PROGRAMA FONDECYT

INFORME FINAL

ETAPA 2013

COMISIÓN NACIONAL DE INVESTIGACION CIENTÍFICA Y TECNOLÓGICA

VERSION OFICIAL Nº 2

FECHA: 22/05/2014

Nº PROYECTO : 1110235 DURACIÓN : 3 años AÑO ETAPA : 2013 TÍTULO PROYECTO : INFLUENCE OF ENVIRONMENTAL VARIABLES (SALINITY, TEMPERATURE AND DENSITY) ON OSMOREGULATION, ENERGETIC METABOLISM, STRESS RESPONSES AND GROWTH IN THE CHILEAN SEA BASS "ROBALO" ELEGINOPS MACLOVINUS

DISCIPLINA PRINCIPAL : ACUICULTURA GRUPO DE ESTUDIO : SALUD PROD ANIM INVESTIGADOR(A) RESPONSABLE : LUIS HUMBERTO VARGAS CHACOFF DIRECCIÓN : COMUNA : CIUDAD : Valdivia REGIÓN : XIV REGION

FONDO NACIONAL DE DESARROLLO CIENTIFICO Y TECNOLOGICO (FONDECYT) Moneda 1375, Santiago de Chile - casilla 297-V, Santiago 21 Telefono: 2435 4350 FAX 2365 4435 Email: [email protected] INFORME FINAL PROYECTO FONDECYT REGULAR

OBJETIVOS

Cumplimiento de los Objetivos planteados en la etapa final, o pendientes de cumplir. Recuerde que en esta sección debe referirse a objetivos desarrollados, NO listar actividades desarrolladas. Nº OBJETIVOS CUMPLIMIENTO FUNDAMENTO 1 “Influence of acclimation to different TOTAL TOTAL 100 % COMPLETADO: environmental salinities on osmoregulation, 4 Productos fueron obtenidos de este objetivo. energetic metabolic and stress response” 1) Como parte de este objetivo se produce la tesis del Sr. Fernando Moneva, la cual se encuentra calificada y la defensa fue realizada en marzo del 2013.

2) Comunicaciones a Congresos:

3) Artículo científico en evaluación en la revista Polar Biology: Environmental salinity modified osmoregulatory response in sub-Antarctic Notothenioid fish Eleginops maclovinus

4) Artículo científico en revisión de los autores y será enviado a la revista Polar Biology, como segunda parte. Metabolic effects like response at saline changes in Sub-Antarctic notothenioid fish Eleginops maclovinus 2 Growth in different environmental salinities TOTAL TOTAL 100 % COMPLETADO 4 Productos fueron obtenidos de este objetivo. 1) De este objetivo nace la tesis de la Srta. Evelyn Saavedra, la cual fue defendida en el 2013

2) Comunicaciones a Congresos

3) Artículo científico en evaluación de los autores para posterior envío al Aquaculture: How saline changes are influencing growth of Eleginops maclovinus juveniles?

4) Artículo científico aceptado en el Aquaculture: Dietary protein requirement of Patagonian blennie Eleginops maclovinus (Cuvier 1830) juveniles. 3 Influence of acclimation to different TOTAL TOTAL 100 % COMPLETADO environmental temperatures on osmoregulation, 1 Producto fue obtenido de este objetivo. energetic metabolic and stress response Temperature affects osmoregulatory and metabolic responses in Eleginops maclovinus ( En preparación) 4 Growth in different environmental temperatures TOTAL TOTAL 100 % COMPLETADO 1 Producto fue obtenido de este objetivo.

The temperature modified the growing of Eleginops maclovinus (Ms en preparación) 5 Influence of different densities on stress, TOTAL TOTAL 100 % COMPLETADO: energetic metabolism, and osmoregulation En este Objetivo incorporamos la inyección de un antígeno, lo cual nos dio buenos resultados pero nos tomo más tiempo.

4 Producto fueron obtenidos de este objetivo.

1) De este objetivo nace la tesis de la Srta. Danixa Martínez, la cual fue defendida en el 2013

2) Comunicaciones a Congresos

3) Artículo científico en evaluación en Fish Physiology and Biochemistry Stocking density and Piscirickettsia salmonis infection affect the skeletal muscle intermediate metabolism in Eleginops maclovinus 4) Artículo científico en evaluación de los autores para posterior envío al Fish and Shellfish Inmunology 6 Influence of different densities on growth TOTAL TOTAL 100 % COMPLETADO:

2 Producto fueron obtenidos de este objetivo.

1) De este objetivo nace la tesis del Sr. Rony Paredes, la cual debe ser defendida en marzo del 2014. 2) Comunicaciones a Congresos

Otro(s) aspecto(s) que Ud. considere importante(s) en la evaluación del cumplimiento de objetivos planteados en la propuesta original o en las modificaciones autorizadas por los Consejos. III Informe Avance Proyecto Fondecyt 1110235: Informe Final

Objetivo Específico 1: “Influence of acclimation to different environmental salinities on osmoregulation, energetic metabolic and stress response”.

Para poder visualizar el efecto de la salinidad sobre el Eleginops maclovinus “robalo”, se realizó una serie de experimentos que demuestran como los cambios en la salinidad del agua condicionan la respuesta fisiológica del robalo, para poder adecuarse a este nuevo ambiente. Ver artículo.

TOTAL 100 % COMPLETADO: 4 Productos fueron obtenidos de este objetivo. 1) Como parte de este objetivo se produce la tesis del Sr. Fernando Moneva, la cual se encuentra calificada y la defensa fue realizada en marzo del 2013.

2) Comunicaciones a Congresos:

3) Artículo científico en evaluación en la revista Polar Biology: Environmental salinity modified osmoregulatory response in sub-Antarctic Notothenioid fish Eleginops maclovinus

4) Artículo científico en revisión de los autores y será enviado a la revista Polar Biology, como segunda parte. Metabolic effects like response at saline changes in Sub-Antarctic notothenioid fish Eleginops maclovinus

Objetivo Específico 2: “Growth in different environmental salinities” Para poder visualizar el efecto de la salinidad sobre el crecimiento de Eleginops maclovinus “robalo”, se realizó un experimento durante 90 días, donde se demuestran como los cambios en la salinidad del agua afectan el crecimiento del pez. Ver artículo.

TOTAL 100 % COMPLETADO 4 Productos fueron obtenidos de este objetivo. 1) De este objetivo nace la tesis de la Srta. Evelyn Saavedra, la cual fue defendida en septiembre del 2013

2) Comunicaciones a Congresos

3) Artículo científico en evaluación de los autores para posterior envío al Aquaculture: How saline changes are influencing growth of Eleginops maclovinus juveniles?: Ver en los Anexos

4) Artículo científico ACEPTADO en el Aquaculture: Dietary protein requirement of Patagonian blennie Eleginops maclovinus (Cuvier 1830) juveniles.

Objetivo Específico 3: “Influence of acclimation to different environmental temperatures on osmoregulation, energetic metabolic and stress response”

Para poder visualizar el efecto de la salinidad sobre el crecimiento de Eleginops maclovinus “robalo”, se realizó un experimento durante 15 días, que demuestran como los cambios en la temperatura del agua condicionan la respuesta fisiológica del robalo, para poder adecuarse a este nuevo ambiente.

TOTAL 100 % COMPLETADO 1 Producto fue obtenido de este objetivo.

Artículo en Prepraración: Temperature affects osmoregulatory and metabolic responses in Eleginops maclovinus

Informe de este capítulo:

Materials and methods

End-point trial This experiment was done to determine range temperature that E. maclovinus specimens can support. Immature specimens of E. maclovinus (n = 36) acclimated to SW were randomly divided into 3 different groups (12 fish per group) and transferred directly to six tanks (2 tanks per temperature, 6 fish per tank) of 500-L capacity (1.5 Kg/m3 density) with different environmental temperature: i) 10 °C ii) 14 °C and iii) 18 °C the experimental tanks were maintained under a re- circulating regime (using SunSun Outside Filter Hw-304b) and natural photoperiod for 14 days.

Result Please to see in Annexes Objetivo Específico 4: “Growth in different environmental temperatures”

Para poder visualizar el efecto de la salinidad sobre el crecimiento de Eleginops maclovinus “robalo”, se realizó un experimento durante 90días, donde se demuestran como los cambios en la temperatura del agua afectan el crecimiento del pez.

TOTAL 100 % COMPLETADO 1 Producto fue obtenido de este objetivo.

Artículo en Preparación: The temperature modified the growing of Eleginops maclovinus

Informe de este capítulo:

Materials and methods

Experimental design Immature specimens of E. maclovinus (n = 36) acclimated to SW were randomly divided into 3 different groups (12 fish per group) and transferred directly to six tanks (2 tanks per temperature, 6 fish per tank) of 500-L capacity (1.5 Kg/m3 density) with different environmental temperature: i) 10 °C ii) 14 °C and iii) 18 °C the experimental tanks were maintained under a re-circulating regime (using SunSun Outside Filter Hw-304b) and natural photoperiod. Specimens were gradually acclimated to 14° or 18 ºC during 7 days, with a daily change of 1 ºC until the final experimental temperature was obtained. The experiment was performed during a period of 90 days Result Please to see in Annexes

Objetivo Específico 5: “Influence of different densities on stress, energetic metabolism, and osmoregulation”

Para poder visualizar el efecto de la salinidad sobre el crecimiento de Eleginops maclovinus “robalo”, se realizó un experimento durante 10 días de estrés. En este Objetivo incorporamos la inyección de un antígeno, lo cual nos dio buenos resultados pero nos tomo más tiempo.

