Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents Table of Contents Section 1 Applications Support ... ------------ 1-1 Section 2 Introduction ________ ............... _. __ 2-1 Section 3 DP8390 Evaluation Board -------··· 3-2 Cable Installation --............... ----- 3-11 Section 4 - Software Reference Software Update -. -............... ---- 4-4 Computer Conferencing . ----------- 4-5 Demostration Network Software ---- 4-7 NIA Access Software ... ---------. -. 4-9 Network Load Simulator ... --------- 4-17 Network Evaluation Software------- 4-21 Writing Drivers for DP8390 ......... -- 4-25 Section 5 - Hardware Reference DP8390 Introductory Guide _... .. 5-1 Hardware Design Guide -. .. .. .. 5-9 Guide to Loopback -----. ......... 5-17 StarLAN with the DP8390 . .. .. .. 5-26 Section 6 Tranceiver Evaluation Kit . .. .. .. 6-1 SECTION 1 APPLICATION CONTACTS National Objectives Semiconductor Preliminary Corporati on July 1986 OBIECTIVE OF DP839EB CHEAPER/ETHER DEMONSTRATION KIT The Cheaper/Ether demonstration kit is intended to provide designers With tools tor evaluations and development of networking products usmg the DP839X chip set. The kit supports Ethernet, Cheapernet and Starlan networks as described in the IEEE 602.3 standard. All required documentation has been provided inside this binder. including the circuit diagram. PAL equations and option set­ tings. Software tools are also provided as guides to developing drivers tor the DP8390 Network Interface Controller. It is important to read all hardware and software manuals prior to inst.a1l1ng the demonstration kit. IN CASE OF PROBLEMS... If yC111 encounter problems not addressed in the documentation, contact your local Natianal Semicon­ ductor Field En&i."leer or Field Sales Office. They will provide you with any additional support you may require. I! you have ~ier "echnicai !nquiries regardin& operation of ~'lie JP839X chip set contact !'l'ational Semiconductor at (408) 72l 4247 (for the DP8390) or (408) 721 3M7 (DP8392 and !)PB391). - r SECTION 2 INTRODUCTION ~Introduction Advanced Peripherals Ell'lernet ,___......__ _, CneatJernet .-------. Memory Local Maa Support Area Storage Network Graph lea Display Control Today's computer systems and information processing needs have created a huge demand for Local Area Networks (LANs). The IEEE 802.3 Standard for Ethernet/Cheapernet and Starlan has become the most popular networking solution. National Semiconductor provides a complete three chip solution for an entire 802.3 design as well as supplying a broad range of products to fill the needs of network design engineers. The chipset consists of the OP8390 Network Interface Controller (NIC), the DP8391 Serial Network Interface (SNI) and the OP8392 Coaxial Transceiver Interface (CTI). To place your name on the mailing list for design information updates and to receive further information on National's Advanced Peripherals please return the enclosed card or contact your local National Semiconductor Sales Office. THE CHIPSET FEATURES INCLUDE DP8390 DP8391 DP8392 • Interfaces with 8-, 16-, and • 10 Mbitlsec Manchester • Integrates all transceiver 32·bit microprocessor systems encoding/decoding with electronics except signal and paws isolation • Implements simple, versatile receive clock recovery buffer management • Patented digital phase locked loop • Innovative design minimizes extemal component count • Utilizes low power microCMOS decoder requires no precision process external components • Externally selectable CD heartbeat allows operation with IEEE 802.3 • Includes • Decodes Manchester data with up to compatible repeaters - Two 16-bit OMA channels ± 20 ns of jitter -16-byte internal FIFO with • Squelch circuits at the receive and • Designed for rigorous reliability programmable threshold collision inputs reject noise requirements of IEEE 802.3 -Network statistics storage • Connects directly to the AUi cable • Squelch circuitry at all inputs rejects noise SECTION 3 NETWORK EVALUATION BOARD ,,., : ...... :.. ·~· ..... ~ .·~ .. ··,! ~ .·I ~-f Ul'lt 1111:1t lilllm' t1·:t·:1·:ttu.l.t l·:V/\l.11/\T I c >N IU )/\Hit I \ c National Semiconductor Corp. .,, DP839EB Network CD w Evaluation Board Riv C co m m OVERVIEW NETWORK INTERFACE OPTIONS z The National Semiconductor DP839EB Evaluation Board The evaluation board supports three physical layer options: CD provides IBM PCs and PC Compatibles with Ethernet. Ethernet, Cheapernet and STARLAN. When using Ethernet, Cheapemet and STARLAN• connections. The evaluation a drop cable is connected to an external transceiver which i board is compatible with the PC-bus and requires only a Ya ii connected to a standard Ethernet networtt. (See Fl(JUf9 0 Size Slot for installation. The evaluation board utilizes Na­ 7). When using Cheapemet. a low cost version of Ethernet, ...