Basic Residential Installation Guide Table of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern
Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model. -
~DRAFT~ CHAPTER 5: Link Layer
~DRAFT~ CHAPTER 5: Link layer Contents Network notes – Link layer ..................................................................................................................... 1 1 Context of Chapter .................................................................................................................. 2 2 Introduction ............................................................................................................................. 2 3 Objectives of Chapter/module ................................................................................................ 3 4 Services of the link layer ......................................................................................................... 4 5 Error detection ........................................................................................................................ 4 a. Parity check ............................................................................................................................. 4 b. Cyclic Redundancy Check ...................................................................................................... 5 6 Error Correction ...................................................................................................................... 5 7 MAC ....................................................................................................................................... 6 a. Fixed assigned MAC .............................................................................................................. -
Book IG 1800 British Telecom Rev A.Book
Notice to Users ©2003 2Wire, Inc. All rights reserved. This manual in whole or in part, may not be reproduced, translated, or reduced to any machine-readable form without prior written approval. 2WIRE PROVIDES NO WARRANTY WITH REGARD TO THIS MANUAL, THE SOFTWARE, OR OTHER INFORMATION CONTAINED HEREIN AND HEREBY EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE WITH REGARD TO THIS MANUAL, THE SOFTWARE, OR SUCH OTHER INFORMATION, IN NO EVENT SHALL 2WIRE, INC. BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL, OR SPECIAL DAMAGES, WHETHER BASED ON TORT, CONTRACT, OR OTHERWISE, ARISING OUT OF OR IN CONNECTION WITH THIS MANUAL, THE SOFTWARE, OR OTHER INFORMATION CONTAINED HEREIN OR THE USE THEREOF. 2Wire, Inc. reserves the right to make any modification to this manual or the information contained herein at any time without notice. The software described herein is governed by the terms of a separate user license agreement. Updates and additions to software may require an additional charge. Subscriptions to online service providers may require a fee and credit card information. Financial services may require prior arrangements with participating financial institutions. © British Telecommunications Plc 2002. BTopenworld and the BTopenworld orb are registered trademarks of British Telecommunications plc. British Telecommunications Plc registered office is at 81 Newgate Street, London EC1A 7AJ, registered in England No. 180000. ___________________________________________________________________________________________________________________________ Owner’s Record The serial number is located on the bottom of your Intelligent Gateway. Record the serial number in the space provided here and refer to it when you call Customer Care. Serial Number:__________________________ Safety Information • Use of an alternative power supply may damage the Intelligent Gateway, and will invalidate the approval that accompanies the Intelligent Gateway. -
Fire Protection Application Guide Armacell's Products for Passive Fire Protection
FIRE PROTECTION APPLICATION GUIDE ARMACELL'S PRODUCTS FOR PASSIVE FIRE PROTECTION Tel.: +49 25 17 60 30 [email protected] www.armacell.eu 02 | Fire protection application guide Foreword “Nine dead in house fire.” Fortunately we don’t read this or similar headlines every day. Nevertheless, around 4,000 people die in fires every year in the EU member countries. In many cases, deaths, injuries and major damage to buildings can be prevented if the fire protection requirements are implemented correctly. Therefore, passive fire protec- tion in buildings aims to design, construct, modify and maintain build- ings in such a way that the outbreak of a fire and the spread of flames and smoke (fire spread) are prevented. And, if a fire does occur, it must be possible to rescue people and animals and carry out fire-fighting operations effectively. In terms of fire protection, building service equipment, such as pipe- work and ventilation systems, represents a particular weak point. Pipe- and ductwork passes through separating building elements (walls and ceilings), stairwells and corridors, and thus forms a path along which flames and smoke can spread. In the event of a fire, pipe- and ductwork has a significant impact on safety in buildings and can soon pose a seri- ous threat. The risk potential rises with the number of pipes and their various tasks, thicknesses, materials and media. Therefore, in order to achieve the necessary fire protection targets, service penetrations in separating building elements must be sealed off. These fire protec- tion measures can be carried out in accordance with the less strin- gent requirements of the MLAR (state building regulations) or with an approval. -