TOTAL 100 % COMPLETADO: En este Objetivo incorporamos la inyección de un antígeno, lo cual nos dio buenos resultados pero nos tomo más tiempo.

4 Producto fueron obtenidos de este objetivo.

1) De este objetivo nace la tesis de la Srta. Danixa Martínez, la cual fue defendida en octubre del 2013 2) Comunicaciones a Congresos

3) Artículo científico en evaluación en Fish Physiology and Biochemistry Stocking density and Piscirickettsia salmonis infection affect the skeletal muscle intermediate metabolism in Eleginops maclovinus

4) Artículo científico en evaluación de los autores para posterior envío al Fish and Shellfish Inmunology

Immunological response and secondary stress response in Sub-Antarctic Notothenioid fish Eleginops maclovinus

5) Inyección de diferentes tipos de Piscirickettsia salmonis afecta a Eleginops maclovinus. En preparación

RESULTADOS Por favor ver en los Anexos

Objetivo Específico 6: “Influence of different densities on growth”

Para poder visualizar el efecto de alta densidad sobre el crecimiento de Eleginops maclovinus “robalo”, se realizó un experimento durante 60 días. Donde se demuestran como el incremento de la densidad de cultivo afecta al crecimiento del pez. Este experimento se disminuyó en 30 días del programado en el proyecto, debido a problemas con la circulación del agua, lo que nos obligó a terminar antes el experimento.

TOTAL 100 % COMPLETADO:

2 Producto fueron obtenidos de este objetivo.

1) De este objetivo nace la tesis del Sr. Rony Paredes, la cual debe ser defendida en marzo del 2014. 2) Comunicaciones a Congresos

Informe de este capítulo: METODOLOGÍA Experimento de densidad Una vez finalizado el proceso de aclimatación, se procedió con el experimento a alta densidad, el cual consistió en someter a los grupos de individuos, a condiciones de: 3 kg/m3, 6 kg/m3, 12 kg/m3, 24 kg/m3. El diseño experimental, consiste en realizar el experimento, en duplicado, por lo que hubo dos estanques por cada nivel del tratamiento y del grupo control. Estos 8 estanques estuvieron en funcionamiento por dos meses. Se distribuyeron 11 peces en la densidad de 3 kg/m3, otros 11 ejemplares en la densidad de 6 kg/m3, 12 peces a la densidad de 12 kg/m3 y los últimos 12 peces en la densidad más alta de 24 kg/m3.

RESULTADOS Por favor ver en los Anexos

Online Proofing System

1. Corrections should be marked with the Adobe Annotation & Comment Tools below:

2. To save your proof corrections, click the Pulish Coets button. Publishing your comments saves the marked up version of your proof to a centralized location i Wileys Online Proofing System. Corrections dot hae to e marked in one sitting – you can publish corrections and log back in at a later time to add more.

3. When your proof review is complete we recommend you download a copy of your annotated proof for reference in any future correspondence concerning the article before publication. You can do this by likig o the io to the right of the Pulish Coets utto ad seletig Sae as Arhie Copy….

4. When your proof review is complete and you are ready to send corrections to the publisher click the Coplete Proof ‘eie button that appears above the proof in your web browser window. Note: Once you click Complete Proof ‘eie you will not be able to mark any further comments or corrections.

Firefox, Chrome, Safari Users If your PDF article proof opens in any PDF viewer other than Adobe Reader or Adobe Acrobat, you will not be able to mark corrections and query responses, nor save them. To mark and save corrections, please follow these instructions to disable the built-in browser PDF viewers in Firefox, Chrome, and Safari so the PDF article proof opens in Adobe within a Firefox or Chrome browser window.

USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:

This will open up a panel down the right side of the document. The majority of tools you will use for annotating your proof will be in the Annotations section, pictured opposite. We’ve picked out some of these tools below:

1. Replace (Ins) Tool – for replacing text. 2. Strikethrough (Del) Tool – for deleting text.

Strikes a line through text and opens up a text Strikes a red line through text that is to be box where replacement text can be entered. deleted.

How to use it How to use it

‚ Highlight a word or sentence. ‚ Highlight a word or sentence. ‚ Click on the Replace (Ins) icon in the Annotations ‚ Click on the Strikethrough (Del) icon in the section. Annotations section. ‚ Type the replacement text into the blue box that appears.

3. Add note to text Tool – for highlighting a section 4. Add sticky note Tool – for making notes at to be changed to bold or italic. specific points in the text.

Highlights text in yellow and opens up a text Marks a point in the proof where a comment box where comments can be entered. needs to be highlighted.

How to use it How to use it

‚ Highlight the relevant section of text. ‚ Click on the Add sticky note icon in the Annotations section. ‚ Click on the Add note to text icon in the Annotations section. ‚ Click at the point in the proof where the comment should be inserted. ‚ Type instruction on what should be changed regarding the text into the yellow box that ‚ Type the comment into the yellow box that appears. appears. USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

5. Attach File Tool – for inserting large amounts of 6. Drawing Markups Tools – for drawing text or replacement figures. shapes, lines and freeform annotations on proofs and commenting on these marks. Allows shapes, lines and freeform annotations to be Inserts an icon linking to the attached file in the drawn on proofs and for comment to be made on appropriate pace in the text. these marks. How to use it

‚ Click on the Attach File icon in the Annotations

section.

Click on the proof to where you’d like the attached ‚ How to use it file to be linked. ̋" Click on one of the shapes in the Drawing Markups

‚ Select the file to be attached from your computer section. or network. ̋" Click on the proof at the relevant point and draw the ‚ Select the colour and type of icon that will appear selected shape with the cursor. in the proof. Click OK. ̋" To add a comment to the drawn shape, move the cursor over the shape until an arrowhead appears. ̋" Double click on the shape and type any text in the red box that appears.

ARE 12424 Dispatch: 20.2.14 CE: Menaka Journal Code Manuscript No. No. of pages: 20 PE: Karthick V

Aquaculture Research, 2014, 1–20 doi:10.1111/are.12424

1 2 Environmental salinity and osmoregulatory processes 3 4 in cultured flatfish 5 6 1 2 3 4 1 7 I Ruiz-Jarabo , M Herrera , I Hachero-Cruzado , L Vargas-Chacoff , JM Mancera 1,5 8 1 & FJ Arjona 9 1Departamento de Biologıa, Facultad de Ciencias del Mar y Ambientales, Universidad de Cadiz, Cadiz, Spain 10 2Instituto de Investigacion Agraria y Pesquera, Junta de Andalucıa, Centro Agua del Pino, Huelva, Spain 11 3Instituto de Investigacion Agraria y Pesquera, Junta de Andalucıa, Centro El Toruno,~ Cadiz, Spain 12 4Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Valdivia, Chile 13 5Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 14 Nijmegen, The Netherlands 15 16 Correspondence: I Ruiz-Jarabo, Departamento de Biologıa, Facultad de Ciencias del Mar y Ambientales, Universidad de Cadiz, 17 11510 Puerto Real, Cadiz, Spain. E-mail: [email protected] 18 19 20 particular area become critical factors to be con- 21 Abstract sidered for optimal flatfish culture. 22 The aim of this study was to carry out a compara- 23 tive analysis of the osmoregulatory properties and Keywords: flatfish, osmoregulation, environ- 24 associated energy metabolism of euryhaline flatfish mental salinity, energy metabolism 25 that are cultured in the world. Culture of 26 flatfish (pleuronectiformes) requires stage- and 27 Flatfish culture in the world species-dependent osmotic conditions for rearing. 28 Additionally, geographic origin of broodstock ani- The teleost order Pleuronectiformes, commonly 29 mals is another factor to be taken into account for named flatfishes, comprises a relatively large group 30 the culture of pleuronectiformes. Larval and juve- of fishes with unique developmental attributes 31 nile stages of many flatfish species are cultured in characterized by a real metamorphosis. A total of 32 large nurseries situated in estuaries and shallow 716 flatfish species belonging to 121 genera and 33 marine habitats, where the environmental salinity about 15 families (Figure 1) have been identified 34 is close to the iso-osmotic point of their internal worldwide (Munroe 2005). Currently, flatfish 35 milieu. This fact implicates an advantage in terms aquaculture has yielded more than 150 000 t in 36 of energy savings for osmoregulatory purposes. the world (FAO 2012). Most production (around 37 Thus, this ‘saved’ energy can be derived to other 90 000 t) is derived from turbot (Scophthalmus 38 physiological processes, such as somatic growth. maximus) culture (FAO 2012), which is cultured 39 However, this scientific presumption does not in Europe and Chile (Alvial & Manrıquez 1999). 40 always results in an optimal growth for many flat- This production is predicted to undergo a twofold 41 fish species. Indeed, iso-osmotic culture conditions increase by 2014 (Cerda & Manchado 2013). Brill 42 can evoke a higher allostatic load than that in the (Scophthalmus rhombus) is a species morphologi- 43 usual hyper-osmotic environment where flatfish cally similar to S. maximus and a potential candi- 44 species live wildly. Optimization of flatfish culture date for diversification of marine aquaculture in 45 thus requires adjustments of the osmotic culture southern Europe (Hachero-Cruzado, Garcıa-Lopez, 46 conditions to the specific osmoregulatory and Herrera, Vargas-Chacoff, Martınez-Rodrıguez, Man- 47 metabolic demands that eventually determine the cera & Navas 2007). Common sole (Solea solea) 48 allostatic load and consequently condition growth and Senegalese sole (Solea senegalensis) have been 49 rates. In this sense, the geographical location of cultured in Europe over the last decade. However, 50 aquaculture farms and the osmoregulatory-based culture conditions for these two sole species are far 51 selection of the species to be cultivated in a from optimization (Dinis, Ribeiro, Soares & 52

