enhanced Thermoelectric Performance of Bulk Tin Telluride: Synergistic Effect of Calcium and Indium Co-Doping
    Materials Today Physics 4 (2018) 12e18 Contents lists available at ScienceDirect Materials Today Physics journal homepage: https://www.journals.elsevier.com/ materials-today-physics Enhanced thermoelectric performance of bulk tin telluride: Synergistic effect of calcium and indium co-doping * ** D. Krishna Bhat a, , U. Sandhya Shenoy b, a Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India b Department of Chemistry, College of Engineering and Technology, Srinivas University, Mukka, Mangalore 574146, India article info abstract Article history: SnTe based materials are considered recently as a lead-free replacement of the well-known PbTe based Received 27 January 2018 thermoelectric (TE) materials in addressing the energy crisis worldwide. Herein we report both exper- Received in revised form imental and theoretical study on the effect of co-doping of calcium and indium on electronic structure 4 February 2018 and TE properties of SnTe. We show that the resonant levels introduced by indium and band gap opening Accepted 12 February 2018 caused by calcium, valence band convergence induced by both calcium and indium, synergistically in- creases the Seebeck coefficient for a wide range of temperatures. The co-doped SnTe with a high ZT of À À ~1.65 at 840 K and record high power factor of ~47 mWcm 1K 2 for SnTe based materials make it a Keywords: Thermoelectric promising material for TE applications. © Band degeneracy 2018 Published by Elsevier Ltd. Resonant levels Tin telluride Introduction similar crystal and electronic structure. Though safer than PbTe, SnTe suffers a drawback of low ZT due to high carrier concentration Exhaustion of non-renewable fossil fuel resources caused due to resulting out of inherent Sn vacancies, smaller band gap (~0.18 eV) its abuse has resulted in ever increasing energy crisis [1].
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,543,378 B2 Singh (45) Date of Patent: Jan
    USO09543378B2 (12) United States Patent (10) Patent No.: US 9,543,378 B2 Singh (45) Date of Patent: Jan. 10, 2017 (54) SEMICONDUCTOR DEVICES AND USPC ........................................... 257/25, 347, 402 FABRICATION METHODS THEREOF See application file for complete search history. (71) Applicant: GLOBALFOUNDRIES Inc., Grand (56) References Cited Cayman (KY) U.S. PATENT DOCUMENTS (72) Inventor: Jagar Singh, Clifton Park, NY (US) 4,940,671 A * 7/1990 Small ................ HO1L 21,82285 257 (491 (73) Assignee: GLOBALFOUNDRIES INC., Grand 8,610,241 B1* 12/2013 Hu ...................... HOL 270629 Cayman (KY) 257,353 2004/0095698 A1* 5, 2004 Gerrish ............... HOL27/O255 *) Notice: Subject to anyy disclaimer, the term of this 361 (91.1 patent is extended or adjusted under 35 2004/0253779 A1* 12/2004 Hong ............... HOL 21,8249 U.S.C. 154(b) by 10 days. 438,203 (21) Appl. No.: 14/467,420 * cited by examiner Primary Examiner — Kenneth Parker (22) Filed: Aug. 25, 2014 Assistant Examiner — Warren H Kilpatrick (65) Prior Publication Data (74) Attorney, Agent, or Firm — Heslin Rothenberg Farley & Mesiti P.C.; Kristian E. Ziegler US 2016/OO56231 A1 Feb. 25, 2016 (57) ABSTRACT (51) Int. Cl. Semiconductor devices and fabrication methods thereof are HOIL 29/06 (2006.01) provided. The semiconductor devices include: a substrate, HOIL 29/66 (2006.01) the Substrate including a p-type well adjoining an n-type HOIL 29/735 (2006.01) well; a first p-type region and a first n-type region disposed HOIL 29/47 (2006.01) within the n-type well of the substrate, where the first p-type HOIL 29/423 (2006.01) region at least partially encircles the first n-type region; and HOIL 29/08 (2006.01) a second p-type region and a second n-type region disposed HOIL 29/10 (2006.01) in the p-type well of the substrate, where the second n-type (52) U.S.