Offshore Wind Submarine Cable Spacing Guidance
Offshore Wind Submarine Cable Spacing Guidance Contract # E14PC00005 United States Department of Interior Bureau of Safety and Environmental Enforcement December 2014, For Public Use Offshore Wind Submarine Cable Spacing Guidance Contract # E14PC00005 United States Department of Interior Bureau of Safety and Environmental Enforcement December 2014, For Public Use The authors gratefully acknowledge permission of the Crown Estate to base parts of this report on their study “Principles of Cable Routing and Spacing (2012)”, Reference ID 8 in this report Document Control Responsible for Job Title Name Date Signature Chris Sturgeon Cables specialist Jim Hodder Cables specialist Colin Poat Cables specialist Content 2014-12-15 Cables specialist Steven Drew Principal Environmental Consultant Rachel McCall EHS Senior Consultant Tanjia Maynard Checked EHS Senior Consultant Tanjia Maynard 2014-12-15 Approval Principal Engineer Jim Doane 2014-12-15 Copyright: PMSS © Document Reference: 734300670/140708 Signatures in this approval box have checked this document in line with the requirements of QP16 This report has been prepared by TÜV SÜD PMSS and Red Penguin Associates with all reasonable skill and care, within the terms of the contract with the Client. The report contains information from sources and data which we believe to be reliable but we have not confirmed that reliability and make no representation as to their accuracy or completeness. The draft report is confidential to the Client and TÜV SÜD PMSS accepts no responsibility to any third party to whom information in this report may be disclosed. No part of this document may be reproduced without the prior written approval of TÜV SÜD PMSS © TÜV SÜD PMSS 2014 Offshore Wind Submarine Cable Spacing Guidance 1 Bureau of Safety and Environmental Enforcement Table of Contents Abbreviations 2 1. -
Case Study: Asbestos Joint Compound on Drywall/Sheetrock $100,000.00 Savings
CASE STUDY: ASBESTOS JOINT COMPOUND ON DRYWALL/SHEETROCK $100,000.00 SAVINGS SCOPE OF SERVICES: AET was contracted by a not-for-profit senior adult community facility to provide asbestos contracting services prior to planned demolition of one of their outdated buildings. An EPA NESHAP inspection of the building had previously identified 24,000 SF of asbestos containing joint compound associated with non-asbestos drywall on the interior walls of the building. The asbestos building inspector had made a recommendation to remove the joint compound and associated drywall prior to demolition. AET was asked to provide a competitive bid for asbestos work along with two other asbestos contractors. AET EXPERIENCE: Joint compound or mud is used to seal joints/seams of the drywall. After application and drying the compound is sanded before being painted. Sanding can create an inhalation hazard from the dust release. Joint compound used before 1980 can contain asbestos. OSHA regulates disturbance/exposure to joint compound and requires this building material to be analyzed separately from the drywall by PLM. The EPA regulates disposal of drywall/joint compound and allows for this combined material to be composited into a single matrix. When analyzed as separate layers by OSHA, the drywall itself rarely contains asbestos and the joint compound where asbestos is found usually contains between 2-4% chrysotile asbestos. However, when analyzed as a composite per EPA protocol, the combined building material (2 layers) rarely exceeds >1% criteria to be defined as ACM. ABATEMENT REQUIREMENTS/COST SAVINGS: AET informed the potential new client that the drywall/joint compound did not have to be removed prior to demolition. -
Offshore Wind Submarine Cabling Overview Fisheries Technical Working Group