© 2014 John Wiley & Sons Ltd 1 Osmoregulation and flatfish culture I Ruiz-Jarabo et al. Aquaculture Research, 2014, 1–20

1 requirements of each target species (Cerda & 2 Manchado 2013). Some countries are culturing 3 non-native flatfish species using inadequate tech- 4 nologies for rearing them so costly investments are 5 avoided. As a consequence, due to this lack of 6 proper culture technology, frequently 7 escape from seafarms. This may result in the even- 8 tual colonization of the surrounding water by alien 9 fish species and diseases. 10 LOW RESOLUTION FIG 11 12 Phylogeny of osmoregulatory capacity 13 in flatfish 14 The oldest flatfish fossils, otoliths dating from the 15 Early Eocene some 53–57 million years ago 16 (Mya), indicate the presence of true Pleuronecti- Figure 1 Schematic illustration of hypothesized rela- 11 17 formes as far back as the early Tertiary (Fried- tionships of the Pleuronectiformes based on morpholog- 18 ical information. Extracted from Munroe (2005). man 2008). Fossil pleuronectiform otoliths are 19 unknown from freshwater sediments (Schwarzh- 20 ans 1999), fact that may indicate that the ances- 21 Sarasquete 1999; Imsland, Foss, Conceicao, Dinis, tor of this group was a marine fish (Gibson 22 Delbare, Schram, Kamstra, Rema & White 2004; 2005). Table 1 shows a compilation of the opti- 23 Salas-Leiton, Rodriguez-Rua, Asensio, Infante, mal environmental salinity in the juvenile stage 24 Manchado, Fernandez-Diaz & Canavate 2012). for different cultured flatfish species. It is postu- 25 The Atlantic halibut (Hippoglossus hippoglossus), lated that the most ancient families of this cul- 26 mainly cultured in Norway since the 1980s, is the tured flatfish, Soleidae and Rhombosoleidae (first 27 largest flatfish and has been identified as an ideal fossils recorded 45 Mya) (Berg 1958; Munroe 28 species for farming at higher latitudes due to its 2005), phylogenetically close to the original sea- 29 high growth rates in cold waters (Bromage, Maz- water ancestor, have their optimum salinities for 30 orra, Bruce, Brown & Shields 2000). Another growth in full-strength seawater and, during evo- 31 pleuronectid, the Pacific halibut (Hippoglossus lution of the Order, some families evolved through 32 stenolepis) has been cultured in Canada and USA the brackish or freshwater niche occupation. 33 for more than 40 years (Stickney & Liu 1999). Moreover, it is supposed that Pleuronectidae and 34 Other flatfish species currently cultivated are the Scophtalmidae families have evolved from ances- 35 wedge sole (Dicologoglossa cuneata) (Herrera, tors that were adapted to water salinities lower 36 Vargas-Chacoff, Hachero, Ruiz-Jarabo, Rodiles, than the normal seawater. A possible reason for 37 Navas & Mancera 2009a,b), the southern flounder that could be that the ancestral species were 38 (Paralichthys lethostigma) (Luckenbach, Murashige, living in subarctic waters, where the influence of 39 Daniels, Godwin & Borski 2007; Tipsmark, Luc- the Baltic Sea and copious rivers decreased water 40 kenbach, Madsen, Kiilerich & Borski 2008), the salinity. The Paralichthyidae family, with a wider 41 European flounder (Platichthys flesus)(O0Neill, De range of optimal salinities for juvenile growth 42 Raedemaecker, McGrath & Brophy 2011), the compared to other families, showed a tendency to 43 Brazilian flounder (Paralichthys orbignyanus) (Sam- occupy brackish and fresh waters. In fact, the 44 paio & Bianchini 2002), the summer flounder southern flounder (P. lethostigma) presents a diad- 45 (Paralichthys dentatus) (Bengtson 1999; Schreiber romous life cycle: larvae develop in the sea, juve- 46 & Specker 2000; Terceiro 2011), the Chilean niles move to the estuaries and rivers, and adults 47 flounder (Paralichthys adspersus) (Silva & Oliva prefer fresh waters unless they still conserved 48 2010) or the Japanese flounder (Paralichthys olivac- euryhaline characteristics (Smith, Denson, Hey- 49 eus) (Arai 2001). Similar to other teleost, each ward, Jenkins & Carter 1999; Tipsmark et al. 50 flatfish species requires specific conditions for its 2008). For this reason, further studies are recom- 51 optimal culture. This implies consequently a subtle mended to better understand the phylogeny of 52 understanding of the biology and nutritional osmoregulation in flatfish species.

2 © 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 Aquaculture Research, 2014, 1–20 Osmoregulation and flatfish culture I Ruiz-Jarabo et al.

1 Table 1 Optimal growing salinities for different juvenile flatfish species cultured around the world. Families are dis- 2 played in phylogenetically order from the newly appeared to the most ancient ones (according to Munroe 2005) 3 4 Common Optimal À1 5 Species name Family salinity (g L ) Reference Distribution

6 Scophthalmus Turbot Scophthalmidae 10–19 Imsland et al. 2001 NE Atlantic 7 maximus 8 Scophthalmus Brill Scophthalmidae 12 Ruiz-Jarabo, personal NE Atlantic/Mediterranean 9 rhombus observation Paralichthys Southern Paralichthyidae 0–10 Smith et al. 1999 West coast USA 10 lethostigma flounder 11 Paralichthys Summer Paralichthyidae 10–30 Malloy et al. 1991 NW Atlantic 2 12 dentatus flounder 13 Paralichthys Japanese Paralichthyidae 8–30 Yamashita et al. 2001 W Pacific 3 14 olivaceus flounder Paralichthys Brazilian Paralichthyidae 30 Sampaio et al. 2002 SW Atlantic 4 15 orbignyanus flounder 16 Paralichthys Fine Paralichthyidae 30 Silva & Oliva 2010 SE Pacific 17 adspersus flounder 18 Verasper Spotted Pleuronectidae 8–16 Wada et al. 2004 NW Pacific 19 variegatus halibut Hippoglossus Atlantic Pleuronectidae 15 Imsland et al. 2008 N Atlantic 20 hippoglossus halibut 21 Hippoglossoides American Pleuronectidae 14–28 Munro et al. 1994 N Atlantic 5 22 platessoides plaice 23 Platichthys flesus European Pleuronectidae 12–15 Gutt et al. 1985 NE Atlantic 6 24 flounder Colistium New Pleuronectidae 23 Hickman et al. 2002 New Zealand 7 25 nudipinnis Zealand 26 turbot 27 Rhombosolea Greenback Rhombosoleidae 25–35 Hart et al. 1996 Hart et al. 1996; South coast 28 tapirina flounder Australia/New Zealand 29 Solea senegalensis Senegalese Soleidae 25–39 Arjona et al. 2009 NE Atlantic/Mediterranean sole 30 Solea solea Common Soleidae 33–35 Imsland et al. 2003 NE Atlantic 31 sole 32 Dicologoglossa Wedge sole Soleidae 15–35 Herrera et al. 2009a E Atlantic 33 cuneata 34 35 36 hypotonic urine. On the other hand, marine fish Flatfish and euryhalinity 37 are subjected to a passive osmotic loss of water 38 Teleost fish present an internal milieu with osmolal- and a diffusive gain of ions. For this reason, mar- À 39 ity values close to 10–12 g L 1 salinity being ine fish ingest high volumes of seawater to com- 40 hyperosmotic to freshwater and hyposmotic to sea- pensate for osmotic water losses and actively 41 water environments (Evans 2008). Osmoregula- excrete salt. While the integument presents a low 42 tion in teleosts have been studied since the 1930s permeability, osmoregulatory mechanisms com- 43 (Smith, Farinacci & Breitweiser 1930; Keys & Will- bine an active ion uptake along the digestive tract 44 mer 1932; Krogh 1937), and significant advances followed by an osmotic water intake, with an 45 have been achieved (see Evans 2008; McCormick, active ion excretion through the gills, and a 46 Farrell & Brauner 2013). In fresh- or brackish release of a limited amount of isotonic urine 47 water, teleosts are submitted to passive osmotic (McCormick 2001; Varsamos, Nebel & Charman- 48 influx of water and diffusive loss of ions, mainly tier 2005; Evans 2008). Euryhaline teleost fish are À 49 Na+ and Cl . In these environments, limiting and able to maintain a constant osmolality (280– À 50 compensatory mechanisms include low integu- 360 mOsm kg 1) in their body fluids (Fiol & Kultz 51 ment permeability, active ion uptake, low drinking 2007). Therefore, they have the capacity to adjust 52 rate and the production of a high volume of and adapt their osmoregulatory and ion transport

© 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 3 Osmoregulation and flatfish culture I Ruiz-Jarabo et al. Aquaculture Research, 2014, 1–20

