Offshore Wind Submarine Cabling Overview Fisheries Technical Working Group

Total Page:16

File Type:pdf, Size:1020Kb

Offshore Wind Submarine Cabling Overview Fisheries Technical Working Group OFFSHOREoverview WIND SUBMARINE CABLING Fisheries Technical Working Group Final Report | Report Number 21-14 | April 2021 NYSERDA’s Promise to New Yorkers: NYSERDA provides resources, expertise, and objective information so New Yorkers can make confident, informed energy decisions. Our Vision: New York is a global climate leader building a healthier future with thriving communities; homes and businesses powered by clean energy; and economic opportunities accessible to all New Yorkers. Our Mission: Advance clean energy innovation and investments to combat climate change, improving the health, resiliency, and prosperity of New Yorkers and delivering benefits equitably to all. Courtesy, Equinor, Dudgeon Offshore Wind Farm Offshore Wind Submarine Cabling Overview Fisheries Technical Working Group Final Report Prepared for: New York State Energy Research and Development Authority Albany, NY Morgan Brunbauer Offshore Wind Marine Fisheries Manager Prepared by: Tetra Tech, Inc. Boston, MA Brian Dresser Director of Fisheries Programs NYSERDA Report 21-14 NYSERDA Contract 111608A April 2021 Notice This report was prepared by Tetra Tech, Inc. in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority (hereafter “NYSERDA”). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, NYSERDA, the State of New York, and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report. NYSERDA, the State of New York, and the contractor make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report. NYSERDA makes every effort to provide accurate information about copyright owners and related matters in the reports we publish. Contractors are responsible for determining and satisfying copyright or other use restrictions regarding the content of reports that they write, in compliance with NYSERDA’s policies and federal law. If you are the copyright owner and believe a NYSERDA report has not properly attributed your work to you or has used it without permission, please email [email protected] Information contained in this document, such as web page addresses, are current at the time of publication. Abstract The number of submarine cables in the New York Bight is expected to increase as New York currently has three offshore wind projects with agreements to sell nearly 2,500 MW of power to the State towards the goal of 9,000 MW of offshore wind (OSW) generation by 2035. It is important that the installation and operation of submarine cables avoid, minimize, or mitigate potential impacts; both to the environment as well as to existing ocean users. Understanding the fundamentals of offshore wind submarine power cable types and construction methods are important in determining the potential impacts cables might have on the commercial fishing industry as well as how commercial fishing practices might impact the cables, once installed.The best and most effective manner to mitigate impacts to fishing interests is engagement with fishermen early in the planning process. Planning tools such as the Cable Burial Risk Assessment (CBRA) determine the recommended depth of lowering (DOL) by taking many factors into consideration, including regional fishing gear activity, type, and penetration depths. Mitigation measures to reduce impacts of fishing to cables may include cable armoring and burial for cable installed on the continental shelf. Reducing the impacts submarine cables may have on stakeholders and vice versa can be achieved by proper and diligent project planning and execution. Keywords OSW, submarine cabling activities, fisheries cable interactions, offshore wind cables OFFSHORE WIND SUBMARINE CABLING OVERVIEW ii Table of Contents Fisheries Technical Working Group NOTICE ii ABSTRACT ii KEYWORDS ii LIST OF TABLES v LIST OF FIGURES v ACRONYMS AND ABBREVIATIONS vii EXECUTIVE SUMMARY ES-1 1 INTRODUCTION 1 1.1 Historical and Existing Submarine Cables in the New York