=-:" tional Semiconductor's Ethemet/Cheapemet chipaet con­ a transceiver is available on-board allowing direct connec­ sisting of the DP8390 Networtt Interface Controller, the tion to the network via the evaluation board. (See Figure 2). m DP8391 Serial Network Interface and the DP8392 Coaxial When using a ST ARLAN network, an optional daughter card Transceiver Interface. The OMA capabilities of the DP8390, replaces the SNI function and implements the required elec­ c- coupled with tronics to interface the DP8390 NIC to ST ARLAN. = 8 kbytes of buffer RAM, allow the Network Thia con­ I» Interface Adapter to appear u a standard 110 port to the figuration ii Hlustrated in Figure 3. No software changes are ... system. needed for conversion between any of the described config­ 0-· urations. HARDWARE FEATURES :::s • HaH-Size IBM PC 110 Card Form Factor HARDWARE DESCRIPTION m • DP8390 Networtt Interface Controller with OMA The block diagram shown in Figure 4 illustrates the architec­ 0 ture of the Network Interface Adapter. The system/network I» • 8 kbyte on-board Multipacket Buffer interface is partitioned at the DP8390 Network Interface • Clean OMA Interface to IBM-PC Controller (NIC). The NIC acts as both a muter and a slave a. • Ethernet Interface via 15-Pin D Connector on the local bus. During reception or transmillion of pack· • Cheapemet Interface via BNC Connector eta. the NIC is a muter. When accessed by the PC, the NIC becomes a slave. The NIC utilizes a local 8-bit data bus • Startan Support with Optional Daughter Card and 8-Pin Modular Phone Jack· connected to an Bk x 8 Static RAM for packet storage. The 8k x 8 RAM is partitioned into a transmit buffer and a re­ • DP8391 Serial Network Interface ceive buffer. All outgoing packets are flrat assembled in the • OP8392 Coaxial Transceiver Interface (For Cheapernet) packet buffer and then transmitted by the NIC. All incoming • Low Power Requirement packets are placed in the packet buffer by the NIC and then transferred to the PC's memory. The transfer of data be­ SOFTWARE FEATURES tween the evaluation board and the PC ii accomplished us­ • No Software changes for conversion between Ethernet/ ing the PC's OMA in conjunction with the NIC's Remote Cheapemet and STARLAN OMA. Two LS374latchesimplementabidirectional110 port • Demonstration and diagnostic software available with the PC bus. The 8-bit transceiver (LS245) allows the PC TRANSCDYER TVF/1111-1 FIGURE 1. Ethernet Connection >z I ....._. lllM •• ........,....,_of-..__....,._ColpcnllDn. .. STAAL.AH•• a......,_ of AT&T. co STARU.N OAUGHttR CARD INSTALLED BNC T CONNECTOR WODUW PHONE ------­ CONNECTOtt Tl.IF/91711-3 FIGURE 3. STARLAN Connector FIGURE 2. Chupemet Connector LOCAL BUS IBM PC BUS 0 p ..............i a BNC 3 t OPllto 1 NIC ETHERNET CTI SNI Ol-15 STARLAN IK x I PHONE STAllC RAM 00-07 JACK AO-M 32 x a PROM 00-07 TUF/91711-4 FIGUAE4 to accesa to the NIC's internal registers for programming. A work Load Simulator, ii a program that limulates network 32 x 8 PROM located on the evaluation bo9rd contains the loads based on statistical distributions of packet sizes, unique Physical Address Uligned to each boltd. bursls and Intervals. NLS Is useful for performance mea­ Since the NIC is accessing 8-bit memory, only a single dem­ surement and debug of software drivers. NES, Netwo11t ultiplexing latch is required for the lower 8-bits of address. Evaluation Software, coclliltl of sample software drMn An LS373 Is provided for this pwpose. implementing a low level Interface to the evaluation boltd. A 20L8 PAL provides the addr811 decoding and support for LOCAL MEMORY MAP OMA handshaking and wait state generation. The DP8390 NIC accesses an 8k x 8 buffer RAM located in SOFTWARE SUPPORT its 84 kbyt• memory space. This buffer RAM II used for temporary Storage of receive and nntmit packets. Data The evaluation board provides a simple programming int•· from this RAM Is transferred between the host (the PC) and face for development of software. Several software pack­ the evaluation board using the OP8390 NIC's remote OMA ages are provided for evaluation and development of net· channel. An ID address PROM, containing the physical ad­ works using the DP8390 Chip set. SDEMO is a demonstra· dress of the evaluation board is allO mapped into the mem­ tion program that provides a low level interface to the ory space of the NIC. DP8390 NIC for transmission and reception of packets. Note Plllll decoding 11 pei1omlld on tM PROM encl RAM wtllctl ..,_. SDEMO supports register dumps and simple register modifi. in ltllM devlcel ~ at olW lcalionl In llMI 1411 lll9lllOIY cation. CONF Is a conferencing program which supports epece. The ftrlt occurrM01 of-fW PROM and RAM .. UMCI for~ simple message transfer. WORKSTAT and SERVER sup­ grwnming purpolll.
