ETHERNET TECNOLOGIES 1º: O Que É Ethernet ?

Total Page:16

File Type:pdf, Size:1020Kb

ETHERNET TECNOLOGIES 1º: O Que É Ethernet ? ETHERNET TECNOLOGIES 1º: O Que é Ethernet ? Ethernet Origem: Wikipédia, a enciclopédia livre. Este artigo ou se(c)ção cita fontes fiáveis e independentes, mas que não cobrem todo o conteúdo (desde setembro de 2012). Por favor, adicione mais referências e insira-as no texto ou no rodapé, conforme o livro de estilo. Conteúdo sem fontes poderá serremovido. Encontre fontes: Google (notícias, livros, acadêmico) — Yahoo! — Bing. Protocolos Internet (TCP/IP) Cam Protocolo ada 5.Apl HTTP, SMTP, FTP, SSH,Telnet, SIP, RDP, I icaçã RC,SNMP, NNTP, POP3, IMAP,BitTorrent, o DNS, Ping ... 4.Tra nspo TCP, UDP, RTP, SCTP,DCCP ... rte 3.Re IP (IPv4, IPv6) , ARP, RARP,ICMP, IPsec ... de Ethernet, 802.11 (WiFi),802.1Q 2.Enl (VLAN), 802.1aq ace (SPB), 802.11g, HDLC,Token ring, FDDI,PPP,Switch ,Frame relay, 1.Físi Modem, RDIS, RS-232, EIA-422, RS-449, ca Bluetooth, USB, ... Ethernet é uma arquitetura de interconexão para redes locais - Rede de Área Local (LAN) - baseada no envio de pacotes. Ela define cabeamento e sinais elétricos para a camada física, e formato de pacotes e protocolos para a subcamada de controle de acesso ao meio (Media Access Control - MAC) do modelo OSI.1 A Ethernet foi padronizada pelo IEEE como 802.3. A partir dos anos 90, ela vem sendo a tecnologia de LAN mais amplamente utilizada e tem tomado grande parte do espaço de outros padrões de rede como Token Ring, FDDI e ARCNET.1 Índice [esconder] 1 História 2 Descrição geral 3 Ethernet com meio compartilhado CSMA/CD 4 Hubs Ethernet 5 Ethernet comutada (Switches Ethernet) 6 Tipos de quadro Ethernet e o campo EtherType 7 Variedades de Ethernet 8 Algumas variedades antigas de Ethernet 9 10 Mbit/s Ethernet 10 Fast Ethernet 11 Gigabit Ethernet 12 10-Gigabit Ethernet (Ethernet 10 Gigabit) 13 Padrões relacionados 14 Ver também 15 Referências 16 Ligações externas História[editar | editar código-fonte] A Ethernet foi originalmente desenvolvida, presume-se, a partir de projeto pioneiro atribuído a Xerox Palo Alto Research Center.2 Entende-se, em geral, que a Ethernet foi inventada em 1973, quando Robert Metcalfe escreveu um memorando para os seus chefes contando sobre o potencial dessa tecnologia em redes locais.2 Contudo, Metcalfe afirma que, na realidade, a Ethernet foi concebida durante um período de vários anos. Em 1976, Metcalfe e David Boggs (seu assistente) publicaram um artigo, Ethernet: Distributed Packet-Switching For Local Computer Networks. Metcalfe deixou a Xerox em 1979 para promover o uso de computadores pessoais e redes locais (LANs), e para isso criou a 3Com.1 Ele conseguiu convencer DEC, Intel, e Xerox a trabalhar juntas para promover a Ethernet como um padrão, que foi publicado em 30 de setembro de 1980. Competindo com elas na época estavam dois sistemas grandemente proprietários, token ring e ARCNET. Em pouco tempo ambos foram afogados por uma onda de produtos Ethernet. No processo a 3Com se tornou uma grande companhia, e além de se ter tornado conhecida como U.S Robotics, também uma fabricante de processadores digitais.2 Descrição geral[editar | editar código-fonte] Uma placa de rede Ethernet típica com conectores BNC(esquerda) e RJ-45 (centro). Ethernet é baseada na ideia de pontos da rede enviando mensagens, no que é essencialmente semelhante a um sistema de rádio, cativo entre um cabo comum ou canal, às vezes chamado de éter (no original, ether). Isto é uma referência oblíqua ao éter luminífero, meio através do qual os físicos do século XIX acreditavam que a luz viajasse.1 Cada ponto tem uma chave de 48 bits globalmente única, conhecida como endereço MAC, para assegurar que todos os sistemas em uma ethernet tenham endereços distintos. Tem sido observado que o tráfego Ethernet tem propriedades de auto-similaridade, com importantes consequências para engenharia de tráfego de telecomunicações. Os padrões atuais do protocolo Ethernet são os seguintes: 10 megabits/seg: 10Base-T