Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern

Total Page:16

File Type:pdf, Size:1020Kb

Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model. l The second section, "10Mbps Ethernet MAC and PHY Standards," delves into the 10Mbps Ethernet MAC in more detail and discusses the various Ethernet physical layer implementations available today: Thick, Thin, Twisted-Pair, and Fiber Ethernet. You can skip this section if you are very familiar with Ethernet. We included it as a refresher to set the stage for our discussion of the new Fast Ethernet standard and switching technology. l Ethernet was designed to be a shared-media, half-duplex technology. The third section of this chapter, "Half- and Full-Duplex Ethernet," discusses the transition from half-duplex to full- duplex transmission. l The fourth section of this chapter, "100BASE-T/Fast Ethernet," intro-duces the IEEE 802.3u Fast Ethernet standard and discusses how it differs from the regular 10Mbps Ethernet standard. This section explains the Fast Ethernet MAC and the four different PHY standards in more detail. l In the section "Gigabit Ethernet," you learn about the new Gigabit Ethernet MAC and PHY standard, as well as the new 1000BASE-T PHY for Category 5 or better UTP cable. file://I:\chapters\z\zd594.html 3/21/01 Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 2 of 36 l Next, we discuss the auto-negotiation standard. Auto-negotiation was first introduced as part of the Fast Ethernet standard. It is an automatic speed-selection method, connecting different devices together. l In the final section, "Ethernet Repeaters," we start explaining deployment by means of repeaters. In particular, this section discusses Ethernet and Fast Ethernet repeater standards, as well as the Gigabit Ethernet buffered distributor/repeater design specification. We also cover repeater design rules. Chapter 6, "Cabling and More on Physical Layers," covers the Fast and Gigabit Ethernet physical layers and the corresponding encoding and cabling specifications in much more detail. Ethernet and the OSI Reference Model Most data communications protocols in use today are defined in terms of a layered model called the Open Systems Interconnection (OSI) Reference Model. Table 3.1 describes the layers of this model. TABLE 3.1 NOVELL'S NETWARE OPERATING SYSTEM ADHERES TO THE ISO/OSI REFERENCE MODEL MORE CLOSELY THAN MOST OTHER OPERATING SYSTEMS Layer Layer Examples Comment Name Number Application 7 NetWare NLMs Provides access to the network. Presentation 6 Formats data for workstation-based interpretation/display. Session 5 NetWare Core Protocol (NCP) Layers 5-7 are often not clearly defined and vary by operating system. Some applications span all three layers. Transport 4 SPX (Sequenced Packet Provides end-to-end management, including Exchange) acknowledgment, error correction. Network 3 IPX (Internetwork Packet Routes packets. Dissimilar LANs Exchange), IPX RIP (IPX communicate through Layer 3 routing. Routing Information Protocol) Data link 2 LLC: IEEE 802.2 LLC Bridges are Layer 2 devices. Generates standard source and destination addresses. AUI interfaces between Layers 1 and 2. MAC: IEEE 802.3 Ethernet, Fast Ethernet, Gigabit Ethernet Physical 1 UTP, coax, fiber Specifies the electrical and signal/coding characteristics on the cable. Repeaters operate at this level. Both ANSI and the IEEE have used this seven-layer model in the past for good reason. Breaking down a technology into different layers allows a given layer to be changed without impacting the file://I:\chapters\z\zd594.html 3/21/01 Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 3 of 36 remainder of the model. The IEEE was able to add unshielded twisted-pair support to Ethernet while still keeping Ethernet’s core intact--just as different software protocols, such as IPX, TCP/IP, and NetBEUI, can be used with the same hardware because each component forms an independent layer. In this way, interoperability between network applications is greatly improved. Next, we discuss Layers 1 through 3 in more detail. (Layers 4 through 7 are not relevant to this book, so we do not cover them here.) Layer 1: The Physical Layer The physical layer, or PHY, protocol defines the electrical signaling, symbols, line states, clocking requirements, encoding of data, and connectors for data transmission. An example of a PHY layer is 10BASE-T, which uses Manchester encoding to transmit data. Repeaters are Layer 1 devices in that they only retransmit signals without decoding them. That means a repeater has no MAC, and the data is only handled by a PHY on the receiving and transmitting ports. All higher layers talk to the physical layer through a predefined interface. For 10Mbps Ethernet, this is the attachment unit interface (AUI). You can use a DB-15 connector to connect Layer 1 to Layer 2. 