Recommended publications
  • Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern
    Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model.
    [Show full text]
  • Surge Protection for Local Area Networks CONTENTS Page
    Application note October 2016 MTL surge protection AN1007 Rev B Surge protection for Local Area Networks CONTENTS Page 1 Introduction and scope ................................................................................... ................................................................................................................................1 2 What is surge protection? ................................................................................... ............................................................................................................................1 2.1 How big are surges? ................................................................................. ..............................................................................................................................1 2.2 Surge protection and network layers ...................................................................... .........................................................................................................1 3 Risk factors ......................................................................................... ...................................................................................................................................................1 4 Economic factors ...................................................................................... ..........................................................................................................................................2 5 How surges
    [Show full text]
  • Ethernet (IEEE 802.3)
    Computer Networking MAC Addresses, Ethernet & Wi-Fi Lecturers: Antonio Carzaniga Silvia Santini Assistants: Ali Fattaholmanan Theodore Jepsen USI Lugano, December 7, 2018 Changelog ▪ V1: December 7, 2018 ▪ V2: March 1, 2017 ▪ Changes to the «tentative schedule» of the lecture 2 Last time, on December 5, 2018… 3 What about today? ▪Link-layer addresses ▪Ethernet (IEEE 802.3) ▪Wi-Fi (IEEE 802.11) 4 Link-layer addresses 5 Image source: https://divansm.co/letter-to-santa-north-pole-address/letter-to-santa-north-pole-address-fresh-day-18-santa-s-letters/ Network adapters (aka: Network interfaces) ▪A network adapter is a piece of hardware that connects a computer to a network ▪Hosts often have multiple network adapters ▪ Type ipconfig /all on a command window to see your computer’s adapters 6 Image source: [Kurose 2013 Network adapters: Examples “A 1990s Ethernet network interface controller that connects to the motherboard via the now-obsolete ISA bus. This combination card features both a BNC connector (left) for use in (now obsolete) 10BASE2 networks and an 8P8C connector (right) for use in 10BASE-T networks.” https://en.wikipedia.org/wiki/Network_interface_controller TL-WN851ND - WLAN PCI card 802.11n/g/b 300Mbps - TP-Link https://tinyurl.com/yamo62z9 7 Network adapters: Addresses ▪Each adapter has an own link-layer address ▪ Usually burned into ROM ▪Hosts with multiple adapters have thus multiple link- layer addresses ▪A link-layer address is often referred to also as physical address, LAN address or, more commonly, MAC address 8 Format of a MAC address ▪There exist different MAC address formats, the one we consider here is the EUI-48, used in Ethernet and Wi-Fi ▪6 bytes, thus 248 possible addresses ▪ i.e., 281’474’976’710’656 ▪ i.e., 281* 1012 (trillions) Image source: By Inductiveload, modified/corrected by Kju - SVG drawing based on PNG uploaded by User:Vtraveller.