    [Show full text]
  • Synthesis and Characterization of Nano Zinc Peroxide Photocatalyst for the Removal of Brilliant Green Dye from Textile Waste Water
    International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.9, pp 477-486, 2017 Synthesis and characterization of nano zinc peroxide photocatalyst for the removal of brilliant green dye from textile waste water. Prashant L. Chaudhari*, Pallavi C. Kale Department of Chemical Engineering, BharatiVidyapeeth University College of Engineering, Pune, India Abstract : The zinc peroxide nanoparticles were synthesized by using oxidation-hydrolysis- precipitation process.With zinc acetate as a predecessor, Hydrogen peroxide used as a oxidizing agent and polyethylene glycol 200 (PEG 200) was used as a surface modifier. Characterization of zinc peroxide nanoparticles was done by X-ray diffraction [XRD], Fourier transformer infra red [FTIR] and transmission electron microscope [TEM]. The parameters like pH, dye concentration, dosage of nanoparticle catalyst, temperature and contact time were studied for the application of Zinc peroxide nanopaticle as a catalyst for removal of a Brilliant green dye from synthetic sample. Excellent degradation efficiency of brilliant green dye was 86.68% achieved by zinc peroxide with PEG as a catalyst and 84.16% achieved by zinc peroxide without PEG as a catalyst at 120 min of photo catalytic reaction. The maximum degradation efficiency of brilliant green dye (86.68%) was achieved at the optimum operational conditions: initial concentration of dye 9mg/l, catalyst dosage of 200 mg, pH of solution will be in between 6-7. Keywords : Zinc peroxide nanoparticles, Brilliant green dye, Zinc oxide, Textile waste. Introduction The consumption of dyes was highly increased by textile industries in recent years and because of this scenario large amount of coloured wastewater from such industries create serious problems to the environment.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0027386 A1 Kurihara Et Al
    US 20110027386A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0027386 A1 Kurihara et al. (43) Pub. Date: Feb. 3, 2011 (54) ANTMICROBAL. ZEOLITE AND (30) Foreign Application Priority Data ANTMICROBAL COMPOSITION Feb. 22, 2006 (JP) ................................. 2006-045241 (75) Inventors: Yasuo Kurihara, Nagoya-shi (JP); Kumiko Miyake, Nagoya-shi (JP); Publication Classification Masashi Uchida, Nagoya-shi (JP) (51) Int. Cl. Correspondence Address: AOIN 59/6 (2006.01) NIXON & VANDERHYE, PC COB 39/02 (2006.01) 901 NORTH GLEBE ROAD, 11TH FLOOR AOIP I/00 (2006.01) ARLINGTON, VA 22203 (US) (52) U.S. Cl. .......................... 424/618; 423/701; 423/700 (73) Assignee: Sinanen Zeomic Co., Ltd., (57) ABSTRACT Nagoya-Shi (JP) The present invention relates to antimicrobial zeolite which comprises zeolite whereina hardly soluble zinc salt is formed (21) Appl. No.: 12/923,854 within fine pores present therein and an antimicrobial com position which comprises the foregoing antimicrobial Zeolite (22) Filed: Oct. 12, 2010 in an amount ranging from 0.05 to 80% by mass. The antimi crobial Zeolite according to the present invention can widely Related U.S. Application Data be applied, without causing any color change, even to the (63) Continuation of application No. 1 1/705,460, filed on goods which undergo color changes with the elapse of time Feb. 13, 2007. when the conventional antimicrobial zeolite is added. US 2011/002738.6 A1 Feb. 3, 2011 ANTMICROBAL. ZEOLITE AND 3. An antimicrobial composition comprising the foregoing ANTMICROBAL COMPOSITION antimicrobial zeolite as set forth in the foregoing item 1 or 2 in an amount ranging from 0.05 to 80% by mass.