Bight 2 2 THE U.S. OFFSHORE WIND INDUSTRY 3 3 SUBMARINE CABLES IN OFFSHORE WIND PROJECTS 5 3.1 State and Federal Regulatory Requirements Industry Guidance 5 3.2 Cable Route Planning 9 3.2.1 Cable Burial Risk Assessment 10 3.2.2 Geologic Constraints and Concerns 11 3.2.3 Environmental, Fisheries, and Fishing Impacts 11 3.3 Cable Types 12 3.3.1 Functions (Export vs. Array) 15 3.3.2 Array Cable Detail 16 3.3.3 HVAC Export Cable Detail 16 3.3.4 HVDC Export Cable Detail 16 3.4 Submarine Cable Installation and Burial 17 3.4.1 Route Clearance and Pre-lay Grapnel Run 17 3.5 Cable Installation—Export 19 3.5.1 Shore-End Installation 21 3.5.2 Main Lay 22 3.5.3 Offshore Substation Platform 24 3.6 Cable Installation—Array Cabling 25 3.6.1 First-End Installation 26 3.6.2 Main Lay 27 3.6.3 Second-End Installation 27 3.7 Cable Burial 28 3.7.1 Simultaneous Lay and Burial 28 3.7.2 Post-lay Burial 34 3.7.3 Pre-lay Burial 37 3.7.4 Cable Burial Tool Summary Table 39 3.7.5 Other Cable Protection Measures 40 3.8 Post-lay Cable Surveys 44 3.9 Cable Crossings and Techniques 45 3.9.1 Legal and Regulatory Viewpoint 45 3.9.2 Common Cable/Pipeline Crossing Methodologies 45 OFFSHORE WIND SUBMARINE CABLING OVERVIEW iii Table of Contents Fisheries Technical Working Group 3.10 Operations and Maintenance 46 3.10.1 Periodic Depth of Burial Surveys 46 3.10.2 Cable Temperature Sensing 46 3.10.3 Cable Vibration Sensing/Distributed Acoustic Sensing 48 3.10.4 Remedial Burial 48 3.10.5 Cable Repair Operations (Array and Export) 48 3.10.6 Decommissioning 49 4 RISK TO CABLES 50 4.1 Seabed Conditions—Geologic and Sedimentary 50 4.2 Navigation Channels and Anchorage Areas 50 4.3 Commercial and Recreational Fishing 51 5 RISK FROM CABLES 52 5.1 Potential Environmental Impacts 52 5.1.1 Seabed/Substrate 53 5.1.2 Sediment Resuspension, Turbidity, and Burial 53 5.1.3 Chemical Pollutants 53 5.1.4 Anthropogenic Noise 54 5.1.5 EMF—Alternating Current versus Direct Current 54 5.1.6 Thermal Gradients 56 5.2 Potential Impacts to Habitat/Potential Impacts to Fishing 56 5.2.1 Fisheries Habitat 57 5.2.2 Reef Effects 57 5.2.3 Fishing Gear 58 6 MITIGATION MEASURES 59 7 CONCLUSION 60 8 REFERENCES 61 OFFSHORE WIND SUBMARINE CABLING OVERVIEW iv Tables Table 1. Summary of Guidance, Regulations, and Industry Recommended Practices 6 Table 2. Basic HVAC to HVDC Technology Comparison 12 Table 3. Cable Type and Size Comparison (all numbers are approximate) 12 Table 4. Cable Burial Tool Comparison 39 Figures Figure 1. Major Components of a Typical Offshore Windfarm 1 Figure 2. Existing Submarine Cable Routes and Offshore Wind Lease/Call Areas in the New York Bight 2 Figure 3. U.S. East Coast OSW Projects and Lease Areas 3 Figure 4. New York State Area OSW Lease/Call Areas 4 Figure 5. GE Haliade-X 12-MW WTG, Size Comparison 4 Figure 6. Industry Standard Cable Burial and Trench Parameters 10 Figure 7. Bundled HVDC Cable Deployment 14 Figure 8. Image of Three Core HVAC Inter-Array Export Cable Showing Relative Dimensional Differences 14 Figure 9. Image of Basslink Submarine HVDC Cable Showing Relative Dimensions of Components 14 Figure 10. Simplified Components of an Offshore Wind Farm, Both for HVAC and HVDC Configurations 15 Figure 11. Gemini Offshore Wind Farm HVAC Offshore Substation Platform 15 Figure 12. Dolwin Alpha HVDC Converter Platform 15 Figure 13. Cable Cross Section, Array Cable 16 Figure 14. Components of Typical HVAC Export Cable 16 Figure 15. Neptune Cable Laying Operations 16 Figure 16. Neptune HVDC Cable Bundle 16 Figure 17. Neptune HVDC Cable Being Bundled during Marine Installation Works 17 Figure 18. Neptune HVDC System Route 17 Figure 19. Boulder Relocation Grab 18 Figure 20. Pre-lay Plow for Route Clearance 18 Figure 21. Typical PLGR Grapnel 18 Figure 22. Grapnels Containing Wire Rope Recovered to Deck 18 Figure 23. NKT Victoria 19 Figure 24. Van Oord Nexus CLV 19 Figure 25. Leonardo da Vinci CLV 20 Figure 26. Triton Knoll Offshore Wind Farm Export Cable Pull in at the Transition Pit 21 Figure 27. Horizontal Directional Drilling (HDD) Operations 21 Figure 28. Image