    [Show full text]
  • On the Feasibility of Using Starlan to Implement The
    ON THE FEASIBILITY OF USING STARLAN TO IMPLEMENT THE FASTBUS SERIAL NETWORK By Richard Cam B. A. Sc. (Engineering Physics) University of British Columbia A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES PHYSICS We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October 1988 © Richard Cam, 1988 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. 1 further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department-of THV<, I CS The University of British Columbia Vancouver, Canada Date 3-8 OCTOggR /^gF DE-6 (2/88) Abstract During the inception of FASTBUS, an autonomous data link, informally known as the FASTBUS Serial Network, was conceived as an auxiliary communications channel to be used in diagnostic applications for debugging FASTBUS systems. Since then, there have been several attempts at implementing this serial network, all of which have produced somewhat mixed results. This thesis describes the latest attempt to implement a prototype FASTBUS serial network. By using a new LAN specification called StarLAN, some promising results have been obtained. These results show that StarLAN can be successfuDy adapted to imple• ment the serial network without requiring major modifications.
    [Show full text]
  • Ethernet (IEEE 802.3)
    Ethernet (IEEE 802.3) • Ethernet is a family of computer networking technologies for local area (LAN) and larger networks. • It was commercially introduced in 1980 while it was first standardized in 1983 as IEEE 802.3, and has since been refined to support higher bit rates and longer link distances. • Over time, Ethernet has largely replaced competing wired LAN technologies such as token ring, FDDI, and ARCNET. • The Ethernet standards comprise several wiring and signaling variants of the OSI physical layer in use with Ethernet. • The original 10BASE5 Ethernet used coaxial cable as a shared medium. • Later the coaxial cables were replaced with twisted pair and fiber optic links in conjunction with hubs or switches. 9 Various standard defined for IEEE802.3 (Old Ethernet) 10Base5 -- thickwire coaxial 10Base2 -- thinwire coaxial or cheapernet 10BaseT -- twisted pair 10BaseF -- fiber optics 9 Fast Ethernet 100BaseTX and 100BaseF • Old Ethernet: CSMA/CD, Shared Media, and Half Duplex Links • Fast Ethernet: No CSMA/CD, Dedicated Media, and Full Duplex Links • Data rates have been incrementally increased from the original 10 megabits per second to 100 gigabits per second over its history. • Systems communicating over Ethernet divide a stream of data into shorter pieces called frames. Each frame contains source and destination addresses and error-checking data so that damaged data can be detected and re-transmitted. • As per the OSI model, Ethernet provides services up to and including the data link layer. • Evolution: 9 Shared media 9 Repeaters and hubs 9 Bridging and switching 9 Advanced networking • Varieties of Ethernet: Ethernet physical layer: 9 The Ethernet physical layer is the physical layer component of the Ethernet family of computer network standards.
    [Show full text]
  • ETHERNET TECNOLOGIES 1º: O Que É Ethernet ?
    ETHERNET TECNOLOGIES 1º: O Que é Ethernet ? Ethernet Origem: Wikipédia, a enciclopédia livre. Este artigo ou se(c)ção cita fontes fiáveis e independentes, mas que não cobrem todo o conteúdo (desde setembro de 2012). Por favor, adicione mais referências e insira-as no texto ou no rodapé, conforme o livro de estilo. Conteúdo sem fontes poderá serremovido. Encontre fontes: Google (notícias, livros, acadêmico) — Yahoo! — Bing. Protocolos Internet (TCP/IP) Cam Protocolo ada 5.Apl HTTP, SMTP, FTP, SSH,Telnet, SIP, RDP, I icaçã RC,SNMP, NNTP, POP3, IMAP,BitTorrent, o DNS, Ping ... 4.Tra nspo TCP, UDP, RTP, SCTP,DCCP ... rte 3.Re IP (IPv4, IPv6) , ARP, RARP,ICMP, IPsec ... de Ethernet, 802.11 (WiFi),802.1Q 2.Enl (VLAN), 802.1aq ace (SPB), 802.11g, HDLC,Token ring, FDDI,PPP,Switch ,Frame relay, 1.Físi Modem, RDIS, RS-232, EIA-422, RS-449, ca Bluetooth, USB, ... Ethernet é uma arquitetura de interconexão para redes locais - Rede de Área Local (LAN) - baseada no envio de pacotes. Ela define cabeamento e sinais elétricos para a camada física, e formato de pacotes e protocolos para a subcamada de controle de acesso ao meio (Media Access Control - MAC) do modelo OSI.1 A Ethernet foi padronizada pelo IEEE como 802.3. A partir dos anos 90, ela vem sendo a tecnologia de LAN mais amplamente utilizada e tem tomado grande parte do espaço de outros padrões de rede como Token Ring, FDDI e ARCNET.1 Índice [esconder] 1 História 2 Descrição geral 3 Ethernet com meio compartilhado CSMA/CD 4 Hubs Ethernet 5 Ethernet comutada (Switches Ethernet) 6 Tipos de