100Mbps Ethernet calls this interface the media-independent interface (MII), whereas Gigabit Ethernet calls it the Gigabit media-independent interface (GMII). Layer 1 interfaces to the actual cable by means of the media-dependent interface (MDI). The MDI for 10BASE-T is the RJ-45 connector, for example. Layer 2: The Data Link Layer The data link layer actually consists of two separate pieces: MAC and the Logical Link Control (LLC). The LLC is a standardized interface between a hardware-specific MAC and Layer 3. The IEEE has published a rather complex LLC specification, called 802.2. All IEEE-approved MACs, such as Ethernet and Token Ring, use this LLC interface to talk to Layer 3. Even some non- IEEE defined MACs, such as FDDI, chose to use this LLC as a standardized, independent interface. The LLC function happens primarily in software. The MAC layer is of particular interest in this book. The MAC describes how a station schedules, transmits, and receives data in a shared-media environment. All Layer 2 MACs send and receive frames. The MAC generates the physical source and destination addresses for a particular frame, ensures reliable transfer of information across the link, synchronizes data transmission, recognizes errors, and controls the flow of data. The IEEE has defined a number of MAC/Layer 2 specifications over the years, with Ethernet being the most common one. Other IEEE-defined MACs are Token Ring/802.5, Token-Bus/802.4, and 100VG-AnyLAN/802.11. In general, MACs are very important in shared-media environments where multiple nodes can connect to the same transmission medium. The MAC sends and receives data via Layer 1, the media or physical layer. You can link two different LAN segments via a bridge. You can connect a Thinnet segment (10BASE2) to a 10BASE-T segment by means of a bridge, for example. Bridging is often called a Layer 2 function these days. A bridge contains a MAC and PHY for every port. We discuss fast multiport bridges, better known as Layer 2 switches, in more detail in Chapter 4. Layer 3: The Network Layer file://I:\chapters\z\zd594.html 3/21/01 Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 4 of 36 Ethernet, the focus of this book, operates at Layer 2. With Layer 3 switches, however, you can now buy a Layer 2 and Layer 3 device in one box, so we have added a chapter to cover this topic. Layer 2 uses frames, and Layer 3 uses packets. A packet comprises one or more frames: It might take more than one frame to transfer a complete packet. The network layer is responsible for setting up the actual connection between source and destination. Often, different paths exist between two endpoints, and Layer 3 needs to determine the best routes for getting the packet to the final destination. Therefore, Layer 3 is synonymous with routing. Sometimes, dissimilar networks consisting of different types of MAC standards need to be connected together. A company may have an FDDI backbone, for example, but workgroups are connected using Ethernet. In this case, the network layer is required to convert between the dissimilar frames present in the Ethernet and FDDI networks. You can do this by taking the individual frames, reassembling the original packet, and then sending out frames in the new framing format again.
Recommended publications
  • End-To-End Performance of 10-Gigabit Ethernet on Commodity Systems
    END-TO-END PERFORMANCE OF 10-GIGABIT ETHERNET ON COMMODITY SYSTEMS INTEL’SNETWORK INTERFACE CARD FOR 10-GIGABIT ETHERNET (10GBE) ALLOWS INDIVIDUAL COMPUTER SYSTEMS TO CONNECT DIRECTLY TO 10GBE ETHERNET INFRASTRUCTURES. RESULTS FROM VARIOUS EVALUATIONS SUGGEST THAT 10GBE COULD SERVE IN NETWORKS FROM LANSTOWANS. From its humble beginnings as such performance to bandwidth-hungry host shared Ethernet to its current success as applications via Intel’s new 10GbE network switched Ethernet in local-area networks interface card (or adapter). We implemented (LANs) and system-area networks and its optimizations to Linux, the Transmission anticipated success in metropolitan and wide Control Protocol (TCP), and the 10GbE area networks (MANs and WANs), Ethernet adapter configurations and performed sever- continues to evolve to meet the increasing al evaluations. Results showed extraordinari- demands of packet-switched networks. It does ly higher throughput with low latency, so at low implementation cost while main- indicating that 10GbE is a viable intercon- taining high reliability and relatively simple nect for all network environments. (plug and play) installation, administration, Justin (Gus) Hurwitz and maintenance. Architecture of a 10GbE adapter Although the recently ratified 10-Gigabit The world’s first host-based 10GbE adapter, Wu-chun Feng Ethernet standard differs from earlier Ether- officially known as the Intel PRO/10GbE LR net standards, primarily in that 10GbE oper- server adapter, introduces the benefits of Los Alamos National ates only over fiber and only in full-duplex 10GbE connectivity into LAN and system- mode, the differences are largely superficial. area network environments, thereby accom- Laboratory More importantly, 10GbE does not make modating the growing number of large-scale obsolete current investments in network infra- cluster systems and bandwidth-intensive structure.