Showing Preparations for Pulling the Export Cable into the HDD Duct 21 Figure 29. Image Showing Preparations for Pulling the Export Cable into a Plow 22 Figure 30. Cable Repair Joint with External Cable Protection 23 Figure 31. Lifting Cable Repair Joint with External Cable Protection 23 Figure 32. Deploying Cable Repair Joint 23 Figure 33. OSP Illustration Showing the Submarine Cables 24 Figure 34. Export Cable Pull-in and Plow Deployment at the OSP 24 Figure 35. Thanet Offshore Wind Farm Layout and Photo 25 Figure 36. First-end Pull-in 26 Figure 37. Cable Protection System Prior to Installation 26 Figure 38. Array-Cable installation Vessel (Foreground) and Service Operation Vessel (SOV), Background 27 Figure 39. Array-Cable installation 27 Figure 40. Cable Deployment Quadrant on Deck 27 Figure 41. Second-End Array Cable Installation, Quadrant Being Deployed, ROV in the Water 27 Figure 42.
Recommended publications
  • Modeling and Dynamic Analysis of Offshore Wind Farms in France: Impact on Power System Stability
    04/11/2011 Modeling and dynamic analysis of offshore wind farms in France: Impact on power system stability KTH Master Thesis report number Alexandre Henry Examiner at KTH Dr. Luigi Vanfretti Supervisors at KTH Dr. Luigi Vanfretti and Camille Hamon Supervisor at EDF Dr. Bayram Tounsi Laboratory Electric Power Systems School of Electrical Engineering KTH, Royal Institute of Technology Stockholm, November 2011 Accessibility : .. Front page Page I / III ... Modeling and dynamic analysis of offshore wind farms in France: Impact on KTH EPS power system stability - EDF R&D Abstract Alexandre Henry Page 1 / 90 KTH Master Thesis Modeling and dynamic analysis of offshore wind farms in France: Impact on KTH EPS power system stability - EDF R&D Nomenclature EWEA : European Wind Energy Association UK : United Kingdom EU : European union AC : Alternating current DC : Direct current HVAC : High Voltage Alternating Current HVDC : High Voltage Direct Current PCC : Point of Common Coupling TSO : Transmission System Operator RTE : Réseau de transport d’électricité (French TSO) XLPE : cross linked polythylene insulated VSC : Voltage source converter LCC : Line commutated converter FACTS : Flexible AC Transmission System SVC : Static Var Compensator DFIG : Double Fed Induction Generator MVAC : Medium Voltage Alternating Current ENTSO-E : European Network of Transmission System Operators for Electricity HFF : High Frequency Filter FRT : Fault Ride Through Alexandre Henry Page 2 / 90 KTH Master Thesis Modeling and dynamic analysis of offshore wind farms
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Fishery Announcement Template V2.1 (29Th April 2019) (Based on MSC Fishery Announcement Template V2.01)
    Control Union Pesca Ltd. CFTO Indian Ocean Purse Seine Skipjack fishery MSC Fishery Announcement Control Union Pesca Ltd 56 High Street, Lymington, Hampshire, SO41 9AH, United Kingdom Tel: 01590 613007 Fax: 01590 671573 Email: [email protected] Website: www.cupesca.com Marine Stewardship Council fishery announcement Table 1 – Fishery announcement 1 Fishery name CFTO Indian Ocean Purse Seine Skipjack fishery 2 Assessment number Initial assessment 3 Reduced reassessment (Yes/No) N/A 4 Statement that the fishery is within scope The CAB confirms that the fishery entering full assessment meets the scope requirements (FCR 7.4) for MSC fishery assessments [FCR 7.8.3.1]. The CAB further confirms the following: • The fishery is within scope of the MSC standard, i.e. it does not operate under a controversial unilateral exemption to an international agreement, use destructive fishing practices, target amphibians, birds, reptiles or mammals and is not overwhelmed by dispute; • The CAB has reviewed available assessment reports and other information. A pre-assessment was conducted for this fishery (February 2019); • The fishery has not failed an assessment within the last two years; • IPI stocks are not caught; • The fishery is enhanced; • The fishery is not based on an introduced species; and • The fishery does not include an entity that has been successfully prosecuted for violations against forced labour laws. The fishery overlaps with the “Maldives pole & line skipjack tuna” and “Echebastar Indian Ocean purse seine skipjack tuna” 5 Unit(s)