Ethernet (IEEE 802.3) 100 megabits/seg: Fast Ethernet (IEEE 802.3u) 1 gigabits/seg: Gigabit Ethernet (IEEE 802.3z) 10 gigabits/seg: 10 Gigabit Ethernet (IEEE 802.3ae) Ethernet com meio compartilhado CSMA/CD[editar | editar código-fonte] Ver artigo principal: CSMA/CD Um esquema conhecido como Carrier Sense Multiple Access with Collision Detection (CSMA/CD) organiza a forma como os computadores compartilham o canal. Originalmente desenvolvido nos anos 60 para ALOHAnet - Hawaii usando Rádio, o esquema é relativamente simples se comparado ao token ring ou rede de controle central (master controlled networks). Quando um computador deseja enviar alguma informação, este obedece o seguinte algoritmo:2 1. Se o canal está livre, inicia-se a transmissão, senão vai para o passo 4; 2. [transmissão da informação] se colisão é detectada, a transmissão continua até que o tempo mínimo para o pacote seja alcançado (para garantir que todos os outros transmissores e receptores detectem a colisão), então segue para o passo 4; 3. [fim de transmissão com sucesso] informa sucesso para as camadas de rede superiores, sai do modo de transmissão; 4. [canal está ocupado] espera até que o canal esteja livre; 5. [canal se torna livre] espera-se um tempo aleatório, e vai para o passo 1, a menos que o número máximo de tentativa de transmissão tenha sido excedido; 6. [número de tentativa de transmissão excedido] informa falha para as camadas de rede superiores, sai do modo de transmissão; Na prática, funciona como um jantar onde os convidados usam um meio comum (o ar) para falar com um outro. Antes de falar, cada convidado educadamente espera que outro convidado termine de falar. Se dois convidados começam a falar ao mesmo tempo, ambos param e esperam um pouco, um pequeno período. Espera-se que cada convidado espere por um tempo aleatório de forma que ambos não aguardem o mesmo tempo para tentar falar novamente, evitando outra colisão. O tempo é aumentado exponencialmente se mais de uma tentativa de transmissão falhar. Originalmente, a Ethernet fazia, literalmente, um compartilhamento via cabo coaxial, que passava através de um prédio ou de um campus universitário para interligar cada máquina. Os computadores eram conectados a uma unidade transceiver ou interface de anexação (Attachment Unit Interface, ou AUI), que por sua vez era conectada ao cabo. Apesar de que um fio simples passivo fosse uma solução satisfatória para pequenas Ethernets, não o era para grandes redes, onde apenas um defeito em qualquer ponto do fio ou em um único conector fazia toda a Ethernet parar. Como todas as comunicações aconteciam em um mesmo fio, qualquer informação enviada por um computador era recebida por todos os outros, mesmo que a informação fosse destinada para um destinatário específico. A placa de interface de rede descarta a informação não endereçada a ela, interrompendo a CPU somente quando pacotes aplicáveis eram recebidos, a menos que a placa fosse colocada em seu modo de comunicação promíscua. Essa forma de um fala e todos escutam definia um meio de compartilhamento de Ethernet de fraca segurança, pois um nodo na rede Ethernet podia escutar às escondidas todo o tráfego do cabo se assim desejasse. Usar um cabo único também significava que a largura de banda (bandwidth) era compartilhada, de forma que o tráfego de rede podia tornar-se lentíssimo quando, por exemplo, a rede e os nós tinham de ser reinicializados após uma interrupção elétrica. Hubs Ethernet[editar | editar código-fonte] Ver artigo principal: Hubs Ethernet Este problema foi contornado pela invenção de hubs Ethernet, que formam uma rede com topologia física em estrela, com múltiplos controladores de interface de rede enviando dados ao hub e, daí, os dados são então reenviados a um backbone, ou para outros segmentos de rede. Porém, apesar da topologia física em estrela, as redes Ethernet com hub ainda usam CSMA/CD, no qual todo pacote que é enviado a uma porta do hub pode sofrer colisão; o hub realiza um trabalho mínimo ao lidar com colisões de