1 strategies to the osmoregulatory demands imposed greenback flounder eggs (Rhombosolea tapirina) À 2 by the surrounding environment. This osmoregu- grown at 15–45 g L 1 salinity (Hart & Purser 3 latory and ion transport plasticity, however, 1995). In Brazilian flounder (P. orbignyanus), egg 4 depends on the developmental stage of the species. hatching was successful only in full-strength sea- À 5 Flatfish distribution in the wild is influenced by water (a range of 10–35 g L 1 salinity was 6 salinity, and many families are categorized as tested), coinciding with positive egg buoyancy 7 euryhaline (reviewed by Schreiber 2001). (Sampaio et al. 2007). Furthermore, within the 8 Research performed on adult, juvenile and larvae same species, maximum hatching rates could vary 9 flatfish on the osmoregulatory mechanisms point depending on the geographical origin of the stock 10 to differences in salinity adaptation depending on (Nissling et al. 2002). In this sense, turbot (S. max- 11 the age of the (Imsland et al. 2004; Arjon- imus) from the Baltic Sea had maximum hatching À 12 a, Vargas-Chacoff, Ruiz-Jarabo, Martin del Rio & rates in a 7–15 g L 1 salinity range; those in the À 13 Mancera 2007; Cabral, Vasconcelos, Vinagre, Belt Sea were restricted to 15 g L 1; and those 14 Franca, Fonseca, Maia, Reis-Santos, Lopes, Ruano, inhabiting the North Sea had optimum rates at À 15 Campos, Freitas, Santos & Costa 2007; Sampaio, salinities above 20 g L 1 (Karas & Klingsheim 16 Freitas, Okamoto, Louzada, Rodrigues & Robaldo 1997). Presumably, these differences among spe- 17 2007; Herrera et al. 2009a; Audet & Tremblay cies are due to qualitative and/or quantitative dif- 18 2011; Herrera, Aragao, Hachero, Ruiz-Jarabo, ferences in the presence in the egg of maternal 19 Vargas-Chacoff, Mancera & Conceicao 2012; proteins important for ion transport and osmoreg- 20 Salas-Leiton et al. 2012). ulation (aquaporins, ion channels and transport- 21 ers) and/or mRNA encoding for them. This 22 maternal contribution provides an additional Embryos and eggs 23 osmo- and ionoregulatory plasticity for the fertil- 24 Fish embryos possess an exceptionally low perme- ized eggs, indicating that epigenetics are truly 25 ability to water and ions, compared with other important when culturing this species. These cir- 26 developmental stages (Mangorjensen 1987). cumstances highlight that the relation between 27 Nevertheless, the ability for osmoregulation during successful egg hatching and salinity is not only 28 early developmental stages has been described in a species-specific, but also intrinsically related to the 29 few species (reviewed by Salas-Leiton et al. 2012) geographical origin of individuals and/or to the 30 and has been explained as a result of certain cho- breeding environment of adult fish, which eventu- 31 rion patency (Rawson, Zhang, Kalicharan & Jon- ally will condition the epigenetics of the reproduc- 32 gebloed 2000). In Senegalese sole (S. senegalensis), tion event. Therefore, rigorous studies are required 33 the highest egg-hatching rates occur over a salin- to establish the optimal salinity for embryo devel- À 34 ity range of 10–33 g L 1, with no hatch at opment and hatching. À 35 0gL 1 and increased likelihood of anatomical À 36 abnormalities under 10 g L 1 (Salas-Leiton et al. Larvae 37 2012). Additionally, eggs of this species do not À 38 float at salinities below 30 g L 1 (Dinis et al. In general, in the families Bothidae and Pleuro- 39 1999). Some authors have considered the mainte- nectidae, the short-term tolerance to a wide range 40 nance of the eggs and larvae in a quiescent stage, of salinities can be considered high for early larval 41 rearing them at their neutral buoyancy salinity, so stages (ranging from 0 to 65 ppt). It then 42 they neither rise to the water surface nor sink to decreases dramatically during mid-larval develop- 43 the bottom (Stickney & Liu 1999; Nissling, Westin ment and achieves levels of relatively high 44 & Hjerne 2002). This salinity ranges from 30 to tolerance by the completion of metamorphosis À 45 34 g L 1 in the Pacific halibut (Liu, Stickney, (reviewed by Schreiber 2001). It has been sug- 46 Dickhoff & McCaughran 1993). Common sole (S. gested that the initially high tolerance to extreme 47 solea) has an optimum salinity for embryo rearing salinities in early larvae is due to two circum- À 48 which range from 20 to 35 g L 1 (Devauchelle, stances: (1) the absence of gills that could other- 49 Alexandre, Lecorre & Letty 1987), although this wise augment water loss due to a large surface 50 species might develop successfully until hatching area of this structure; and (2) a skin diffusion per- À 51 in a 10–40 g L 1 salinity (Fonds 1979). No effect meability coefficient that is of an order of magni- 52 of salinity on hatching rate was found in tude lower than that in adults (Tytler & Bell

4 © 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 Aquaculture Research, 2014, 1–20 Osmoregulation and flatfish culture I Ruiz-Jarabo et al.

1 1989). In newly hatched teleost larvae, the skin is (DAH) both mouth and anus open in conjunction 2 involved in osmoregulation, respiration and excre- (Figure 2) (Hachero-Cruzado, Ortiz-Delgado, Borre- 3 tion processes, in addition to the protective role ga, Herrera, Navas & Sarasquete 2009). This indi- 4 common to all integumentary surfaces (Flik, varsa- cates that larvae at this stage start drinking 5 mos, Guerreiro, Fuentes, Huising & Fenwick 2002; seawater to compensate for osmotic water losses. 6 Varsamos et al. 2005). During the transition from Ions are also transported with the absorbed water 7 yolk sac larvae to free-feeding larvae, gill filaments through the enterocytes, depending on branchial 8 are present in the turbot (S. maximus), while sec- chloride cells (CC) and their regulatory machinery 9 ondary lamellae appear just prior to the start of (Flik et al. 2002). The first CC appear in the brill 10 metamorphosis (Segner, Storch, Reinecke, Kloas & at the base of the gill filaments at 9 DAH, 11 Hanke 1994). At the beginning of the metamor- coinciding with a proliferation of renal tubules 12 phic process, Japanese flounder (P. olivaceus) (Figure 2) (Hachero-Cruzado et al. 2009), which 13 showed a shift of chloride cell distribution from may indicate that the epithelial CC are still osmo- 14 the skin to the branchial filaments (Hiroi, Kaneko, regulatory important for brill larvae before 9 DAH, 15 Seikai & Tanaka 1998), whereas summer flounder being the gills the major osmoregulatory tissue for 16 (P. dentatus) presented a great development of gill this species after that developmental stage. Halibut 17 chloride cells (Schreiber & Specker 1999a,b) indi- (H. hippoglossus) larvae start drinking before the 18 cating the importance of gill osmoregulatory pro- anus becomes functional, marking the beginning 19 cesses after this period. of intestine osmoregulation (Flik et al. 2002). Once 20 As the rudiments of the major osmoregulatory the mouth opening process has been completed 21 organs of adult and juvenile fish (intestine, gills and the first food is supplied, the relationship 22 and kidney) are present in the Senegalese sole between salinity and growth throughout the larval 23 (S. senegalensis) larva (Klaren, Wunderink, Yufera, stages has been demonstrated to be highly depen- 24 Mancera & Flik 2008), changes in osmoregulatory dent on the species studied (Salas-Leiton et al. 25 physiology and salinity tolerance for development 2012). Brazilian (P. orbignyanus) and greenback 26 probably play important roles in defining larval (R. tapirina) flounders showed optimum growth À 27 distribution in the environment (Schreiber 2001). salinities ranging from 20 to 30 g L 1 (Sampaio À 28 Brill (S. rhombus) has an undifferentiated digestive et al. 2007) and from 15 to 35 g L 1 (Hart, 29 tract at hatching but at 2 days after hatching Hutchinson & Purser 1996), respectively. The 30 31 (a) (b) 32 33 34 35 36 37 38 39 (c) (d) 40 41 42 43 44 45 46 47 48 Figure 2 Microsections stained with Hematoxiline-Eosin of flatfish brill Scophthalmus rhombus larvae. (a) Opened 49 mouth and bucopharingeal cavity at 3 DAH (2009). (b) Posterior Intestine and opened anus at 3 DAH (4009). (c) 50 Gill arch with primordial filaments and chloride cells at 9 DAH (4009). (d) Renal tubules at 23 DAH (4009). BpC, 51 bucopharingeal cavity; CC, chloride cell; GA, gill anlage; PF, primordial filaments; PI, posterior intestine; UB, urinary 52 bladder.