    [Show full text]
  • Offshore Wind Submarine Cable Spacing Guidance
    Offshore Wind Submarine Cable Spacing Guidance Contract # E14PC00005 United States Department of Interior Bureau of Safety and Environmental Enforcement December 2014, For Public Use Offshore Wind Submarine Cable Spacing Guidance Contract # E14PC00005 United States Department of Interior Bureau of Safety and Environmental Enforcement December 2014, For Public Use The authors gratefully acknowledge permission of the Crown Estate to base parts of this report on their study “Principles of Cable Routing and Spacing (2012)”, Reference ID 8 in this report Document Control Responsible for Job Title Name Date Signature Chris Sturgeon Cables specialist Jim Hodder Cables specialist Colin Poat Cables specialist Content 2014-12-15 Cables specialist Steven Drew Principal Environmental Consultant Rachel McCall EHS Senior Consultant Tanjia Maynard Checked EHS Senior Consultant Tanjia Maynard 2014-12-15 Approval Principal Engineer Jim Doane 2014-12-15 Copyright: PMSS © Document Reference: 734300670/140708 Signatures in this approval box have checked this document in line with the requirements of QP16 This report has been prepared by TÜV SÜD PMSS and Red Penguin Associates with all reasonable skill and care, within the terms of the contract with the Client. The report contains information from sources and data which we believe to be reliable but we have not confirmed that reliability and make no representation as to their accuracy or completeness. The draft report is confidential to the Client and TÜV SÜD PMSS accepts no responsibility to any third party to whom information in this report may be disclosed. No part of this document may be reproduced without the prior written approval of TÜV SÜD PMSS © TÜV SÜD PMSS 2014 Offshore Wind Submarine Cable Spacing Guidance 1 Bureau of Safety and Environmental Enforcement Table of Contents Abbreviations 2 1.
    [Show full text]
  • Development of Submarine MV AC Power Cable With
    B5.2 9th International Conference on Insulated Power Cables B5.2 Development of submarine MV-AC power cable with aluminum conductor Sven MUELLER-SCHUETZE, Heiner OTTERSBERG, Carsten SUHR, Ingo KRUSCHE, Norddeutsche Seekabelwerke GmbH/General Cable, Nordenham, Germany, [email protected], [email protected], [email protected], [email protected] Daniel ISUS FEU, General Cable, Manlleu, Spain, [email protected] ABSTRACT cables due to its very good conductivity. However, the high demand of copper material results in a very high A single armored MV-AC submarine power cable with an market value. This was set to above 6000 $/ton at the aluminum conductor was developed for offshore beginning of April 2015. renewable energy, interconnections between offshore platforms, islands and shore. For the cable design Aluminum has lower conductivity compared to copper process an intended installation in water depths up to 300 resulting in the need to select larger conductor cross m and the application of additional cable protection sections. Despite the larger conductor cross section, cost methods such as rock dumping for on-bottom stabilization reduction is achieved due to the lower material price of were considered. aluminum compared to copper. At the beginning of April 2015 the market value for aluminum was oscillating A type test has been successfully performed on 3x 800 around 1770 $/ton. Due to that market value difference mm² 19/33 (36) kV XLPE submarine power cable with an aluminum is a cost-effective replacement for copper as aluminum conductor. The qualification program was conductor material. During the selection conductor performed under consideration of the CIGRE Electra 171, material, both the electrical and mechanical material CIGRE TB 490, IEC 60502-2 and CENELEC HD620-10C properties were reviewed for all aluminum alloy standards.