pacote. As redes Ethernet trabalham bem como meio compartilhado quando o nível de tráfego na rede é baixo. Como a chance de colisão é proporcional ao número de transmissores e ao volume de dados a serem enviados, a rede pode ficar extremamente congestionada, em torno de 50% da capacidade nominal, dependendo desses fatores. Para solucionar isto, foram desenvolvidos "comutadores" ou switches Ethernet, para maximizar a largura de banda disponível. Ethernet comutada (Switches Ethernet)[editar | editar código-fonte] Ver artigo principal: Switches Ethernet) A maioria das instalações modernas de Ethernet usam switches Ethernet em vez de hubs. Embora o cabeamento seja idêntico ao de uma Ethernet com hub (Ethernet Compartilhada), com switches no lugar dos hubs, a Ethernet comutada tem muitas vantagens sobre a Ethernet média, incluindo maior largura de banda e cabeamento simplificado. Mas a maior vantagem é restringir os domínios de colisão, o que causa menos colisão no meio compartilhado causando uma melhor desempenho na rede. Redes com switches tipicamente seguem uma topologia em estrela, embora elas ainda implementem uma "nuvem" única de Ethernet do ponto de vista das máquinas ligadas. Switch Ethernet "aprende" quais são as pontas associadas a cada porta, e assim ele pára de mandar tráfego broadcast para as demais portas a que o pacote não esteja endereçado, isolando os domínios de colisão. Desse modo, a comutação na Ethernet pode permitir velocidade total de Ethernet no cabeamento a ser usado por um par de portas de um mesmo switch. Já que os pacotes são tipicamente entregues somente na porta para que são endereçadas, o tráfego numa Ethernet comutada é levemente menos público que numa Ethernet de mídia compartilhada. Contudo, como é fácil subverter sistemas Ethernet comutados por meios como ARP spoofing e MAC flooding, bem como por administradores usando funções de monitoramento para copiar o tráfego da rede, a Ethernet comutada ainda é considerada como uma tecnologia de rede insegura.
Recommended publications
  • OFC/NFOEC 2011 Program Archive
    OFC/NFOEC 2011 Archive Technical Conference: March 6-10, 2011 Exposition: March 8-10, 2011 Los Angeles Convention Center, Los Angeles, CA, USA At OFC/NFOEC 2011, the optical communications industry was buzzing with the sounds of a larger exhibit hall, expanded programming, product innovations, cutting-edge research presentations, and increased attendance March 6 - 10 in Los Angeles. The exhibit hall grew by 20 percent over last year, featuring new programming for service providers and data center operators, and more exhibitors filling a larger space, alongside its core show floor programs and activities. The more than 500 companies in the exhibition hall showcased innovations in areas such as 100G, tunable XFPs, metro networking, Photonic Integrated Circuits, and more. On hand to demonstrate where the industry is headed were network and test equipment vendors, sub-system and component manufacturers, as well as software, fiber cable and specialty fiber manufacturers. Service providers and enterprises were there to get the latest information on building or upgrading networks or datacenters. OFC/NFOEC also featured expanded program offerings in the areas of high-speed data communications, optical internetworking, wireless backhaul and supercomputing for its 2011 conference and exhibition. This new content and more was featured in standing-room only programs such as the Optical Business Forum, Ethernet Alliance Program, Optical Internetworking Forum Program, Green Touch Panel Session, a special symposium on Meeting the Computercom Challenge and more. Flagship programs Market Watch and the Service Provider Summit also featured topics on data centers, wireless, 100G, and optical networking. Hundreds of educational workshops, short courses, tutorial sessions and invited talks at OFC/NFOEC covered hot topics such as datacom, FTTx/in-home, wireless backhaul, next generation data transfer technology, 100G, coherent, and photonic integration.