    [Show full text]
  • 40 and 100 Gigabit Ethernet Overview
    Extreme Networks White Paper 40 and 100 Gigabit Ethernet Overview Abstract This paper takes a look at the main forces that are driving Ethernet bandwidth upwards. It looks at the standards and architectural practices adopted by the different segments, how the different speeds of Ethernet are used and how its popularity has resulted in an ecosystem spanning data centers, carrier networks, enterprise networks, and consumers. Make Your Network Mobile © 2011 Extreme Networks, Inc. All rights reserved. Do not reproduce. Extreme Networks White Paper: 40 and 100 Gigabit Ethernet Overview and how its popularity has resulted in a complex ecosys- Overview tem between carrier networks, enterprise networks, and consumers. There are many reasons driving the need for higher bandwidth Ethernet, however, the main reason is our insatiable appetite for content. The definition of content Driving the Need for Speed in itself has evolved over time – where once the majority of traffic on an Ethernet network may have been occa- Ethernet in the Enterprise and Data sional file transfers, emails and the like, today technology Center is allowing us to push and receive richer content such Data center virtualization, which includes storage and as voice, video and high definition multimedia. Simi- server virtualization, is all about the efficient use of larly, mechanisms for delivering content have evolved resources. In the data center this is multifaceted. On over time to reflect this demand. While there were a few the one hand data center managers are trying to bring technologies competing for LAN dominance in the early power, cooling and space utilization under control, while days of networks, Ethernet has become the clear choice.
    [Show full text]
  • 1) What Is the Name of an Ethernet Cable That Contains Two
    1) What is the name of an Ethernet cable that contains two electrical conductors ? A coaxial cable 2) What are the names of the two common conditions that degrade the signals on c opper-based cables? Crosstal and attenuation 3) Which topology requires the use of terminators? Bus 4) Which of the following topologies is implemented only logically, not physical ly? Ring 5) How many wire pairs are actually used on a typical UTP Ethernet network? Two 6) What is the name of the process of building a frame around network layer info rmation? Data encapsulation 7) Which of the connectors on a network interface adapter transmits data in para llel? The System bus connector 8) Which two of the following hardware resources do network interface adapters a lways require? I/O port address and IRQ 9) What is the name of the process by which a network interface adapter determin es when it should transmit its data over the network? Media Access Control 10) Which bus type is preferred for a NIC that will be connected to a Fast Ether net network? PCI 11) A passive hub does not do which of the following? Transmit management information using SNMP 12) To connect two Ethernet hubs together, you must do which of the following? Connect the uplink port in one hub to a standard port on the other 13) Which term describes a port in a Token Ring MAU that is not part of the ring ? Intelligent 14) A hub that functions as a repeater inhibits the effect of____________? Attenuation 15) You can use which of the following to connect two Ethernet computers togethe r using UTP
    [Show full text]
  • Mikrodenetleyicili Endüstriyel Seri Protokol Çözümleyici Sisteminin Programi
    YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 İÇİNDEKİLER Sayfa KISALTMA LİSTESİ ................................................................................................................ v ŞEKİL LİSTESİ ...................................................................................................................... viii ÇİZELGE LİSTESİ .................................................................................................................... x ÖNSÖZ ...................................................................................................................................... xi ÖZET ........................................................................................................................................ xii ABSTRACT ............................................................................................................................ xiii 1. GİRİŞ ......................................................................................................................