    [Show full text]
  • Study on International Internet Connectivity in Sub-Saharan Africa March 2013
    REGULATORY AND MARKET ENVIRONMENT International Telecommunication Union Telecommunication Development Bureau Place des Nations STUDY ON INTERNATIONAL CH-1211 Geneva 20 Switzerland INTERNET CONNECTIVITY www.itu.int IN SUB-SAHARAN AFRICA MARCH 2013 Printed in Switzerland Telecommunication Development Sector Geneva, 2013 /2013 03 Study on international Internet connectivity in sub-Saharan Africa March 2013 This report has been prepared by Mr Abossé Akue-Kpakpo, under the direction of the Regulatory and Market Environment Division (RME) of the Telecommunication Development Bureau (BDT), in close coordination with ITU-T Study Group 3. The content of this report was presented during the seminars and meetings of the regional groups of the ITU Study Group 3 for Africa (SG3RG-AFR) in May 2012 and for Latin America and the Caribbean (LAC SG3RG) in March 2012. Please consider the environment before printing this report. © ITU 2013 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, in part or in full, without the prior written permission of ITU. Study on international Internet connectivity in sub-Saharan Africa Foreword It is my pleasure to introduce this report on International Internet Connectivity (IIC) in sub-Saharan Africa; this is part of a series of regional reports that address the present situation of Internet connection as well as future developments and challenges. These reports have been developed through collaboration between the ITU Telecommunication Development Bureau (BDT) the Telecommunication Standardization Bureau (TSB) in view of supporting policy makers, national regulatory authorities and operators in understanding the many aspects of international Internet connectivity. The digital revolution of the 21st century is being underpinned and in many cases driven by the growth, access and use of the Internet, but it has also led us to a modern indicator of division and poverty: exclusion from this revolution, from access to the Internet or telephone, and from the benefits of today's information society.
    [Show full text]
  • Natura 2000 Sites for Reefs and Submerged Sandbanks Volume II: Northeast Atlantic and North Sea
    Implementation of the EU Habitats Directive Offshore: Natura 2000 sites for reefs and submerged sandbanks Volume II: Northeast Atlantic and North Sea A report by WWF June 2001 Implementation of the EU Habitats Directive Offshore: Natura 2000 sites for reefs and submerged sandbanks A report by WWF based on: "Habitats Directive Implementation in Europe Offshore SACs for reefs" by A. D. Rogers Southampton Oceanographic Centre, UK; and "Submerged Sandbanks in European Shelf Waters" by Veligrakis, A., Collins, M.B., Owrid, G. and A. Houghton Southampton Oceanographic Centre, UK; commissioned by WWF For information please contact: Dr. Sarah Jones WWF UK Panda House Weyside Park Godalming Surrey GU7 1XR United Kingdom Tel +441483 412522 Fax +441483 426409 Email: [email protected] Cover page photo: Trawling smashes cold water coral reefs P.Buhl-Mortensen, University of Bergen, Norway Prepared by Sabine Christiansen and Sarah Jones IMPLEMENTATION OF THE EU HD OFFSHORE REEFS AND SUBMERGED SANDBANKS NE ATLANTIC AND NORTH SEA TABLE OF CONTENTS TABLE OF CONTENTS ACKNOWLEDGEMENTS I LIST OF MAPS II LIST OF TABLES III 1 INTRODUCTION 1 2 REEFS IN THE NORTHEAST ATLANTIC AND THE NORTH SEA (A.D. ROGERS, SOC) 3 2.1 Data inventory 3 2.2 Example cases for the type of information provided (full list see Vol. IV ) 9 2.2.1 "Darwin Mounds" East (UK) 9 2.2.2 Galicia Bank (Spain) 13 2.2.3 Gorringe Ridge (Portugal) 17 2.2.4 La Chapelle Bank (France) 22 2.3 Bibliography reefs 24 2.4 Analysis of Offshore Reefs Inventory (WWF)(overview maps and tables) 31 2.4.1 North Sea 31 2.4.2 UK and Ireland 32 2.4.3 France and Spain 39 2.4.4 Portugal 41 2.4.5 Conclusions 43 3 SUBMERGED SANDBANKS IN EUROPEAN SHELF WATERS (A.