OFFSHOREoverview WIND SUBMARINE CABLING Fisheries Technical Working Group Final Report | Report Number 21-14 | April 2021 NYSERDA’s Promise to New Yorkers: NYSERDA provides resources, expertise, and objective information so New Yorkers can make confident, informed energy decisions. Our Vision: New York is a global climate leader building a healthier future with thriving communities; homes and businesses powered by clean energy; and economic opportunities accessible to all New Yorkers. Our Mission: Advance clean energy innovation and investments to combat climate change, improving the health, resiliency, and prosperity of New Yorkers and delivering benefits equitably to all. Courtesy, Equinor, Dudgeon Offshore Wind Farm Offshore Wind Submarine Cabling Overview Fisheries Technical Working Group Final Report Prepared for: New York State Energy Research and Development Authority Albany, NY Morgan Brunbauer Offshore Wind Marine Fisheries Manager Prepared by: Tetra Tech, Inc. Boston, MA Brian Dresser Director of Fisheries Programs NYSERDA Report 21-14 NYSERDA Contract 111608A April 2021 Notice This report was prepared by Tetra Tech, Inc. in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority (hereafter “NYSERDA”). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, NYSERDA, the State of New York, and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report. -
Networking Packet Broadcast Storms
Lesson Learned Networking Packet Broadcast Storms Primary Interest Groups Balancing Authorities (BAs) Generator Operators (GOPs) Reliability Coordinators (RCs) Transmission Operators (TOPs) Transmission Owners (TOs) that own and operate an Energy Management System (EMS) Problem Statement When a second network cable was connected from a voice over internet protocol (VOIP) phone to a network switch lacking proper settings, a packet broadcast storm prevented network communications from functioning, and supervisory control and data acquisition (SCADA) was lost for several hours. Broadcast storm events have also arisen from substation local area network (LAN) issues. Details A conference room was set up for a training class that needed to accommodate multiple PCs. The bridge protocol data unit (BPDU) packet propagation prevention setting was disabled on a port in the conference room in order to place a network switch off of that port. Upon completion of the training, the network switch was removed; however, the BPDU packet propagation setting was inadvertently not restored. As part of a telephone upgrade project, the traditional phone in this conference room was recently replaced by a VOIP phone. Later, an additional network cable was connected to the output port of this VOIP phone into a secondary network jack within the conference room. When the second network cable was connected from a VOIP phone to a network switch lacking proper settings, a switching loop resulted. Spanning tree protocol is normally used to prevent switching loops from propagating broadcast packets continuously until the network capacity is overwhelmed. A broadcast packet storm from the switching loop prevented network communications from functioning and SCADA was lost for several hours. -
Open Letter from Assistant Administrator(PDF)
USDA MEM United States Department of Agriculture Rural Development OPEN LETTER FROM THE ASSISTANT ADMINISTRATOR RUS Telecommunications August 29, 2016 Program 1400 Independence Ave, SW Mail Stop 1599 To all RUS Telecommunications personnel, Infrastructure and Washington, DC 20250 Broadband Loan Applicants and Borrowers: Guidelines regarding the Voice 202.690.4673 funding of CPE. CLE, and Premises Wiring. Fax 1.844.885.8181 In order to best serve the residents of rural America, and ensure that they enjoy the same technology enabled opportunities as residents of urban areas, RUS routinely reviews and updates program guidelines and procedures. As part of this endeavor, and in response to multiple inquiries for clarification, the Rural Utilities Service (RUS), has generated an updated set of guidelines addressing the eligibility of program funding for CPE, CLE, and premise wiring under the Infrastructure and Farm Bill Broadband loan programs. To better reflect current technologies and industry practices, these guidelines include an updating of some of the past funding eligibilities. In particular, the funding practices of network elements such as ONTs and DSL Modems located inside a customer's premises, and borrower owned CPE, such as non-integrated Wi-Fi routers, have been addressed and modified. Please contact the Portfolio Management and Risk Assessment Division at (202) 720-1025, or your General Field Representative, if you require clarification or additional information. Sincerely, KEITH B. ADAMS Assistant Administrator Telecommunications Program Rural Utilities Service USDA is an equal opportunity provider, employer, and lender. 2 Farm Bill and Telecommunications Infrastructure Program System Construction Guidelines Guidelines regarding the funding of premises located equipment and cabling GENERAL: These guidelines, effective as of September 1, 2016, are intended to clarify the information regarding the eligibility of equipment and facilities for funding under the Infrastructure (7 CFR 1735) and the Farm Bill Broadband (7 CFR 1738) programs. -
Analysis and Study the Performance of Coaxial Cable Passed on Different Dielectrics