    [Show full text]
  • Ethernet Alliance Hosts Third IEEE 802.1 Data Center Bridging
    MEDIA ALERT Ethernet Alliance® Hosts Third IEEE 802.1 Data Center Bridging Interoperability Test Event Participation is Open to Both Ethernet Alliance Members and Non‐Members WHAT: The Ethernet Alliance Ethernet in the Data Center Subcommittee has announced it will host an IEEE 802.1 Data Center Bridging (DCB) interoperability test event the week of May 23 in Durham, NH at the University of New Hampshire Interoperability Lab. The Ethernet Alliance invites both members and non‐members to participate in this third DCB test event that will include both protocol and applications testing. The event targets interoperability testing of Ethernet standards being developed by IEEE 802.1 DCB task force to address network convergence issues. Testing of protocols will include projects such as IEEE P802.1Qbb Priority Flow Control (PFC), IEEE P802.1Qaz Enhanced Transmission Selection (ETS) and DCB Capability Exchange Protocol (DCBX). The test event will include testing across a broad vendor community and will exercise DCB features across multiple platforms as well as exercise higher layer protocols such as Fibre Channel over Ethernet (FCoE), iSCSI over DCB, RDMA over Converged Ethernet (RoCE) and other latency sensitive applications. WHY: These test events help vendors create interoperable, market‐ready products that interoperate to the IEEE 802.1 DCB standards. WHEN: Conference Call for Interested Participants: Friday, March 4 at 10 AM PST Event Registration Open Until: March 4, 2011 Event Dates (tentative): May 23‐27, 2011 WHERE: University of New Hampshire Interoperability Lab (UNH‐IOL) Durham, NH WHO: The DCB Interoperability Event is hosted by the Ethernet Alliance. REGISTER: To get more information, learn about participation fees and/or register for the DCB plugfest, please visit Ethernet Alliance DCB Interoperability Test Event page or contact [email protected].
    [Show full text]
  • Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern
    Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model.
    [Show full text]
  • Design of a High Speed XAUI Based on Dynamic Reconfigurable
    International Journal of Soft Computing And Software Engineering (JSCSE) e-ISSN: 2251-7545 Vol.2,o.9, 2012 DOI: 10.7321/jscse.v2.n9.4 Published online: Sep 25, 2012 Design of a High Speed XAUI Based on Dynamic Reconfigurable Transceiver IP Core * 1Haipeng Zhang, 1Lingjun Kong, 2Xiuju Huang, 3Mengmeng Cao 1 .School of Electronics & Information, Hangzhou Dianzi University, Hangzhou, China, 310018 2. UTSTARCOM Co. Ltd. Hangzhou, China, 310052 3. North China Electric Power University, Department of electronics and Communication Engineering, Baoding, China, 071003 Email:1 [email protected],2 [email protected],3 [email protected] Abstract. By using the dynamic reconfigurable transceiver in high speed interface design, designer can solve critical technology problems such as ensuring signal integrity conveniently, with lower error binary rate. In this paper, we designed a high speed XAUI (10Gbps Ethernet Attachment Unit Interface) to transparently extend the physical reach of the XGMII. The following points are focused: (1) IP (Intellectual Property) core usage. Altera Co. offers two transceiver IP cores in Quartus II MegaWizard Plug-In Manager for XAUI design which is featured of dynamic reconfiguration performance, that is, ALTGX_RECOFIG instance and ALTGX instance, we can get various groups by changing settings of the devices without power off. These two blocks can accomplish function of PCS (Physical Coding Sub-layer) and PMA (Physical Medium Attachment), however, with higher efficiency and reliability. (2) 1+1 protection. In our design, two ALTGX IP cores are used to work in parallel, which named XAUI0 and XAUI1. The former works as the main channel while the latter redundant channel.