    [Show full text]
  • Carrier Ethernet Ciena’S Essential Series: Be in the Know
    Essentials Carrier Ethernet Ciena’s Essential Series: Be in the know. by John Hawkins with Earl Follis Carrier Ethernet Networks Published by Ciena 7035 Ridge Rd. Hanover, MD 21076 Copyright © 2016 by Ciena Corporation. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, without the prior written permission of Ciena Corporation. For information regarding permission, write to: Ciena Experts Books 7035 Ridge Rd Hanover, MD 21076. Trademarks: Ciena, all Ciena logos, and other associated marks and logos are trademarks and/or registered trademarks of Ciena Corporation both within and outside the United States of America, and may not be used without written permission. LIMITATION OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
    [Show full text]
  • IEEE 802.3Z Gigabit Ethernet ANSI X3T9 Fibre Channel Ethernet – Table of Contents
    IEEE 802.3 Ethernet IEEE 802.3u Fast Ethernet IEEE 802.3z Gigabit Ethernet ANSI X3T9 Fibre Channel Ethernet – Table of Contents Part 1: IEEE 802.3 Ethernet Part 2: IEEE 802.3u Fast Ethernet Floor 4 Ethernet / Fast Ethernet Switch Part 3: IEEE 802.3z Gigabit Ethernet Floor 3 Hub Stack Bridge / Router Fast WAN Ethernet Switch Floor 1 Broadband Network Technologies IEEE 802.3 Ethernet 2 Ethernet – History • Developed by Xerox Palo Alto Research Centre • First published by Digital Equipment, Intel, and Xerox as DIX (DEC, Intel, Xerox) standard • Strongly changed and standardised by IEEE in the IEEE 802.3 • Therefore, two different versions are existing: – Ethernet version 2 (DIX) – IEEE 802.3 – differences are mainly in the Media Access frame • Topology of an Ethernet is logically (mostly physically, too) a bus Broadband Network Technologies IEEE 802.3 Ethernet 3 Ethernet – Technological Overview • A lot of standards exist for different Ethernet versions: – 1Base5 (Starlan), 10Base5 (Ethernet), 10Base2 (Cheapernet) – 10BaseT, 10BaseF, 10Broad36 – 100BaseTX, 100BaseFX, 100BaseT2, 100BaseT4 – 1000Base-LX, 1000Base-SX, 1000Base-CX, 1000Base-T – 100BaseVG, 100VG-AnyLAN • First number identifies transfer rate (1=1MBit/s, 10=10MBit/s, ...) • Base = baseband transmission, Broad = broadband transmission • Last digit, number, or character identifies characteristics of the transmission medium: – T = twisted pair, FX/LX/SX = fibre optics, CX = shielded balanced copper, T4 = 4 pair twisted pair, T2 = 2 pair twisted pair – length of a segment - 2=185m,
    [Show full text]
  • Western Digital
    WESTERN DIGITAL STORAGE MANAGEMENT PRODUCTS (OEM) Part Technical Power Package Number Information Requirements Size Product Description Floppy Disk WD1772-02 Single chip +5V 28 pins WD1772-00 with enhanced digital data separation. Controller WD2791A Inverted data bus +5V 40 pins FD179X with built-in analog data separator and Devices write precompensation; single/double density. WD2793A True data bus +5V 40 pins FD179X with built-in analog data separator and write precompensation; single/double density. WD2795A Inverted data bus +5V 40 pins FD179X with built-in analog data separator and write precompensation. Single/double density and side select output for double-sided drives. WD2797A True data bus +5V 40 pins FD179X with built-in analog data separator and write precompensation. Single/double density and side select output for double-sided drives. WD37C65B Floppy subsystem +5V 40 pin DIP/ Complete floppy subsystem formatter/controller 44 pin QSM with an enhanced digital data separator (patent pending) and write precompensation with complete IBM* PC XT and PC AT* compatibility modes. WD57C65 • Floppy subsystem +5V 40 pin DIP/ Complete floppy subsystem formatter/controller 44 pin QSM with an enhanced digital data separator and write precompensation with complete IBM PS/2* Model 30, 50, 60 and 80 compatibility. Floppy Disk WD1691 8" or 5.25" drives +5V 20 pins Floppy disk data separator; write precompensation. Support WD16C92A CMOS +5V 40 pins Floppy support device containing PLL logic/clock, Devices generation/write precompensation and interrupt/DMA timing for IBM's PC AT bus. WD2I43 2.5 MHz +5V 18 pins Four phase clock generator. WD9216-01 Single chip +5V 8 pins Floppy disk digital data separator.