    [Show full text]
  • Dogger Bank Special Area of Conservation (SAC) MMO Fisheries Assessment 2021
    Document Control Title Dogger Bank Special Area of Conservation (SAC) MMO Fisheries Assessment 2021 Authors T Barnfield; E Johnston; T Dixon; K Saunders; E Siegal Approver(s) V Morgan; J Duffill Telsnig; N Greenwood Owner T Barnfield Revision History Date Author(s) Version Status Reason Approver(s) 19/06/2020 T Barnfield; V.A0.1 Draft Introduction and Part V Morgan E Johnston A 06/07/2020 T Barnfield; V.A0.2 Draft Internal QA of V Morgan E Johnston Introduction and Part A 07/07/2020 T Barnfield; V.A0.3 Draft JNCC QA of A Doyle E Johnston Introduction and Part A 14/07/2020 T Barnfield; V.A0.4 Draft Introduction and Part V Morgan E Johnston A JNCC comments 26/07/2020 T Barnfield; V.BC0.1 Draft Part B & C N Greenwood E Johnston 29/07/2020 T Barnfield; V.BC0.2 Draft Internal QA of Part B N Greenwood E Johnston & C 30/07/2020 T Barnfield; V.BC0.3 Draft JNCC QA of A Doyle E Johnston Introduction and Part A 05/08/2020 T Barnfield; V.BC0.4 Draft Part B & C JNCC N Greenwood E Johnston comments 06/08/2020 T Barnfield; V.1.0 Draft Whole document N Greenwood E Johnston compilation 07/08/2020 T Barnfield; V.1.1 Draft Whole document N Greenwood E Johnston Internal QA 18/08/2020 T Barnfield; V.1.2 Draft Whole document A Doyle E Johnston JNCC QA 25/08/2020 T Barnfield; V1.3 Draft Whole Document G7 Leanne E Johnston QA Stockdale 25/08/2020 T Barnfield; V1.4 Draft Update following G7 Leanne E Johnston QA Stockdale 25/01/2021 T Barnfield; V2.0 – 2.4 Draft Updates following NGreenwood; K Saunders; new data availability J Duffill Telsnig T Dixon; E and QA Siegal 01/02/2021 T Barnfield; V2.5 Final Finalise comments Nick Greenwood K Saunders; E and updates Siegal 1 Dogger Bank Special Area of Conservation (SAC) MMO Fisheries Assessment 2020 Contents Document Control ...........................................................................................................
    [Show full text]
  • Analysis and Study the Performance of Coaxial Cable Passed on Different Dielectrics
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 3 (2018) pp. 1664-1669 © Research India Publications. http://www.ripublication.com Analysis and Study the Performance of Coaxial Cable Passed On Different Dielectrics Baydaa Hadi Saoudi Nursing Department, Technical Institute of Samawa, Iraq. Email:[email protected] Abstract Coaxial cable virtually keeps all the electromagnetic wave to the area inside it. Due to the mechanical properties, the In this research will discuss the more effective parameter is coaxial cable can be bent or twisted, also it can be strapped to the type of dielectric mediums (Polyimide, Polyethylene, and conductive supports without inducing unwanted currents in Teflon). the cable. The speed(S) of electromagnetic waves propagating This analysis of the performance related to dielectric mediums through a dielectric medium is given by: with respect to: Dielectric losses and its effect upon cable properties, dielectrics versus characteristic impedance, and the attenuation in the coaxial line for different dielectrics. The C: the velocity of light in a vacuum analysis depends on a simple mathematical model for coaxial cables to test the influence of the insulators (Dielectrics) µr: Magnetic relative permeability of dielectric medium performance. The simulation of this work is done using εr: Dielectric relative permittivity. Matlab/Simulink and presents the results according to the construction of the coaxial cable with its physical properties, The most common dielectric material is polyethylene, it has the types of losses in both the cable and the dielectric, and the good electrical properties, and it is cheap and flexible. role of dielectric in the propagation of electromagnetic waves.