    [Show full text]
  • IEEE Spectrum Gaas
    Proof #4 COLOR 8/5/08 @ 5:15 pm BP BEYOND SILICON’S ELEMENTAL LOGICIN THE QUEST FOR SPEED, KEY PARTS OF MICRO- PROCESSORS MAY SOON BE MADE OF GALLIUM ARSENIDE OR OTHER “III-V” SEMICONDUCTORS BY PEIDE D. YE he first general-purpose lithography, billions of them are routinely microprocessor, the Intel 8080, constructed en masse on the surface of a sili- released in 1974, could execute con wafer. about half a million instructions As these transistors got smaller over the T per second. At the time, that years, more could fit on a chip without rais- seemed pretty zippy. ing its overall cost. They also gained the abil- Today the 8080’s most advanced descen- ity to turn on and off at increasingly rapid dant operates 100 000 times as fast. This phe- rates, allowing microprocessors to hum along nomenal progress is a direct result of the semi- at ever-higher speeds. ALL CHRISTIEARTWORK: BRYAN DESIGN conductor industry’s ability to reduce the size But shrinking MOSFETs much beyond their of a microprocessor’s fundamental building current size—a few tens of nanometers—will be blocks—its many metal-oxide-semiconductor a herculean challenge. Indeed, at some point in field-effect transistors (MOSFETs), which act the next several years, it may become impossi- as tiny switches. Through the magic of photo- ble to make them more minuscule, for reasons WWW.SPECTRUM.IEEE.ORG SEPTEMBER 2008 • IEEE SPECTRUM • INT 39 TOMIC-LAYER DEPOSITION provides one means for coating a semiconductor wafer with a high-k aluminum oxide insulator. The Abenefit of this technique is that it offers atomic-scale control of the coating thickness without requiring elaborate equipment.
    [Show full text]
  • Journal of Materials Chemistry C Rscpublishing COMMUNICATION
    Journal of Materials Chemistry C RSCPublishing COMMUNICATION The room temperature phosphine-free organometallic synthesis of near-infrared emitting Cite this: DOI: 10.1039/x0xx00000x HgSe quantum dots H. Mirzai,a M. N. Nordin,b,c R. J. Curry,b J.-S. Bouillard,a A. V. Zayats,a M. a Received 00th January 2012, Green* Accepted 00th January 2012 DOI: 10.1039/x0xx00000x Luminescent mercury selenide (HgSe) quantum dots have been synthesised by a phosphine- free method using oleic acid as a capping agent. The modification of experimental conditions www.rsc.org/ such as temperature resulted in particles of various sizes (15 - 100 nm) and morphologies not previously seen in HgSe, with emission tuneable between 1000 nm and 1350 nm. The popularity of semiconductor quantum dots (QDs) and b Advanced Technology Institute, Department of Electronic Engineering, their association with next-generation opto-electronic devices University of Surrey, Guildford, Surrey.UK GU2 7XH c and biomedical applications has grown rapidly over the last Present address: Medical Engineering Technology Department, University Kuala Lumpur, 53100, Gombak, Malaysia. years. Current research focuses on various synthetic routes as a means to modify QD characteristics to satisfy specific due to the lack of obvious and safe precursors (despite the optical and magnetic requirements for applications such as fact that many early routes to nano-dispersed semiconductors biological imaging,1 telecommunications,2 photodetection3 4 were based on mercury chalcogenides). We have focused on and solar energy. Quantum dots have provided a new source mercury chalcogenides due to their low reaction temperatures of electromagnetic radiation on the nano-scale.
    [Show full text]
  • Properties of Sputtered Mercury Telluride Contacts on P-Type Cadmium Telluride A
    Properties of sputtered mercury telluride contacts on p-type cadmium telluride A. Zozime, C. Vermeulin To cite this version: A. Zozime, C. Vermeulin. Properties of sputtered mercury telluride contacts on p-type cadmium telluride. Revue de Physique Appliquée, Société française de physique / EDP, 1988, 23 (11), pp.1825- 1835. 10.1051/rphysap:0198800230110182500. jpa-00246011 HAL Id: jpa-00246011 https://hal.archives-ouvertes.fr/jpa-00246011 Submitted on 1 Jan 1988 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Revue Phys. Appl. 23 (1988) 1825-1835 NOVEMBRE 1988, 1825 Classification Physics Abstracts 73.40 - 79.20 Properties of sputtered mercury telluride contacts on p-type cadmium telluride A. Zozime and C. Vermeulin Laboratoire de Physique des Matériaux, CNRS, 1 place A. Briand, 92195 Meudon Cedex, France (Reçu le 12 avril 1988, révisé le 29 juillet 1988, accepté le 16 août 1988) Résumé. 2014 La valeur élevée du travail de sortie du composé semi-métallique HgTe (q03A6m ~ 5.9 eV) a conduit à utiliser ce matériau pour réaliser des contacts ohmiques de faible résistance spécifique 03C1c (03A9 cm2) sur le composé semi-conducteur II-VI CdTe de type p, dans la gamme des résistivités 70 03A9 cm 03C1B 45 k03A9 cm.