    [Show full text]
  • Ethernet Alliance Hosts Third IEEE 802.1 Data Center Bridging
    MEDIA ALERT Ethernet Alliance® Hosts Third IEEE 802.1 Data Center Bridging Interoperability Test Event Participation is Open to Both Ethernet Alliance Members and Non‐Members WHAT: The Ethernet Alliance Ethernet in the Data Center Subcommittee has announced it will host an IEEE 802.1 Data Center Bridging (DCB) interoperability test event the week of May 23 in Durham, NH at the University of New Hampshire Interoperability Lab. The Ethernet Alliance invites both members and non‐members to participate in this third DCB test event that will include both protocol and applications testing. The event targets interoperability testing of Ethernet standards being developed by IEEE 802.1 DCB task force to address network convergence issues. Testing of protocols will include projects such as IEEE P802.1Qbb Priority Flow Control (PFC), IEEE P802.1Qaz Enhanced Transmission Selection (ETS) and DCB Capability Exchange Protocol (DCBX). The test event will include testing across a broad vendor community and will exercise DCB features across multiple platforms as well as exercise higher layer protocols such as Fibre Channel over Ethernet (FCoE), iSCSI over DCB, RDMA over Converged Ethernet (RoCE) and other latency sensitive applications. WHY: These test events help vendors create interoperable, market‐ready products that interoperate to the IEEE 802.1 DCB standards. WHEN: Conference Call for Interested Participants: Friday, March 4 at 10 AM PST Event Registration Open Until: March 4, 2011 Event Dates (tentative): May 23‐27, 2011 WHERE: University of New Hampshire Interoperability Lab (UNH‐IOL) Durham, NH WHO: The DCB Interoperability Event is hosted by the Ethernet Alliance. REGISTER: To get more information, learn about participation fees and/or register for the DCB plugfest, please visit Ethernet Alliance DCB Interoperability Test Event page or contact [email protected].
    [Show full text]
  • Spec TEG-S40TXD(English).Pdf
    TRENDnet TRENDware, USA TEG-S40TXD What's Next in Networking 4-Port 10/100/1000Mbps Copper Gigabit Ethernet Switch TRENDnet’s TEG-S40TXD Copper Gigabit Switch consist of four 10/100/1000Mbps Copper Gigabit Ethernet ports with each port having Auto-negotiation and Auto-MDIX features. The Switch offers a reliable and affordable LAN solution to meet immediate bandwidth demand. Users can connect Server(s) to the Gigabit port(s) to increase network performance or cascade Copper Gigabit Switches together to create high-bandwidth Gigabit backbones. TRENDnet’s TEG- S40TXD provides simple migration, scalability, and flexibility to handle new applications and data types making it a highly reliable and cost effective solution for high-speed network connectivity. Features Benefits 4 x 10/100/1000Mbps Copper Gigabit Ethernet Integration Friendly: Ports Plug-n-Play. Connects with current Fast Ethernet Cat. 5 cables. Full/Half duplex transfer mode for each port (1000Mbps in full-duplex only) Flexible: All ports automatically negotiate Auto-MDIX on each port 10/100/1000Mbps network speed. All ports are Auto-MDIX; connection can Supports store-and-forward switching architecture be made with either a straight through with non-blocking full wire-speed performance or a crossover cable. Supports aging function and 802.3x flow control for Expandability: full-duplex mode and back pressure flow control for Cascade Gigabit Switches together to half-duplex mode operation create a Gigabit backbone. Up to 8K unicast addresses entities per device Performance: Gigabit
    [Show full text]
  • Ethernet and Wifi