    [Show full text]
  • Final Annual Load Factors for 2018/19 Tnuos Tariffs
    Final Annual Load Factors for 2018/19 TNUoS Tariffs October 2017 NGET: Final ALFs for 2018/19 TNUoS Tariffs October 2017 1 Final Annual Load Factors for 2018/19 TNUoS Tariffs This information paper contains the Final Annual Load Factors (ALFs) that National Grid will use in the calculation of Generation TNUoS charges from April 2018. October 2017 October 2017 Contents Executive Summary 4 Annual Load Factors For The 2018/19 Charging Year 5 Table 1: Annual Load Factors By Generating Station 5 Table 2: Generic Annual Load Factors For The 2018/19 Charging Year 10 Changes to the Draft ALFs 11 The Onshore Wind Generic ALF has changed 11 Edinbane 11 Pen Y Cymoedd 11 Inactive Generators 12 How Are ALFs Calculated? 13 Five Years Of Data 13 Four Years Of Data 14 Three Years Of Data 14 Fewer Than Three Years Of Data 14 Calculation Of Partial Year ALFs 15 Generic ALFs 15 Next Steps 15 Appendix A: Generation Charging Principles 16 CMP268 16 The TNUoS Wider Tariff 16 Other Charges 17 Contact Us If you have any comments or questions on the contents or format of this report, please don’t hesitate to get in touch with us. Team Email & Phone [email protected] 01926 654633 NGET: Final ALFs for 2018/19 TNUoS Tariffs October 2017 3 Executive Summary This document contains the Final Annual Load Factors (ALFs) to be used in the calculation of generator Transmission Network Use of System (TNUoS) tariffs for 2018/19, effective from 1 April 2018. The ALFs are based on generation data for five years from 2012/13 until 2016/17.
    [Show full text]
  • The Socio-Economic Impact of Broadband in Sub-Saharan Africa: the Satellite Advantage
    The Socio-Economic Impact of Broadband in sub-Saharan Africa: The Satellite Advantage The Socio-Economic Impact of Broadband in sub-Saharan Africa: The Satellite Advantage By the Commonwealth Telecommunications Organisation Page 1 The Socio-Economic Impact of Broadband in sub-Saharan Africa: The Satellite Advantage Executive Summary Broadband is not just a consequence of economic growth, it is also a cause. Sub-Saharan Africa has succeeded in the last decade in bringing voice services within the reach of some three quarters of the population, but the vast majority of the region is falling further behind the rest of the world in terms of broadband connectivity. There are two main reasons for this: supply is limited, and prices have been very high.1 Broadband is the delivery of Internet IP bandwidth (at speeds of 256 Kbps or more), and all of the content, services and applications which consume this bandwidth. The essential underpinning of broadband therefore is the need for a high capacity transmission backbone network capable of delivering this bandwidth. Providing an entry level 256 Kbps broadband service to hundreds, thousands or millions of customers requires a backbone transmission network with sufficient capacity to do so. And each time an operator increases its broadband service from 256 Kbps to 512 Kbps, 2 Mbps, or even 100 Mbps, this in turn escalates the capacity requirements of the transmission backbone network. The evolving broadband geography of sub-Saharan Africa reflects changes in the underlying level and pattern of supply of this trunk transmission capacity, and the pricing of that capacity. All of Africa’s international Internet bandwidth is supplied by satellite, submarine cables or terrestrial networks connected to submarine cables.
    [Show full text]
  • Submarine Cables, There's Power Under Water!
    Submarine cables, there's power under water! Marco Marelli, SC B1 Chair (IT) [email protected] Submarine power cables are now among the most important key enablers for the energy transition. Power generation from Renewable Energy Sources (RES) and interconnection among networks are, in fact ,the two main areas where energy links across water is developing massively and – as such – are driving the recent technological evolution. Figure 1 – Laying activities for Submarine cables (source TB 610) In recent years the number and size of installed offshore wind farms have increased rapidly and more and larger farms are being planned. Other types of offshore generation are expected to come in the near future, such as tidal and wave energy generation. Submarine cables are and will be an essential part of this development where they are used as array cables between the generators, as export cables to connect the offshore generation farms with the onshore transmission grid, and even as part of interconnections between different synchronous systems, countries, or price areas . Another important factor for the energy transition is the implementation of a large electrical grid. The number of HVDC interconnectors in the construction stage is larger than ever before. Also, there are many projects in progress at various preliminary stages (planning, studies, …), and they are typically very long and with higher power ratings, thus pushing voltages to new levels with new cable technologies. Typical drivers are the “political” change toward green energy production as well as the differential cost of energy between countries/areas that make viable and desirable the interchange of energy in parallel or in substitution of new generation plants.
    [Show full text]