    [Show full text]
  • Raspberry Pi to Backplane Through SGMII Petter Lundström Josef Toma
    LiU-ITN-TEK-A--18/019--SE Raspberry pi to backplane through SGMII Petter Lundström Josef Toma 2018-06-01 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet nedewS ,gnipökrroN 47 106-ES 47 ,gnipökrroN nedewS 106 47 gnipökrroN LiU-ITN-TEK-A--18/019--SE Raspberry pi to backplane through SGMII Examensarbete utfört i Elektroteknik vid Tekniska högskolan vid Linköpings universitet Petter Lundström Josef Toma Handledare Qin-Zhong Ye Examinator Amir Baranzahi Norrköping 2018-06-01 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances.
    [Show full text]
  • Basic Residential Installation Guide Table of Contents
    Basic Residential Installation Guide Table of Contents Introduction 1 1. Important Safety and Installation Information 2 2. Local and Regional Considerations 3 3. System Overview 4 4. Description 5 5. Accessories 12 6. System Design 16 7. Pre-Wire 21 8. Trim Out 30 9. Documentation, Testing, and Troubleshooting 40 10. Warranty 46 Glossary 47 Appendix 52 Introduction More than ever, today’s homeowners are confronted with an expanded range of technologies and choices — with some hard decisions as a result. The three standard television channels of the 1950’s and 60’s, for example, have exploded into hundreds of digital cable and satellite choices. With Ethernet quickly replacing traditional satellite and cable options, video on demand and streaming video have given us the ability to watch almost anything at any time. Additionally, the quality of the incoming audio/video signal has evolved to the point where the luxury of a home theater is increasingly considered a standard feature. On top of all these new incoming home technologies, age-old needs such as security, convenience, and comfort are raising homeowner expectations in every area. Smarter lighting, better power quality, tracking energy efficiency, and more comprehensive home control are just some of the applications making the leap from luxury to everyday use. For more than 100 years, the name Leviton has been synonymous with quality in connectivity. From multimedia panels to surge-protected AC outlets, from three-way lighting to Cat 5e and Cat 6 cabling, Leviton’s highest level of products, skills, and resources are combined to make upgrading simpler and more sensible.
    [Show full text]
  • Ethernet - Wikipedia, the Free Encyclopedia Página 1 De 12
    Ethernet - Wikipedia, the free encyclopedia Página 1 de 12 Ethernet From Wikipedia, the free encyclopedia The five-layer TCP/IP model Ethernet is a family of frame-based computer 5. Application layer networking technologies for local area networks (LANs). The name comes from the physical concept of DHCP · DNS · FTP · Gopher · HTTP · the ether. It defines a number of wiring and signaling IMAP4 · IRC · NNTP · XMPP · POP3 · standards for the physical layer, through means of SIP · SMTP · SNMP · SSH · TELNET · network access at the Media Access Control RPC · RTCP · RTSP · TLS · SDP · (MAC)/Data Link Layer, and a common addressing SOAP · GTP · STUN · NTP · (more) format. 4. Transport layer Ethernet is standardized as IEEE 802.3. The TCP · UDP · DCCP · SCTP · RTP · combination of the twisted pair versions of Ethernet for RSVP · IGMP · (more) connecting end systems to the network, along with the 3. Network/Internet layer fiber optic versions for site backbones, is the most IP (IPv4 · IPv6) · OSPF · IS-IS · BGP · widespread wired LAN technology. It has been in use IPsec · ARP · RARP · RIP · ICMP · from the 1990s to the present, largely replacing ICMPv6 · (more) competing LAN standards such as token ring, FDDI, 2. Data link layer and ARCNET. In recent years, Wi-Fi, the wireless LAN 802.11 · 802.16 · Wi-Fi · WiMAX · standardized by IEEE 802.11, is prevalent in home and ATM · DTM · Token ring · Ethernet · small office networks and augmenting Ethernet in FDDI · Frame Relay · GPRS · EVDO · larger installations. HSPA · HDLC · PPP · PPTP · L2TP · ISDN
    [Show full text]