    Ethernet and WiFi hp://xkcd.com/466/ CSCI 466: Networks • Keith Vertanen • Fall 2011 Overview • Mul?ple access networks – Ethernet • Long history • Dominant wired technology – 802.11 • Dominant wireless technology 2 Classic Ethernet • Ethernet – luminferous ether through which electromagne?c radiaon once thought to propagate – Carrier Sense, Mul?ple Access with Collision Detec?on (CSMA/CD) – IEEE 802.3 Robert Metcalfe, co- inventor of Ethernet 3 Classic Ethernet • Ethernet – Xerox Ethernet standardized as IEEE 802.3 in 1983 – Xerox not interested in commercializing – Metcalfe leaves and forms 3Com 4 Ethernet connec?vity • Shared medium – All hosts hear all traffic on cable – Hosts tapped the cable – 2500m maximum length – May include repeaters amplifying signal – 10 Mbps bandwidth 5 Classic Ethernet cabling Cable aSer being "vampire" tapped. Thick Ethernet cable (yellow), 10BASE-5 transceivers, cable tapping tool (orange), 500m maximum length. Thin Ethernet cable (10BASE2) with BNC T- connector, 185m maximum length. 6 Ethernet addressing • Media Access Control address (MAC) – 48-bit globally unique address • 281,474,976,710,656 possible addresses • Should last ?ll 2100 • e.g. 01:23:45:67:89:ab – Address of all 1's is broadcast • FF:FF:FF:FF:FF:FF 7 Ethernet frame format • Frame format – Manchester encoded – Preamble products 10-Mhz square wave • Allows clock synch between sender & receiver – Pad to at least 64-bytes (collision detec?on) Ethernet 802.3 AlternaWng 0's 48-bit MAC and 1's (except addresses SoF of 11) 8 Ethernet receivers • Hosts listens to medium – Deliver to host: • Any frame with host's MAC address • All broadcast frames (all 1's) • Mul?cast frames (if subscribed to) • Or all frames if in promiscuous mode 9 MAC sublayer • Media Access Control (MAC) sublayer – Who goes next on a shared medium – Ethernet hosts can sense if medium in use – Algorithm for sending data: 1.
    [Show full text]
  • OFC 2017 the Fracturing and Burgeoning Ethernet Market
    OFC 2017 The Fracturing and Burgeoning Ethernet Market March 21, 2017 www.ethernetalliance.org© 2017 Ethernet Alliance Disclaimer Opinions expressed during this presentation are the views of the presenters, and should not be considered the views or positions of the Ethernet Alliance. 2 © 2017 Ethernet Alliance Introductions • Moderator –John D’Ambrosia, Futurewei • Panelists –Chris Cole, Finisar –Paul Brooks, Viavi –Mark Nowell, Cisco 3 © 2017 Ethernet Alliance Ethernet Switch – Data Center Shipments © 2017 Ethernet Alliance Ethernet Optical Module Market Value 2016 $2.5 billion total market © 2017 Ethernet Alliance Ethernet Optical Module Market Value 2021 $4.4 billion Total Market © 2017 Ethernet Alliance Optical Modules IEEE 802.3 defined chip-to-module (C2M) interfaces enabled non-IEEE 802.3 optical specifications for 40GbE / 100GbE © 2017 Ethernet Alliance 100GbE QSFP28 Consumption in 2016 • SMF modules have majority share • SR4 modules largest individual share 8 © 2017 Ethernet Alliance 400 GbE Optical Solutions 9 © 2017 Ethernet Alliance Standard vs Proprietary Ethernet Optics Standard • 10G-SR • 40G-SR4 • 100G-SR10 • 10G-LR • 40G-FR • 100G-SR4 • 10G-LRM • 40G-LR4 • 100G-LR4 • 10G-ER • 100G-ER4 • 100G-SR2 • 100G-DR Proprietary Reduced • 10G-SR (Sub) • 40G-LR4(Sub) • 100G-LR4 (Lite) Standard • 10G-LR (Sub) • 100G-ER4 (Lite) Extended • 40G-eSR4 • 100G-eLR4 Standard Other • 40G-Bidi/SWDM • 100G-PSM4 • 40G-PSM4 • 100G-CWDM4 / CLR4 / Lite www.ethernetalliance.org 10 © 2017 Ethernet Alliance Standard vs Proprietary Ethernet Optics Volume Shipped Volume www.ethernetalliance.org 11 © 2017 Ethernet Alliance ETHERNET OPTICS WHAT’S THE SAME WHAT’S DIFFERENT Chris Cole, Finisar www.ethernetalliance.org© 2017 Ethernet Alliance Optics History: 10G Data Rate Attribute First Tech.