© 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 5 Osmoregulation and flatfish culture I Ruiz-Jarabo et al. Aquaculture Research, 2014, 1–20

1 spotted halibut (Verasper variegatus) preferred salin- batches of fish, which may result in substantial À 2 ities close to the iso-osmotic point (8–16 g L 1) benefits for the aquaculture industry. Anyhow, the 3 (Wada, Aritaki & Tanaka 2004). Larvae of south- possibility of increasing developmental abnormali- 4 ern flounder (P. lethostigma) showed reduced sur- ties exists due to the acceleration of the metamor- 5 vival and markedly lower growth at full-strength phic process. Taking together, it is not surprising À 6 seawater (35 g L 1) compared with that achieved to find that summer flounder (P. dentatus) reared À À 7 at a lower salinity (25 g L 1) (Moustakas, Watan- at 20 g L 1 increased growth and settlement 8 abe & Copeland 2004). There is an interesting behavior of metamorphosing larvae in relation to À 9 study in five Japanese flatfish species that related those reared at 30 g L 1 (Gavlik & Specker 2004). 10 the ontogenetic development of low-salinity Japanese flounder (P. olivaceus) larvae were more 11 tolerance to the morphology of the larvae (Wada, active in salinities higher than their acclimation 12 Aritaki, Yamashita & Tanaka 2007). Authors of salinity and were more likely to settle in water of 13 this study showed that the inverse relationships lower salinity (Burke, Tanaka & Seikai 1995), sup- 14 between low-salinity tolerance and metamorphic porting the idea that thyroid system is activated 15 size, together with the general patterns of lower when environmental salinity decreases, evoking a 16 predator density in lower salinity environments, sort of hyperthyroid status. 17 suggest that the potential for low-salinity adapt- 18 ability during the settlement phase is critical for Juveniles 19 the survival strategy of species using shallow, 20 near-shore areas as nurseries. They also demon- While intermediary salinity conditions can consti- 21 strated that bigger metamorphic size is related to a tute an advantage in terms of growth (Boeuf & 22 higher minimum salinity tolerance limit, which is Payan 2001), low and variable salinity conditions 23 related to the fact that at lower salinities, predator (due to river and tidal fluctuations) are a common 24 density is lower. Other studies conducted with flat- feature of estuarine systems that can result in a 25 fish in early life stages showed that some species changing osmotic pressure (Hutchinson & Haw- 26 undertake a migration as their ontogenetic devel- kins 1990; O0Neill et al. 2011). Anyhow, estuarine 27 opment takes place (Madon 2002; Bos & Thiel and shallow marine habitats are important nurser- 28 2006). In this sense, pre-metamorphic larvae of ies for the larval and juvenile stages of many flat- 29 Pleuronectes flesus migrate towards low salinities fish species (Cabral et al. 2007; Vasconcelos, 30 (from 20 to 0.5 ppt) until completing metamor- Reis-Santos, Costa & Cabral 2011). These nurser- 31 phosis (Bos & Thiel 2006). ies have advantages for fingerlings and juveniles 32 Flatfish species undergo a real metamorphosis such as predator and competition avoidance, and 33 that is regulated by thyroid hormones (Klaren high food availability due to the high primary pro- 34 et al. 2008; Isorna, Obregon, Calvo, Vazquez, Pen- ductivity of these systems which consequently 35 don, Falcon & Munoz-Cueto 2009). In some flat- results in rapid growth and development (Beck, 36 fish species, thyroid hormones treatment Heck, Able, Childers, Eggleston, Gillanders, Halp- 37 synchronize the cohort metamorphosis (Gavlik & ern, Hays, Hoshino, Minello, Orth, Sheridan & 38 Specker 2004) but it also increases prevalence of Weinstein 2001; Cabral et al. 2007). However, 39 skeletal abnormalities in larval offspring and estuaries can also impose physiological challenges 40 growth retardation in developing larvae (Huang, on developing fish as the levels of certain abiotic 41 Schreiber, Soffientino, Bengtson & Specker 1998; factors (salinity, temperature, pH) can vary greatly 42 Klaren et al. 2008), probably due to a lack of coor- between and within estuaries (Bernatzeder, Cowley 43 dination between those endocrine systems implied & Hecht 2010). In this manner, some species like 44 in growth and metamorphosis. Environmental the California halibut (Paralichthys californicus) pre- 45 salinity influences the thyroid axis. For instance, ferred estuarine environments within their early 46 killifish under low salinity conditions stimulates its juvenile phase (with wide variations in salinity 47 deiodinase II activity in liver, which is the major and temperature but lower predator density), 48 producer of plasma T3 in teleost fish (Lopez-Bojor- while migrate to open-coast environments (where 49 quez, Villalobos, Garcia-G, Orozco & Valverde-R environmental conditions are more stable) as they 50 2007). It can then be inferred that low salinities growth (Madon 2002). Some flatfish species may 51 stimulate the thyroid axis, synchronizing the have their optimum salinity conditions at this life À 52 metamorphic process and producing homogenous stage in iso-osmotic environments: 10–15 g L 1

6 © 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 Aquaculture Research, 2014, 1–20 Osmoregulation and flatfish culture I Ruiz-Jarabo et al.

1 salinity (Gaumet, Boeuf, Severe, Le Roux & Mayer- Adults 2 Gostan 1995; Boeuf & Payan 2001; Wada et al. 3 2004). Iso-osmotic environments putatively consti- To the best of our knowledge, no osmoregulatory 4 tute an advantage in terms of growth due to the studies have been conducted in adult flatfish. 5 energy saved from low-demanded needs for active Marine species are always cultured and bred at 6 osmoregulation that could thus be derived to other full-strength seawater, salinity varying according 7 physiological processes, such as growth (Soengas, to the geographic localization of the aquaculture 8 Sangiao-Alvarellos, Laiz-Carrion & Mancera 2008). farm. For instance, salinity is kept around 33– À 9 In other words, ion and water net flux between the 35 g L 1 for the Senegalese sole (S. senegalensis) 10 internal milieu and the surrounding environment in and the common sole (S. solea) (Imsland et al. 11 iso-osmotic waters will be nearly null so osmoregu- 2004). Wedge sole (D. cuneata) and brill (S. rhom- À 12 latory expenditure is minimum (Herrera et al. bus) are cultured at 37–39 g L 1 salinity (Ha- 13 2009a). In this way, optimal growth in juvenile chero-Cruzado et al. 2007; Herrera, Hachero, 14 brill (S. rhombus) is achieved in salinities slightly Rosano, Ferrer, Marquez & Navas 2008). For Bra- 15 over the iso-osmotic point for this species zilian flounder (P. orbignyanus) farming, culture À À 16 (12 g L 1) (Ruiz-Jarabo, personal observation). salinities vary between 30 and 35 g L 1 (Lanes, 17 This is also valid for other relevant species for Okamoto, Bianchini, Marins & Sampaio 2010). 18 aquaculture as the turbot (S. maximus), which Growth salinities for adult Atlantic halibut (H. À 19 present an optimal growth in a range from 10 to hippoglossus) are usually restricted to 34 g L 1 À 20 19 g L 1 salinity: the specific salinity depending on (Ottesen & Babiak 2007). The effects of salinity 21 the water temperature (Imsland, Foss, Gunnarsson, have been studied in relation to specific fecundity 22 Berntssen, FitzGerald, Bonga, v. Ham, Naevdal & and gonadal development in flounders (Nissling & 23 Stefansson 2001). These results agree with those Dahlman 2010). The relevance of other environ- 24 obtained for halibut (H. hippoglossus) (Imsland, Gu- mental factors on adult flatfish growth (i.e. photo- 25 stavsson, Gunnarsson, Foss, Arnason, Amarson, period) has also been studied. Indeed, the 26 Jonsson, Smaradottir & Thorarensen 2008). How- influence of these environmental factors other 27 ever, wedge sole (D. cuneata) reflects a wider salin- than salinity seems to be crucial in higher lati- 28 ity tolerance at juvenile stage, keeping its plasma tudes (Bromage, Porter & Randall 2001). Specifi- 29 osmolality and ion concentrations constant in a cally, water temperature and quality, rainfall, À 30 range from 15 to 35 g L 1 salinity (Herrera et al. water flow or water level, pH, predators, popula- 31 2009a). Furthermore, optimal growth in Senegal- tion density and availability of food are also 32 ese sole (S. senegalensis) occurs in a salinity of important factors in other teleost species different À 33 39 g L 1 (full-seawater conditions in the southern than flatfish (Schulz & Goos 1999; Weltzien, An- 34 of Spain) (Arjona et al. 2007; Arjona, Vargas-Chac- dersson, Andersen, Shalchian-Tabrizi & Norberg 35 off, Ruiz-Jarabo, Goncßalves, Pascoa,^ Martın del Rıo 2004). Most of those agents are related to sexual 36 & Mancera 2009), although the juveniles of this maturation in flatfish (Weltzien et al. 2004) but 37 species can be found in brackish waters of sea they could also influence sex determination and 38 marshes (Cabral et al. 2007). This indicates a wide sex differentiation in some species (Luckenbach, 39 salinity tolerance of this species at this life stage, Borski, Daniels & Godwin 2009). For example, 40 being optimal growth achieved at full-strength sea- Japanese (P. olivaceus) and southern (P. lethostig- 41 water. At intermediary salinities, Senegalese sole ma) flounders are both differentiated as males at 42 (S. senegalensis) still presents a positive growth low and high temperatures (Yamamoto 1999; À 43 however, optimal growth occurs at 39 g L 1 salin- Luckenbach, Godwin, Daniels & Borski 2003). In 44 ity. This fact means that energy expenditure is other flatfish species like barfin flounder (Verasper 45 higher at those salinities close to the iso-osmotic mosert) or marbled sole (Limanda yokohamae), the 46 point. This reflects a situation in which, by lower- proportion of males respect to females increases 47 ing salinity, endocrine factors (i.e. cortisol) concom- only in higher temperatures (Goto, Mori, Kawa- 48 itantly increase energy metabolism (Arjona et al. mata, Matsubara, Mizuno, Adachi & Yamauchi 49 2009). The biological significance of this increase 1999; Goto, Kayaba, Adachi & Yamauchi 2000). 50 in metabolism at intermediary salinity is intriguing In this sense, it would be interesting to study 51 but could well be related to this species phylogeny how salinity affects osmoregulation in adult flat- 52 which originated from the sea. fish and what are the implications for gonadal