    [Show full text]
  • Spec TEG-S40TXD(English).Pdf
    TRENDnet TRENDware, USA TEG-S40TXD What's Next in Networking 4-Port 10/100/1000Mbps Copper Gigabit Ethernet Switch TRENDnet’s TEG-S40TXD Copper Gigabit Switch consist of four 10/100/1000Mbps Copper Gigabit Ethernet ports with each port having Auto-negotiation and Auto-MDIX features. The Switch offers a reliable and affordable LAN solution to meet immediate bandwidth demand. Users can connect Server(s) to the Gigabit port(s) to increase network performance or cascade Copper Gigabit Switches together to create high-bandwidth Gigabit backbones. TRENDnet’s TEG- S40TXD provides simple migration, scalability, and flexibility to handle new applications and data types making it a highly reliable and cost effective solution for high-speed network connectivity. Features Benefits 4 x 10/100/1000Mbps Copper Gigabit Ethernet Integration Friendly: Ports Plug-n-Play. Connects with current Fast Ethernet Cat. 5 cables. Full/Half duplex transfer mode for each port (1000Mbps in full-duplex only) Flexible: All ports automatically negotiate Auto-MDIX on each port 10/100/1000Mbps network speed. All ports are Auto-MDIX; connection can Supports store-and-forward switching architecture be made with either a straight through with non-blocking full wire-speed performance or a crossover cable. Supports aging function and 802.3x flow control for Expandability: full-duplex mode and back pressure flow control for Cascade Gigabit Switches together to half-duplex mode operation create a Gigabit backbone. Up to 8K unicast addresses entities per device Performance: Gigabit
    [Show full text]
  • Information Specification ** INF-8474I Rev 3.0 Xenpak 10
    ** Information Specification ** INF-8474i Rev 3.0 SFF Committee documentation may be purchased in hard copy or electronic form SFF specifications are available at ftp://ftp.seagate.com/sff SFF Committee INF-8474i Specification for Xenpak 10 Gigabit Ethernet Transceiver Rev 3.0 September 18 2002 Secretariat: SFF Committee Abstract: This specification describes the Xenpak 10 Gigabit Ethernet Transceiver. It was developed by the MSA (Multiple Source Agreement) group in which the following companies participated: Agilent Technologies Mitsubishi Electric Blaze Network Products Molex ExceLight NEC Extreme Networks OpNext Finisar Optillion Hitachi Cable PicoLight Ignis Optics Stratos Lightwave Infineon Technologies Tyco Electronics JDS Uniphase Vitesse Semiconductor Luminent This Information Specification was not developed or endorsed by the SFF Committee but was submitted for distribution on the basis that it is of interest to the storage industry. The copyright on the contents remains with the contributor. Contributors are not required to abide by the SFF patent policy. Readers are advised of the possibility that there may be patent issues associated with an implementation which relies upon the contents of an 'i' specification. SFF accepts no responsibility for the validity of the contents. POINTS OF CONTACT: Dan Rausch I. Dal Allan Technical Editor Chairman SFF Committee Avago Technologies 14426 Black Walnut Court 350 West Trimble Rd Saratoga San Jose CA 95131 CA 95070 408-435-6689 408-867-6630 [email protected] [email protected] Xenpak 10 Gigabit Ethernet Transceiver Page 1 ** Information Specification ** INF-8474i Rev 3.0 EXPRESSION OF SUPPORT BY MANUFACTURERS The following member companies of the SFF Committee voted in favor of this industry specification.
    [Show full text]
  • Ipug68 01.3 Lattice Semiconductor XAUI IP Core User’S Guide
    ispLever TM CORECORE XAUI IP Core User’s Guide November 2009 ipug68_01.3 Lattice Semiconductor XAUI IP Core User’s Guide Introduction The 10Gb Ethernet Attachment Unit Interface (XAUI) IP Core User’s Guide for the LatticeECP2M™ and LatticeECP3™ FPGAs provides a solution for bridging between XAUI and 10-Gigabit Media Independent Interface (XGMII) devices. This user’s guide implements 10Gb Ethernet Extended Sublayer (XGXS) capabilities in soft logic that together with PCS and SERDES functions implemented in the FGPA provides a complete XAUI-to-XGMII solu- tion. The XAUI IP core package comes with the following documentation and files: • Protected netlist/database • Behavioral RTL simulation model • Source files for instantiating and evaluating the core The XAUI IP core supports Lattice’s IP hardware evaluation capability, which makes it possible to create versions of the IP core that operate in hardware for a limited period of time (approximately four hours) without requiring the pur- chase on an IP license. It may also be used to evaluate the core in hardware in user-defined designs. Details for using the hardware evaluation capability are described in the Hardware Evaluation section of this document. Features • XAUI compliant functionality supported by embedded SERDES PCS functionality implemented in the LatticeECP2M and LatticeECP3, including four channels of 3.125 Gbps serializer/deserializer with 8b10b encod- ing/decoding. • Complete 10Gb Ethernet Extended Sublayer (XGXS) solution based on LatticeECP2M and LatticeECP3 FPGA. • Soft IP targeted to the FPGA implements XGXS functionality conforming to IEEE 802.3ae-2002, including: – 10 GbE Media Independent Interface (XGMII). – Optional Slip buffers for clock domain transfer to/from the XGMII interface.