    [Show full text]
  • Gigabit Ethernet
    Ethernet Technologies and Gigabit Ethernet Professor John Gorgone Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 1 Topics • Origins of Ethernet • Ethernet 10 MBS • Fast Ethernet 100 MBS • Gigabit Ethernet 1000 MBS • Comparison Tables • ATM VS Gigabit Ethernet •Ethernet8SummaryCopyright 1998, John T. Gorgone, All Rights Reserved 2 Origins • Original Idea sprang from Abramson’s Aloha Network--University of Hawaii • CSMA/CD Thesis Developed by Robert Metcalfe----(1972) • Experimental Ethernet developed at Xerox Palo Alto Research Center---1973 • Xerox’s Alto Computers -- First Ethernet Ethernet8systemsCopyright 1998, John T. Gorgone, All Rights Reserved 3 DIX STANDARD • Digital, Intel, and Xerox combined to developed the DIX Ethernet Standard • 1980 -- DIX Standard presented to the IEEE • 1980 -- IEEE creates the 802 committee to create acceptable Ethernet Standard Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 4 Ethernet Grows • Open Standard allows Hardware and Software Developers to create numerous products based on Ethernet • Large number of Vendors keeps Prices low and Quality High • Compatibility Problems Rare Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 5 What is Ethernet? • A standard for LANs • The standard covers two layers of the ISO model – Physical layer – Data link layer Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 6 What is Ethernet? • Transmission speed of 10 Mbps • Originally, only baseband • In 1986, broadband was introduced • Half duplex and full duplex technology • Bus topology Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 7 Components of Ethernet • Physical Medium • Medium Access Control • Ethernet Frame Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 8 CableCable DesignationsDesignations 10 BASE T SPEED TRANSMISSION MAX TYPE LENGTH Ethernet8 Copyright 1998, John T.
    [Show full text]
  • IEEE 802.3 Working Group Standards Status November 14Th, 2005
    IEEE 802.3 Working Group Standards Status November 14th, 2005 ISO/IEC approved ISO/IEC 8802-3:2000 ANSI/IEEE Std 802.3-2005 (Was IEEE project 802.3REVam) th .3 Network To be published as 5 Books (Sections) Target publication date – 9 December Policy and Systems Section 1 Section 2 Section 3 Section 4 Section 5 Procedures Tutorial Clause 1 to 20 Clause 21 to 33 Clause 34 to 43 Clause 44 to 54 Clause 56 to 67 Approved Published Annex A to H Annex 22A to 32A Annex 36A to 43C Annex 44A to 50A Annex 58A to 67A Nov-97 Jun-95 CSMA/CD Overview 100Mb/s Overview 1000Mb/s Overview 10Gb/s Overview Subscriber Access MAC MII GMII MDC/MDIO Overview PLS/AUI 100BASE-T2 1000BASE-X AutoNeg XGMII OAM 10BASE5 MAU 100BASE-T4 1000BASE-SX XAUI Multi-point MAC 10BASE2 MAU 100BASE-TX 1000BASE-LX XSBI Control ANSI/IEEE 10BROAD36 MAU 100BASE-FX 1000BASE-CX 10GBASE-SR 100BASE-LX10 approved 10BASE-T MAU 100Mb/s Repeater 1000BASE-T 10GBASE-LR 100BASE-BX10 10BASE-F MAUs 100Mb/s Topology 1000Mb/s Repeater 10GBASE-ER 1000BASE-LX10 10Mb/s Repeater 1000Mb/s Topology 10GBASE-SW 1000BASE-BX10 10Mb/s Topology MAC Control 10GBASE-LW 1000BASE-PX10 IEEE Std 1802.3-2001 Auto Negotiation Link Aggregation 10GBASE-EW 1000BASE-PX20 Conformance Test 1BASE5 Management 10GBASE-LX4 10PASS-TS DTE & MAU Mgmt 10GBASE-CX4 2BASE-TL 10BASE-T Repeater Mgmt Subscriber Access Published 19-Oct-01 Maintenance 7 Topology Maintenance 6 DTE Power Maintenance 6 Maintenance 7 Maintenance 6 Maintenance 7 Maintenance 7 802.3 .3an .3aq WG 10GBASE-T 10GBASE-LRM .3as in Task Force Task Force Frame .3ap process (B.