© 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 7 Osmoregulation and flatfish culture I Ruiz-Jarabo et al. Aquaculture Research, 2014, 1–20

1 maturation. It is therefore recommended to inc- Cortisol in teleost fish has two functions: a glu- 2 rease research on this particular subject. cocorticoid function that have subsequent reper- 3 cussions in energy metabolism and growth; and a 4 mineralocorticoid function, by means of which Osmotic homoeostasis: allostasis and 5 cortisol acts as the main regulatory hormone that stress 6 control ion transport and osmoregulation (Momm- 7 When flatfish acclimatize to different salinity con- sen et al. 1999; McCormick, Regish, O’Dea & 8 ditions, two major physiological processes occur: Shrimpton 2008). Accordingly, cortisol mobilizes 9 allostasis or stress. Beginning with allostasis, allo- metabolic substrates from store tissues to cope 10 stasis means achieving stability through change. with the energy demands (Mommsen et al. 1999) 11 Euryhalinity forces flatfish to maintain the essen- triggered by an osmotic challenge (Laiz-Carrion, 12 tial systems for life (homoeostasis) through those Sangiao-Alvarellos, Guzman, del Rio, Miguez, 13 that maintain these systems in balance as envi- Soengas & Mancera 2002; Laiz-Carrion, Martin 14 ronmental and life-history stage change (McEwen Del Rio, Miguez, Mancera & Soengas 2003; San- 15 & Wingfield 2003). For instance, the mainte- giao-Alvarellos, Laiz-Carrion, Guzman, Martin Del 16 nance of constant plasma values (allostasis) sup- Rio, Miguez, Mancera & Soengas 2003; Soengas 17 port a favorable internal milieu for the cells, so et al. 2008; Arjona et al. 2009). Moreover, as part 18 that they can remain adequately stable to of its mineralocorticoid function, cortisol increases 19 function properly (homoeostasis). Nonetheless, the branchial and intestinal Na+/K+-ATPase activity 20 animal should invest energy in osmoregulation (Seidelin, Madsen, Byrialsen & Kristiansen 1999) 21 and ion transport to reach this allostatic state in favouring the adaptation of teleosts to different 22 different salinities (Evans, Piermarini & Choe osmotic environments. Cortisol displays a dual 23 2005) (see section Energy metabolism). When the osmoregulatory function as (1) interacts with 24 allostatic state is maintain through time, there growth hormone and insulin-like growth factor 1 25 is a cumulative combination of costs which con- to regulate salt secretion and promote acclimation 26 duce to an allostatic load. Changes in environ- to seawater and (2) interacts with prolactin to 27 mental salinity could also evoke events that facilitate ion uptake and allow acclimation to 28 threaten individuals and elicit physiological and hypo-osmotic environments (McCormick 2001; 29 behavioural responses as part of allostasis in addi- McCormick et al. 2013). The action of cortisol in 30 tion to that imposed by the normal life cycle promoting ion uptake or secretion may therefore 31 (McEwen & Wingfield 2003). Stress is used, depend on the relative amount of growth hormone 32 therefore, to describe those events that threat ho- and prolactin (McCormick 2001). When environ- 33 moeostasis. The response to stress is included in mental salinity exceeds the osmoregulatory 34 the process of allostasis with concomitant load. capacity of the animal, the stress axis is activated 35 Physiological responses of flatfish to environmen- and cortisol plays an important role as glucocorti- 36 tal stressors, such as changes, in environmental coid (Mommsen et al. 1999; McCormick et al. 37 salinity have been grouped broadly as primary, 2008). In this way, catabolism is activated, being 38 secondary and tertiary (Barton 2002). Primary energy metabolites released to plasma. This physi- 39 responses involve the activation of the sympa- ological situation involves an increased flow and 40 thetic nervous system, resulting in the release of access of metabolites to osmoregulatory tissues, 41 catecholamines from chromaffin tissues (Reid, thus facilitating acclimation to the new osmotic 42 Bernier & Perry 1998), and the stimulation of environment (Sangiao-Alvarellos et al. 2003; Laiz- 43 the hypothalamus/pituitary/interrenal axis culmi- Carrion, Guerreiro, Fuentes, Canario, Martin Del 44 nating with the increase in plasma cortisol con- Rio & Mancera 2005; Sangiao-Alvarellos, Arjona, 45 centrations (Wendelaar Bonga 1997). Secondary Martin del Rio, Miguez, Mancera & Soengas 2005; 46 responses are usually defined as the immediate Arjona et al. 2007, 2009). 47 actions and effects of these hormones at tissue 48 level (Mommsen, Vijayan & Moon 1999). Tertiary Energy metabolism 49 responses extend to the level of the organism and 50 population and refer to aspects of whole-animal The metabolic costs derived from osmoregulation, 51 performance such as changes in growth (Wede- indicated as a measure of the branchial Na+/K+- 52 meyer, Barton & McLeay 1990). ATPase activity, are calculated between 6–21% of

8 © 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 Aquaculture Research, 2014, 1–20 Osmoregulation and flatfish culture I Ruiz-Jarabo et al.

1 the standard metabolic rate (SMR) in high- perspective, the juvenile stage of this species is cru- 2 energy-demand pelagic fish (Brill, Swimmer, Tax- cial for aquaculture and clear relationships 3 boel, Cousins & Lowe 2001; Soengas et al. 2008), between salinity and growing have been described, 4 26% for hybrid red tilapia (Brill et al. 2001) and next we will focus on this phase. 5 10–20% for other teleost species (Gibbs & Somero 6 1990). Some authors have postulated that epipe- Solea spp 7 lagic and sluggish fish species have lower costs for 8 osmoregulation than active-swimmers (Brill et al. Senegalese sole (S. senegalensis) juveniles can 9 2001). Anyway, these energy costs are species- adjust their plasma osmolality to a wide range of À 10 specific and also may reflect significant differences salinities (from 5 to 55 g L 1) so no significant 11 within the same species acclimated to different changes arise after a period of 14 days (Figure 3) 12 environmental salinities. Pelagic fish species, as (Arjona et al. 2007). This homoeostatic state is 13 dolphin fish (Coryphaena hippurus) juveniles, have reached by the allostatic action of the cortisol, 14 shown 15% lower metabolic rates when adapted which increased in salinities different than the full- À 15 to a salinity of 20 g L 1 (which is slightly seawater (Arjona et al. 2007, 2009). Thus, energy 16 hyper-osmotic compared with their plasma) than metabolism in Senegalese sole (S. senegalensis)is À 17 they do in full-strength seawater (34 g L 1) (Mor- imbalanced towards reallocation of metabolic 18 gan, Balfry, Vijayan & Iwama 1996). Osmoregula- stores such as glucose, lactate and/or amino acids, 19 tory changes during acclimation to different substrates that, in the extreme salinities tested, 20 salinity environments occur during two consecu- fueled the osmoregulatory system (Arjona et al. 21 tive physiological periods that are named as fol- 2009; Aragao, Costas, Vargas-Chacoff, Ruiz- 22 lows: (1) an adjustment period characterized by Jarabo, Dinis, Mancera & Conceicao 2010). Amino 23 changes in osmotic parameters (plasma osmolality, acids seem to play an important role in this reallo- À 24 plasma concentrations of cortisol, Na+ and Cl , gill cation of substrate energy so fish can adjust their 25 Na+/K+-ATPase activity, among others); and (2) a osmoregulatory capacity to the different environ- 26 chronic regulatory period, where these parameters mental salinities. These amino acids are inferred to 27 reach a new homeostatic equilibrium (Laiz-Car- be used either as energy sources or as important 28 rion, Guerreiro et al. 2005; Arjona et al. 2007). osmolytes for cell volume regulation (Aragao et al. 29 The effect of salinity on growth, as seen, varies 2010). In the wild, the highest densities of the 30 among different species, which show different and common sole (S. solea) were recorded in deep, 31 specific optimal salinities (Boeuf & Payan 2001; warm, low salinity areas, whereas S. senegalensis 32 Laverty & Skadhauge 2012). These effects of salin- 33 ity on growth rate may be a consequence of the 34 energy expenditure for osmotic and ion regulation 35 that limits thus the energy supply for growth 36 (Boeuf & Payan 2001). Carbohydrate metabolism 37 appears to play a major role in the energy sup- 38 ply for iono- and osmoregulation, and the liver is 39 the major source supplying carbohydrate metabo- 40 lites to osmoregulatory organs (Tseng & Hwang 41 2008). However, other possibilities such as food 42 intake changes (Yan et al. 2004; Rubio, Sanchez- 43 Vazquez & Madrid 2005), metabolic reorganization LOW RESOLUTION FIG 44 (Sangiao-Alvarellos et al. 2003) or stimulation 45 of osmoregulatory hormones related to growth

46 (McCormick 2001) should be considered À Figure 3 Plasma osmolality (expressed as mOsm kg 1) 12 47 (Laiz-Carrion, Sangiao-Alvarellos, Guzman, Martin in flatfish juveniles (Senegalese sole, Solea senegalensis; 48 del Rio, Soengas & Mancera 2005) as these pro- Wedge sole, Dicologoglossa cuneata; turbot, Scophthalmus 49 cessed are frecuently modulated by salinity. Here- maximus; brill, Scophthlamus rhombus) acclimated to 50 after, an analysis of those flatfish species cultured different environmental salinities. Data extracted from 51 in Europe will be carried out. We focused on the Arjona et al. 2007; Herrera et al. 2009a; Imsland et al. 52 chronic regulatory period. From a commercial 2003; Ruiz-Jarabo, personal observation.