    [Show full text]
  • OFC 2017 the Fracturing and Burgeoning Ethernet Market
    OFC 2017 The Fracturing and Burgeoning Ethernet Market March 21, 2017 www.ethernetalliance.org© 2017 Ethernet Alliance Disclaimer Opinions expressed during this presentation are the views of the presenters, and should not be considered the views or positions of the Ethernet Alliance. 2 © 2017 Ethernet Alliance Introductions • Moderator –John D’Ambrosia, Futurewei • Panelists –Chris Cole, Finisar –Paul Brooks, Viavi –Mark Nowell, Cisco 3 © 2017 Ethernet Alliance Ethernet Switch – Data Center Shipments © 2017 Ethernet Alliance Ethernet Optical Module Market Value 2016 $2.5 billion total market © 2017 Ethernet Alliance Ethernet Optical Module Market Value 2021 $4.4 billion Total Market © 2017 Ethernet Alliance Optical Modules IEEE 802.3 defined chip-to-module (C2M) interfaces enabled non-IEEE 802.3 optical specifications for 40GbE / 100GbE © 2017 Ethernet Alliance 100GbE QSFP28 Consumption in 2016 • SMF modules have majority share • SR4 modules largest individual share 8 © 2017 Ethernet Alliance 400 GbE Optical Solutions 9 © 2017 Ethernet Alliance Standard vs Proprietary Ethernet Optics Standard • 10G-SR • 40G-SR4 • 100G-SR10 • 10G-LR • 40G-FR • 100G-SR4 • 10G-LRM • 40G-LR4 • 100G-LR4 • 10G-ER • 100G-ER4 • 100G-SR2 • 100G-DR Proprietary Reduced • 10G-SR (Sub) • 40G-LR4(Sub) • 100G-LR4 (Lite) Standard • 10G-LR (Sub) • 100G-ER4 (Lite) Extended • 40G-eSR4 • 100G-eLR4 Standard Other • 40G-Bidi/SWDM • 100G-PSM4 • 40G-PSM4 • 100G-CWDM4 / CLR4 / Lite www.ethernetalliance.org 10 © 2017 Ethernet Alliance Standard vs Proprietary Ethernet Optics Volume Shipped Volume www.ethernetalliance.org 11 © 2017 Ethernet Alliance ETHERNET OPTICS WHAT’S THE SAME WHAT’S DIFFERENT Chris Cole, Finisar www.ethernetalliance.org© 2017 Ethernet Alliance Optics History: 10G Data Rate Attribute First Tech.
    [Show full text]
  • Omnitron Systems Product Catalog
    Omnitron Systems Product Catalog Network Interface Devices, Multiplexers and Media Converters for Carrier Ethernet, Mobile Backhaul and Enterprise Networks Omnitron Systems About Omnitron Systems With over twenty years in business, Omnitron Systems designs and manufactures Network Interface Devices, media converters and multiplexers that are deployed in LAN and WAN networks worldwide. Omnitron’s high-reliability fiber connectivity products are used by network operators to extend distances, expand capacity and deliver Standards Compliance the next generation of business services and mobile backhaul. Omnitron is dedicated to compliance with ITU, IEEE, RFC and MEF • Service Provider and Cable MSO fiber networks network industry standards. Comprehensive standards compliance • Enterprise LAN and WAN networks ensures full feature functionality and multi-vendor interoperability in complex network environments. • Wireless, Small Cell and Mobile Backhaul networks • Security Surveillance networks Customer Service • Utility Smart Grid networks • Cloud and Data Center networks Omnitron’s highly-trained account managers and engineering support staff understand network technology and have the experience • Federal Government and Military networks to provide solutions that are effective, practical and economical. • State, County and Municipal networks Professional and courteous administrative support is also available • Education and Campus networks to expedite processes and procedures. Quality Statement Awards and Recognition Omnitron Systems is committed
    [Show full text]
  • System Planner
    System Planner ACE3600 RTU ab 6802979C45-D Draft 2 Copyright © 2009 Motorola All Rights Reserved March 2009 DISCLAIMER NOTE The information within this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for any inaccuracies. Furthermore Motorola reserves the right to make changes to any product herein to improve reliability, function, or design. Motorola does not assume any liability arising out of the application or use of any product, recommendation, or circuit described herein; neither does it convey any license under its patent or right of others. All information resident in this document is considered copyrighted. COMPUTER SOFTWARE COPYRIGHTS The Motorola products described in this Product Planner include copyrighted Motorola software stored in semiconductor memories and other media. Laws in the United States and foreign countries preserve for Motorola certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Motorola computer programs contained in Motorola products described in this Product Planner may not be copied or reproduced in any manner without written permission from Motorola, Inc. Furthermore, the purchase of Motorola products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyright, patents, or patent applications of Motorola, except for the normal non-exclusive, royalty free license to use that arises by operation in law of the sale of a product. TRADEMARKS MOTOROLA and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.