    [Show full text]
  • Fact Sheet: Single-Pair Ethernet Trade Article
    Fact sheet Single Pair Ethernet Matthias Fritsche – product manager device connectivity & Jonas Diekmann – technical editor HARTING Technology group – October 2016– November 2016 Wireless technology and optical cable have already been often heralded as the future transmission technology. However, simple twisted pair cable based on plain old copper, often pronounced dead, is the most common transmission medium. Simple, robust, and perhaps with 100GBASE T1 soon to be also incredibly fast. From the beginnings of Ethernet in the 1970s, then via diverse multi-pair Ethernet developments with multiple parallel transmission paths, now apparently we are taking a step back. Back to single twisted-pair. With a new protocol and new PHYs transmission rates of up to 10 Gbit/s and PoDL capacities of up to 60 W are no longer a problem. Ultimately one pair is enough. When the team surrounding David Boggs and Robert Metcalf in the 1970s developed Ethernet at the Xerox Palo Alto Research Center (PARC), no one could foresee that this transmission method would develop so dynamically and dominate data transmission worldwide to this day. The original 10BASE5 Ethernet still used coax cable as the common medium. Today, next to wireless and optical cables, twisted-pair cable, often pronounced dead, is the most frequently used transmission medium. Starting in 1990 with 10BASE-T, the data transmission rate of the IEEE standards increased by a factor of 10 approximately every 5 years over 100BASE-TX and 1000BASE-T up to 10GBASE-T. This series could not be continued for the jump to 100GBASE-T, instead however four new IEEE standards were finalized in 2016.
    [Show full text]
  • Ethernet Coax Transceiver Interface 1CY7B8392 Functional Description
    CY7B8392 Ethernet Coax Transceiver Interface 1CY7B8392 Functional Description Features The CY7B8392 is a low power coaxial transceiver for Ethernet 10BASE5 and 10BASE2 applications. The device contains all • Compliant with IEEE802.3 10BASE5 and 10BASE2 the circuits required to perform transmit, receive, collision de- • Pin compatible with the popular 8392 tection, heartbeat generation, jabber timer and attachment • Internal squelch circuit to eliminate input noise unit interface (AUI) functions. In addition, the CY7B8392 fea- • Hybrid mode collision detect for extended distance tures an advanced hybrid collision detection. • Automatic AUI port isolation when coaxial connector is The transmitter output is connected directly to a double termi- not present nated 50Ω cable. • Low power BiCMOS design The CY7B8392 is fabricated with an advanced low power • 16-Pin DIP or 28-Pin PLCC BiCMOS process. Typical standby current during idle is 25 mA. Logic Block Diagram RX+ HIGH PASS AUI CCM EQUALIZATION DRIVER RX– RXI LOW PASS FILTER CD+ AUI GND – CARRIER DRIVER LOW PASS SENSE CD– FILTER + TX+ TX– – COLLISION CDS LOW PASS + RCV FILTER TXO WAVEFORM + DC/AC SHAPING SQUELCH – VEE 10 MHz CLK WATCHDOG JABBER RESET OSC TIMER26 ms TIMER0.4 sec RR+ REFERENCE 1K CIRCUIT TRANSMIT RECEIVE RR– STATE STATE MACHINE MACHINE HBE 8392–1 Pin Configurations PLCC DIP Top View Top View – RX+ CD CD+ CDS NC RXI TXO CD+ 1 16 CDS 432 1 28 2726 CD– 2 15 TXO VEE (NC) 5 25 VEE (NC) RX+ 3 14 RXI VEE (NC) 6 24 VEE V VEE 7 23 VEE (NC) EE 4 13 VEE 7B8392 7B8392 VEE 8 22 VEE (NC) VEE 5 12 RR– VEE (NC) 9 21 VEE RX– 6 11 RR+ VEE (NC) 10 20 VEE (NC) TX+ 7 10 GND VEE (NC) 11 121314 15 16 1718 RR– TX– 8 9 HBE – – TX+ TX RX 8392–3 RR+ HBE GND GND 8392–2 Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600 Document #: 38-02016 Rev.
    [Show full text]