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 3 (2018) pp. 1664-1669 © Research India Publications. http://www.ripublication.com Analysis and Study the Performance of Coaxial Cable Passed On Different Dielectrics Baydaa Hadi Saoudi Nursing Department, Technical Institute of Samawa, Iraq. Email:[email protected] Abstract Coaxial cable virtually keeps all the electromagnetic wave to the area inside it. Due to the mechanical properties, the In this research will discuss the more effective parameter is coaxial cable can be bent or twisted, also it can be strapped to the type of dielectric mediums (Polyimide, Polyethylene, and conductive supports without inducing unwanted currents in Teflon). the cable. The speed(S) of electromagnetic waves propagating This analysis of the performance related to dielectric mediums through a dielectric medium is given by: with respect to: Dielectric losses and its effect upon cable properties, dielectrics versus characteristic impedance, and the attenuation in the coaxial line for different dielectrics. The C: the velocity of light in a vacuum analysis depends on a simple mathematical model for coaxial cables to test the influence of the insulators (Dielectrics) µr: Magnetic relative permeability of dielectric medium performance. The simulation of this work is done using εr: Dielectric relative permittivity. Matlab/Simulink and presents the results according to the construction of the coaxial cable with its physical properties, The most common dielectric material is polyethylene, it has the types of losses in both the cable and the dielectric, and the good electrical properties, and it is cheap and flexible. role of dielectric in the propagation of electromagnetic waves. -
Sheetrock Plaster of Paris J928
® Plaster of Paris For patching interior walls and ceilings Description SHEETROCK Plaster of Paris is a fast-setting material used to repair ▪ For drywall and plaster surfaces holes and cracks in drywall and plaster walls and ceilings. It dries hard within 30 minutes. SHEETROCK Plaster of Paris may also be used ▪ Also ideal for molding and casting for casting, modeling or sculpting forms. ▪ Advantages Sets hard in 30 minutes Ideal for patching. SHEETROCK Plaster of Paris is the solution to ▪ For interior use only interior drywall and plaster surface problems. Patching both holes and cracks is easy and fast. Fast setting. SHEETROCK Plaster of Paris is easy to work with and hardens in only 30 minutes. Economical. Mix only the amount of SHEETROCK Plaster of Paris you need to use for each application. For molding and casting. SHEETROCK Plaster of Paris is formulated so that it provides excellent molding and casting properties Directions Mixing—Use cool, clean water and clean equipment; mix powder and water in proportions shown below. Mix to the consistency of a smooth paste. Do not overthin. Avoid mixing more material than can be used in 15 minutes. Mixing Proportions—Mix powder thoroughly into water until completely wet. The initial mix should be slightly thicker or heavier than the desired working consistency. Mix until smooth. Let this initial mix soak for approximately one minute. (Note: The cooler the conditions, the longer the material must soak.) Remix approximately one minute, adding water to achieve the desired working consistency. Do not mix with other compounds in wet or dry form. -
Ethernet/Category 5 Network Cabling Guide Prepared by SJ Wilkinson (August 2002) Based on Steve Derose’S Guide to CAT5 Network Wiring (See Later Web Reference)
Ethernet/Category 5 Network Cabling Guide Prepared by SJ Wilkinson (August 2002) Based on Steve DeRose’s Guide to CAT5 Network Wiring (See later Web Reference) Networks A Local Area Network (LAN) can be as simple as two computers, each having a network interface card (NIC) or network adapter and running network software, connected together with a crossover cable. Here the crossover cable would have a plug at either end to connect into the NIC socket at the back of each computer. The next step up would be a network consisting of three or more computers and a hub. Each of the computers is plugged into the hub with a straight-thru cable (the crossover function is performed by the hub). For a small network the straight-thru cables would have plugs at either end – one to connect to the computer and one to the hub. For larger networks wall cabling, wall sockets and patch cables are used. A CAT5 "patch panel" is used at the hub end where all your wires come together and provides a group of sockets for further cables. Straight-thru patch cables connect computers to sockets (jacks). Straight-thru wall cables connect sockets to the patch panel. Straight-thru patch cables connect the patch panel to the hub. Patch panels often make network cabling neater but are not essential as (a) wiring a plug is no harder than wiring a panel; (b) you still need cables to go from the panel to the hub; and (c) it adds extra connections, so lowers reliability. 1 Planning your Network Pick a location for your hub, preferably centred to keep cable runs shorter.