    [Show full text]
  • D. I. Bletskan "Phase Equilibrium in the Binary Systems a IV
    Journal of Ovonic Research Vol. 1, No. 5, October 2005, p. 53 - 60 PHASE EQUILIBRIUM IN THE SYSTEMS AIV – BVI Part. II Systems Germanium-Chalcogen D. I. Bletskan* Uzhgorod University, Uzhgorod, Ukraine The phases in the system germanium – chalcogen are reviewed. The phase transitions are discussed. 1.4 System Ge-S The phase diagram T-x of the binary system Ge-S has been firstly built by A. V. Novoselova et al. [39] using the data of thermal and X-ray analysis. Thereafter, the regions of the phase diagrams of the system Ge-S in the neighborhood of GeS and GeS2 have been carefully determined in [40-44] and are represented in Fig. 1.4. In this system there were found two stable chemical compounds, whose stoichiometric compositions correspond to GeS and GeSe2. The temperature conditions of GeS and GeS2 synthesis, the melting character and melting temperature, given in the literature, are different. Thus, the melting temperature of GeS, after the data of various authors are 938 K [39, 42], 940 K [40], 931 K [41, 46]. Many research reports [39, 42-44] show that GeS compound melts congruently. Nevertheless, in the papers [40, 41, 46] is demonstrated that, during very slow heating, GeS melts incongruently, according to the peritectic reaction: GeS(solid) = Ge(solid) + Liq(53 at.% S) (1.4) In the system Ge-S, on the germanium side, there is a large domain (3÷45 at.% S) of layer separation in the liquid state (stratification) with one phase rich in germanium and a phase with the composition approaching GeS.
    [Show full text]
  • Binary and Ternary Transition-Metal Phosphides As Hydrodenitrogenation Catalysts
    Research Collection Doctoral Thesis Binary and ternary transition-metal phosphides as hydrodenitrogenation catalysts Author(s): Stinner, Christoph Publication Date: 2001 Permanent Link: https://doi.org/10.3929/ethz-a-004378279 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 14422 Binary and Ternary Transition-Metal Phosphides as Hydrodenitrogenation Catalysts A dissertation submitted to the Swiss Federal Institute of Technology Zurich for the degree of Doctor of Natural Sciences Presented by Christoph Stinner Dipl.-Chem. University of Bonn born February 27, 1969 in Troisdorf (NRW), Germany Accepted on the recommendation of Prof. Dr. Roel Prins, examiner Prof. Dr. Reinhard Nesper, co-examiner Dr. Thomas Weber, co-examiner Zurich 2001 I Contents Zusammenfassung V Abstract IX 1 Introduction 1 1.1 Motivation 1 1.2 Phosphides 4 1.2.1 General 4 1.2.2 Classification 4 1.2.3 Preparation 5 1.2.4 Properties 12 1.2.5 Applications and Uses 13 1.3 Scope of the Thesis 14 1.4 References 16 2 Characterization Methods 1 2.1 FT Raman Spectroscopy 21 2.2 Thermogravimetric Analysis 24 2.3 Temperature-Programmed Reduction 25 2.4 X-Ray Powder Diffractometry 26 2.5 Nitrogen Adsorption 28 2.6 Solid State Nuclear Magnetic Resonance Spectroscopy 28 2.7 Catalytic Test 33 2.8 References 36 3 Formation, Structure, and HDN Activity of Unsupported Molybdenum Phosphide 37 3.1 Introduction
    [Show full text]
  • Measurement and Application of Optical Nonlinearities in Indium Phosphide, Cadmium Mercury Telluride and Photonic Crystal Fibres
    MEASUREMENT AND APPLICATION OF OPTICAL NONLINEARITIES IN INDIUM PHOSPHIDE, CADMIUM MERCURY TELLERIDE AND PHOTONIC CRYSTAL FIBRES Trefor James Sloanes A Thesis Submitted for the Degree of DEng at the University of St. Andrews 2009 Full metadata for this item is available in the St Andrews Digital Research Repository at: https://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/723 This item is protected by original copyright Measurement and Application of Optical Nonlinearities in Indium Phosphide, Cadmium Mercury Telluride and Photonic Crystal Fibres This thesis is presented in application for the degree of Doctor of Engineering to the University of St. Andrews by Trefor James Sloanes I, Trefor James Sloanes, hereby certify that this thesis, which is approximately 28,500 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in October, 2003 and as a candidate for the degree of Doctor of Engineering in August, 2004; the higher study for which this is a record was carried out in the University of St Andrews between 2003 and 2008. date ……………… signature of candidate ……………… I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Doctor of Engineering in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.