© 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 9 Osmoregulation and flatfish culture I Ruiz-Jarabo et al. Aquaculture Research, 2014, 1–20

1 had a wider distribution mainly related to food coincide with those calculated for Atlantic halibut 2 availability (Imsland et al. 2004). It has been (H. hippoglossus) (Imsland et al. 2008). The simi- 3 showed that juvenile common sole (S. solea) can larities between these two species, which belong to 4 cope with hyposmotic environments so it shows different flatfish families (see section Phylogeny of 5 an increased rheotaxis during periods of low osmoregulatory capacity in flatfish), could be 6 salinity exposure (Champalbert, Marchand & Le- explained as an evolutionary convergence due to 7 campion 1994). As such, this may indicate that the low salinity conditions of North Atlantic 8 salinity affect feeding behaviour and/or growth waters from where these species have evolved. À 9 dynamics in sole, a situation to be considered Below the optimal growth salinity (5 g L 1), 10 when environmental salinity is manipulated for the turbot (S. maximus) presented significant 11 the culture of these species. differences in plasma osmolality, suggesting that 12 there is a threshold of acclimation to a hypotonic 13 environment (Gaumet et al. 1995). At the hyper- Wedge sole 14 osmotic salinities tested, plasma osmolality pre- 15 Similar experiments conducted with other member sented its highest values, thus it was stated that 16 of the Soleidae family, the wedge sole (D. cuneata), this species needs to cope with an extra osmoregu- 17 pointed to a different metabolic behavior while latory expenditure that is detrimental to the body 18 maintained at salinities ranging from 5 to growth (Imsland et al. 2003). À 19 55 g L 1 (Herrera et al. 2009a). In this case, 20 plasma osmolality presented lower values at brack- À Brill 21 ish water (5 g L 1) and higher values at hyperos- À 22 motic salinities (35 and 55 g L 1) (Figure 3), Brill (S. rhombus) is phylogenetically proximal to 23 indicating an osmoregulatory disruption when turbot (S. maximus); however, culture require- 24 submitted to salinities that are distant from those ments (diet, salinity, stocking density, temperature) À 25 close to the isosmostic point (15–25 g L 1). There- are inferred (Hachero-Cruzado et al. 2007; Hacher- 26 fore, extreme salinities evoked a twofold increase o-Cruzado, Olmo, Sanchez, Herrera & Domingues 27 in plasma cortisol levels compared with iso- or 2012; Herrera, Ruiz-Jarabo, Hachero, Vargas- 28 moderately hyperosmotic environments (Herrera Chacoff, Amo & Mancera 2012; Hachero-Cruzado, 29 et al. 2009a). This resulted in decreased glycogen Fornies, Herrera, Mancera & Martinez-Rodriguez À 30 and triglycerides hepatic stores, thus indicating a 2013). In salinities from 5 to 35 g L 1, no major 31 chronic stress situation for this species. Fish sub- differences in plasmatic (i.e. osmolality, Figure 3) 32 mitted to these stress situations presented a and hepatic energy metabolism parameters are 33 decreased food intake when comparing to control observed. However, hyperosmotic environments 34 groups, which in turn reflects in weight loss (Jo- can cause an osmoregulatory collapse (too high 35 bling & Baardvik 1994). plasma osmolality, which evokes an increase in 36 ATPase activities in osmoregulatory tissues, trig- 37 gering the mobilization of energy reserves to cope Turbot 38 with the hyperosmotic stress, providing an allo- 39 Experiments analysing optimal salinity for growth static overload of the system) resulting in the 40 in turbot (S. maximus) have been performed in the death of individuals in a few weeks (Ruiz-Jarabo, 41 last decades (Gaumet et al. 1995; Imsland, Foss, unpublished results). 42 Gunnarsson, Berntssen, FitzGerald, Bonga, v. Summarizing, experimental evidence suggests 43 Ham, Naevdal & Stefansson 2001; Imsland, Gun- that flatfish species should be reared at specific 44 narsson, Foss & Stefansson 2003). These studies salinities for each species to obtain optimal (the 45 indicated that turbot can survive in a wide range highest) growth. In addition to this intrinsic spe- À 46 of salinities, from 5 to 33.5 g L 1. The highest cies dependence, the capacity to cope with specific 47 growth rates are observed in salinities close the salinity ranges depends also on the life develop- À 48 iso-osmotic point (10–19 g L 1): the exact optimal mental stage. Further studies are suggested in 49 salinity for growth depending on temperature for order to elucidate how energy stores are mobilized 50 culture. In this salinity range, no significant and reallocated so that substrates from store tis- 51 changes in plasma osmolality occurred in this spe- sues can fuel osmoregulatory processes in gills, 52 cies (Figure 3). These optimal salinities for growth intestine, kidney and/or skin.

10 © 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 Aquaculture Research, 2014, 1–20 Osmoregulation and flatfish culture I Ruiz-Jarabo et al.

1 nitrogen excretion, it is also crucial for ion regula- Main osmoregulatory organs in flatfish 2 tion and acid-base balance (Goss, Perry, Fryer & and teleost in general 3 Laurent 1998; Evans, Piermarini & Potts 1999). 4 Knowledge on osmoregulatory organs and their The two major cell types in this epithelium are 5 functioning is important for the aquaculture indus- mitochondrion-rich chloride cells (CC), or iono- 6 try, so fish can be cultured at their optimal salinity cytes; and pavement cells (PVC) (Goss et al. 1998). 7 for growth. In this sense, as discussed above, cul- Morphological and biochemical differences are 8 ture at optimal salinity for growth results in an effi- described between CCs in freshwater (FW) and sea- 9 cient conversion of energy from food into somatic water (SW) fish based on their shape, location and 10 growth. The most important osmoregulatory response to different ionic conditions (Hirose, 11 organs in adult flatfish are gut, gills, kidney and, to Kaneko, Naito & Takei 2003). Ionocytes secrete 12 a lesser extent, skin (Marshall & Bern 1979; Mar- and absorb ions in SW and FW environments, 13 shall & Bryson 1998; McCormick 2001). The respectively (Hiroi & McCormick 2012). Although 14 ability of these organs to fulfill their osmoregula- several ionocyte models have been described in dif- 15 tory tasks is dependent on the properties of their ferent species and environments (Wilson, Laurent, 16 epithelia that serve as a complex selective barrier Tufts, Benos, Donowitz, Vogl & Randall 2000; Wil- 17 (McCormick 2001; Marshall 2002; McDonald son, Randall, Donowitz, Vogl & Ip 2000; Hwang, 18 2007; Hiroi & McCormick 2012; Whittamore Lee & Lin 2011; Wilson, Moreira-Silva, Delgado, 19 2012). Marine teleost fishes continuously lose flu- Ebanks, Vijayan, Coimbra & Grosell 2013), the 20 ids, because they maintain body fluid concentra- Na+/K+-ATPase (NKA) is the main driving force 21 tions far below that of seawater. To compensate, for ion uptake/secretion in these cells (Hirose et al. 22 fish drink seawater and absorb ions and water 2003; Hwang et al. 2011; Hiroi & McCormick 23 along the gastrointestinal tract, eliminating ions at 2012). In this sense, several studies performed in 24 the gill and kidney. Freshwater fish faced the oppo- flatfish species have shown different NKA activity 25 site situation, so that they must excrete the excess strategies in specimens acclimated to different 26 of osmotically gained water and absorb ions from environmental salinities (Imsland et al. 2003; 27 the environment (Perry 1998; Randall & Brauner Arjona et al. 2007; Herrera et al. 2009a; Ruiz-Ja- 28 1998; Guffey, Esbaugh & Grosell 2011). Osmoregu- rabo, personal observation) (Figure 4). While 29 latory organs work in concordance, regulating wedge sole (D. cuneata) present a U-shaped NKA 30 ionic fluxes all together. In this sense, Mg2+, the activity curve when submitted to salinities ranging À 31 second most abundant intracellular cation in from 5 to 55 g L 1 (Herrera et al. 2009a), in 32 eukaryotic cells, is introduced actively in FW fish 33 through the gills while guts and kidney are more 34 involved in the uptake of this ion from the diet (Ar- 35 jona, Chen, Flik, Bindels & Hoenderop 2013). Mag- 36 nesium movements, as well, are related to the À 37 transport of other relevant ions like Na+,Cl ,K+ 38 and Ca2+, being the Na+/K+-ATPase the driving 39 force for their fluxes. As the most recent studies 40 about ionic transporters are carried out using FW 41 fish species as biological models and assuming that 42 flatfish will present orthologues of them, there is an 43 interesting option for the future to analyse deeply 44 their interactions in euryhaline species. These iono- LOW RESOLUTION FIG 45 and osmoregulatory strategies ultimately result in 46 homeostasis, as it is shown in Figure 3. Figure 4 + + 13 47 Branchial Na /K -ATPase activity in flatfish juveniles (Senegalese sole, Solea senegalensis; Wedge 48 sole, Dicologoglossa cuneata; turbot, Scophthalmus maxi- 49 Gills mus; brill, Scophthlamus rhombus) acclimated to different 50 The gill epithelium is important for many func- environmental salinities. Data extracted from Arjona 51 tions in teleost fish. In addition to being the princi- et al. 2007; Herrera et al. 2009a; Imsland et al. 2003; 52 pal organ responsible for gas exchange and Ruiz-Jarabo, personal observation.