    [Show full text]
  • VSC8489-10 and VSC8489-13
    VSC8489-10 and VSC8489-13 Dual Channel WAN/LAN/Backplane Highlights RXAUI/XAUI to SFP+/KR 10 GbE SerDes PHY • IEEE 1588v2 compliant with VeriTime™ • Failover switching and lane ordering Vitesse’s dual channel SerDes PHY provides fully • Simultaneous LAN and WAN support IEEE 1588v2-compliant devices and hardware-based KR • RXAUI/XAUI support support for timing-critical applications, including all • SFP+ I/O with KR support industry-standard protocol encapsulations. • 1 GbE support VeriTime™ is Vitesse’s patent-pending distributed timing technology Applications that delivers the industry’s most accurate IEEE 1588v2 timing implementation. IEEE 1588v2 timing integrated in the PHY is the • Multiple-port RXAUI/XAUI to quickest, lowest cost method of implementing the timing accuracy that SFI/ SFP+ line cards or NICs is critical to maintaining existing timing-critical capabilities during the • 10GBASE-KR compliant backplane migration from TDM to packet-based architectures. transceivers The VSC8489-10 and VSC8489-13 devices support 1-step and 2-step • Carrier Ethernet networks requiring PTP frames for ordinary clock, boundary clock, and transparent clock IEEE 1588v2 timing applications, along with complete Y.1731 OAM performance monitoring capabilities. • Secure data center to data center interconnects The devices meet the SFP+ SR/LR/ER/220MMF host requirements in accordance with the SFF-8431 specifications. They also compensate • 10 GbE switch cards and router cards for optical impairments in SFP+ applications, along with degradations of the PCB. The devices provide full KR support, including KR state machine, for autonegotiation and link optimization. The transmit path incorporates a multitap output driver to provide flexibility to meet the demanding 10GBASE-KR (IEEE 802.3ap) Tx output launch requirements.
    [Show full text]
  • IEEE 802.3 Working Group November 2006 Plenary Week
    IEEE 802.3 Working Group November 2006 Plenary Week Robert M. Grow Chair, IEEE 802.3 Working Group [email protected] Web site: www.ieee802.org/3 13 November 2006 IEEE 802 November Plenary 1 Current IEEE 802.3 activities • P802.3ap, Backplane Ethernet Published• P802.3aq, 10GBASE-LRM • P802.3ar, Congestion Management Approved• P802.3as, Frame Format Extensions • P802.3at, DTE Power Enhancements • P802.3av, 10 Gb/s EPON New • Higher Speed Study Group 13 November 2006 IEEE 802 November Plenary 2 P802.3ap Backplane Ethernet • Define Ethernet operation over electrical backplanes – 1Gb/s serial – 10Gb/s serial – 10Gb/s XAUI-based 4-lane – Autonegotiation • In Sponsor ballot • Meeting plan – Complete resolution of comments on P802.3ap/D3.1, 1st recirculation Sponsor ballot – Possibly request conditional approval for submittal to RevCom 13 November 2006 IEEE 802 November Plenary 3 P802.3aq 10GBASE-LRM • Extends Ethernet capabilities at 10 Gb/s – New physical layer to run under 802.3ae specified XGMII – Extends Ethernet capabilities at 10 Gb/s – Operation over FDDI-grade multi-mode fiber • Approved by Standards Board at September meeting • Published 16 October 2006 • No meeting – Final report to 802.3 13 November 2006 IEEE 802 November Plenary 4 P802.3ar Congestion Management • Proposed modified project documents failed to gain consensus support in July • Motion to withdraw the project was postponed to this meeting • Current draft advancement to WG ballot was not considered in July • Meeting plan – Determine future of the project – Reevaluate
    [Show full text]