    [Show full text]
  • Kohn Et Al. [45] Sept. 25, 1973
    “9-25-73 i'XR 367616718. _ , UnIted States Patent 1191 ~ _ 1111 3,761,718 Kohn et al. [45] Sept. 25, 1973 [54] DETECTOR APPARATUS USING 2,949,498 8/1960 Jackson ........................ .. 250/212 x SEMICONDUCTOR LAMINAE 3,324,298 6/1967 Waer . _ . .. 250/211 ‘3,191,045 6/1965 c61man..... 250/211 [75] Inventors: Alan N- Kohn. Brookline; Jack K. 3,473,214 11/1969 Dillman ............................ .. 250/211 Lennard, Framingham', Jay ,1. ' ' Schlickman, Lexington; Robert A. FOREIGN PATENTS OR APPLICATIONS weagan" Chelmsford, 3“ of Mass- 629,924 10/1961 Canada ............................. .. 250/226 [73] Assignee: Honeywell Inc“ Minneapolis’ Minn. 1,043,662 4/l959 Germany .... .................... .. 250/226 [22] Filed: Sept- 7. 1972 OTHER PUBLICATIONS [21] Appl' No'i 287’l94 Marinace; IBM Technical Disclosure Bulletin; Vol. 1 1; Related US. Application Data No. 4; 9/68; p. 398. [63] Continuation-impart of Ser. No. 855,9l8, Sept. 8, 1969' abandoned‘ Primary Examiner-Walter Stolwein AtI0rney—Charles J. Ungemach et al. [521 U.s.c1 ........ ..250/211R,250/226,3l7/235 N, ‘ 356/99, 350/316 [51] Int. Cl. ............................................ ..G0lj3/34 , [581FieldofSearch ................... ..250/211J,211R, [571 ABSTRAQT 250/212’ 226; 317/235 N; 350/316; 356/99’ ‘00 A new multi-layer semiconductor photo detector ar rangement, and scienti?c instruments embodying the [56] References Cited underlying novel principle. UNITED STATES PATENTS 2,896,086 7/1959 Wunderman ..................... .. 250/211 14 Claims, 10 Drawing Figures 3,761,718 1 2 DETECTOR APPARATUS USING similarly illuminated, the output may appear as at B in SEMICONDUCTOR LAMINAE FIG. 2. _ If such a lamina 20 is overlaid with another identical ' BRIEF SUMMARY OF THE INVENTION lamina 23,‘ as shown in FIG.
    [Show full text]
  • Red-Light Leds for Next-Generation Displays 6 July 2020
    Red-light LEDs for next-generation displays 6 July 2020 indium gallium nitride (InGaN) semiconductors. Integrating two material systems is difficult. "Creating RGB displays requires the mass transfer of the separate blue, green and red LEDs together," says KAUST researcher Zhe Zhuang. An easier solution would be to create different-colored LEDs all on a single semiconductor chip. Optimizing the geometry, fabrication and electrical contacts is vital to maximizing the efficiency of the LED. Credit: Zhuag et al. Novel red LEDs are more temperature stable than those made using the conventional semiconductor of choice. In efforts to optimize the performance of light- emitting diodes (LEDs), King Abdullah University of Science and Technology researchers are looking at every aspect of the design, fabrication and operation of these devices. Now, they have succeeded in fabricating red LEDs, based on the The team developed an InGaN red LED structure where naturally blue-emitting semiconductor indium the output power is more stable than that of InGaP red gallium nitride, that are as stable as those based LEDs. Credit: Zhe Zhuang on indium gallium phosphide. LEDs are optical sources made from semiconductors that offer improvements on Since InGaP semiconductors are unable to emit conventional visible-light sources in terms of blue or green light, the only solution to making energy saving, smaller size and longer lifetimes. monolithic RGB micro-LEDs is to use InGaN. This LEDs can emit across the spectrum, from the material has the potential to shift its emission from ultraviolet to blue (B), green (G), red (R) and into blue to green, yellow and red by introducing more the infrared.
    [Show full text]