© 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 11 Osmoregulation and flatfish culture I Ruiz-Jarabo et al. Aquaculture Research, 2014, 1–20

1 agreement with other teleost species like seabream possess glomerulus, proximal tubule, distal tubule 2 (Sparus aurata) (Laiz-Carrion, Guerreiro et al. and collecting duct (Beyenbach 2004). However, 3 2005); other Pleuronectiformes studied showed an anatomical and functional differences exist 4 increase in this NKA activity with environmental between kidneys of FW and SW fish. Thus, SW fish 5 salinity (S. maximus: Imsland et al. 2003; S. senegal- usually possess a small or even absent glomerulus 6 ensis: Arjona et al. 2007; S. rhombus: Ruiz-Jarabo, because there is no need for water filtration, which 7 personal observation), also being described in spe- is gained passively. Functional differences FW ver- 8 cies as Oryzias dancena (Kang, Tsai, Lee & Hwang sus SW fish refer overall to the capacity of net 9 2008) or Galaxias maculatus (Ruiz-Jarabo et al., absorption or extrusion of ions from or towards the 10 unpublished results). These results indicate that the pro-urine, respectively. Therefore, glomerular filtra- 11 osmoregulatory ionocytes present in the gill fila- tion and epithelial active reabsorption of salts 12 ments feature peculiar differences between species results in ion uptake rate that exceeds passive 13 that should be studied in depth. Molecular biology mechanisms in FW fish. Conversely, in SW fish, 14 approaches, with mRNA expression of the different active ion transport mechanisms enrich electrolyte 15 agents present (ionic channels, pumps, transporters content in the pro-urine (Dantzler 2003; McDonald 16 and cotransporters, aquaporins, etc.), or immuno- 2007). In both situations, the energy for both 17 histochemical works using specific antibodies sodium and chloride (the two major ions absorbed/ 18 towards them, may be done in flatfish species to excreted by kidneys, together with magnesium and 19 categorize specific models for gill osmoregulation. sulfate) reabsorption/excretion, is derived from the 20 Anyway, in flatfish species, it looks like there are basolateral NKA that transports sodium in and/or 21 two branchial strategies towards the acclimation to out of the nephron cells (Dantzler 2003). Acclima- 22 different environmental salinities. Assuming that tion of euryhaline teleosts to different environmen- 23 the NKA enzyme is the main driving force related tal salinities induces several alterations in kidney, 24 to osmoregulatory processes, the first strategy viz. general morphology, capacity of excretion of 25 pointed to a linear relationship of this enzyme ions, glomerular filtration rates and urine produc- 26 towards salinity, with the lowest values at hypos- tion including changes in NKA activity (Beyenbach 27 motic environments; while the other branchial 1995; Renfro 1995). However, to the best of our 28 strategy pointed to a U-shaped NKA activity, with knowledge, there are scarce studies focused on kid- 29 the maximum at hypo- and hyperosmotic environ- ney osmoregulation in flatfish. Net sodium and 30 ments. Comparisons with other teleostean groups chloride excretion processes have been studied in 31 are interesting as they demonstrate that this heter- isolated, perfused proximal tubules from a marine 32 ogeneity is not exclusive of Pleuronectiformes. In flatfish teleost, the winter flounder (Pseudopleuronec- 33 this sense, members of the Adrianichthydae family tes americanus) (Beyenbach, Petzel & Cliff 1986). 34 showed differences in the branchial NKA activity, Other authors have assessed NKA activity in kid- 35 as Kang et al. (2008) described: a linear relation- ney of flatfishes and find out that this enzymatic 36 ship for Oryzias latipes and a U-shape for O. dancena, activity varied in a species-specific manner when 37 reinforcing the hypothesis that euryhaline teleosts submitting specimens to a wide range of environ- 38 present their lowest level of gill NKA activity at mental salinities (Arjona et al. 2007; Herrera et al. 39 salinity environments close to the primary natural 2009a). In Senegalese sole (S. senegalensis) (Arjona 40 habitats. This fact could be an explanation of the et al. 2007), renal NKA activity did not differ sig- 41 evolutionary origin of the Pleuronectid family spe- nificantly between animals exposed to different À 42 cies, indicating which the natural environmental environmental salinities (from 5 to 55 g L 1). This 43 salinity of their ancestors was. As there are at least can be explained by the anatomical location of this 44 25 000 different species of teleost fishes, our under- pump in the nephron (Beyenbach 1995; Dantzler 45 standing of the few we have studied is still far from 2003; McDonald 2007). In that study, kidney biop- 46 complete (Wilson, Laurent et al. 2000; Wilson, sies were taken without distinguishing between dif- 47 Randall et al. 2000). ferent areas of the nephron, so that no increase or 48 decrease in this enzymatic activity could be 49 inferred in those different regions of the nephron. Kidney 50 On the other hand, renal NKA activity in speci- 51 Functional units of flatfish kidney, nephrons, mens of wedge sole (D. cuneata) maintained within 52 resemble their mammalian counterparts as they the same environmental salinity range showed a

12 © 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 Aquaculture Research, 2014, 1–20 Osmoregulation and flatfish culture I Ruiz-Jarabo et al.

1 direct linear relationship respect to environmental functions as the final controller of the intestinal 2 salinity (Herrera et al. 2009a). The increased function in osmoregulation (Gregorio et al. 2013). 3 activity observed in fish maintained in a hypersa- Unless those differentiations are supposed to be 4 line medium could be attributed to an enhance- shared by Pleuronectiformes, it should be of 5 ment in ion transport typical of this environment interest to study these processes in the intestine of 6 (Kelly, Chow & Woo 1999; Kelly & Woo 1999; flatfish species in order to elucidate if there are dif- 7 McDonald 2007). Further studies are necessary to ferences with those previously studied fish. 8 decode the intrinsic mechanisms of those different 9 parts that constitute the nephron. Cellular and New challenges for emerging species 10 molecular studies (identification and description of 11 ionic channels and transporters) focused in renal Flatfish aquaculture trends to a diversification of 12 secretion/absorption will help us to know in detail the sector. In this way, new species for the indus- 13 the interactions and differences of these important try are being under study continuously so that 14 osmoregulatory processes in pleuronectid fish. they can be cultured in an economically satisfac- 15 tory manner. When a new flatfish species is settled 16 down for its culture, aquaculturists and scientists Intestine 17 tend to rely on the same methodologies already 18 Fish absorb water and ions (predominantly Na+ employed for other flatfish species. Most studies À 19 and Cl ) along the gastrointestinal tract, and have proposed an optimization of the environmen- 20 excrete ions at the posterior part of it (Whittamore tal conditions of the culture focusing only on the 21 2012); but specimens of euryhaline species growth of the individuals and leaving aside physio- 22 adapted to different environmental salinities show logical aspects (Bengtson 1999; Henne & Watana- 23 functional specialization in the intestine (Gregorio, be 2003, 2003; Augley, Huxham, Fernandes & 24 Carvalho, Encarnacao, Wilson, Power, Canario & Lyndon 2008; Gustavsson, Imsland, Gunnarsson, 25 Fuentes 2013). Absorption of chloride and water Arnason, Arnason, Jonsson, Smaradottir & Thora- 26 from ingested SW in the marine fish intestine is rensen 2010; Audet & Tremblay 2011). For this À À 27 accomplished partly through Cl /HCO3 exchange reason, the culture of some species using environ- 28 (Guffey et al. 2011). The major routes for NaCl mental salinities described as optimal for other spe- 29 absorption in the intestine have long been attrib- cies can lead to unsolvable problems, deriving into À À 30 uted to Na+-Cl cotransport and Na+-K+-2Cl co- an allostatic load of the osmoregulatory system 31 transport driven indirectly by basolateral NKA (McEwen & Wingfield 2003) due to slight physio- 32 (Grosell 2006; Grosell & Taylor 2007; Grosell, logical different necessities between species. For 33 Genz, Taylor, Perry & Gilmour 2009). Recently, a instance, in the south of Spain, different members 34 H+ pump was found to secrete acid into the intes- of the Soleidae family are cultured (Solea senegalen- 35 tinal lumen, and it may serve to facilitate further sis and Dicologoglossa cuneata) in sea marshes, with À À 36 Cl /HCO3 exchange, especially in the posterior the same salinity conditions as the water taken 37 intestine, where adverse concentration gradients directly from the nearby sea. Their juveniles 38 could limit it (Guffey et al. 2011). This H+ pump present an optimal growing salinity around 36 ppt 39 mRNA expression increased 20-fold in the poster- (full seawater in this geographic area), so the cul- 40 ior intestine of gulf toadfish (Opsanus beta) while ture, from an osmoregulatory point of view, is per- 41 NKA activity was elevated in the anterior intestine formed in the best salinity conditions. Moreover, 42 but not in the posterior intestine after an acute in this region, there is an emerging species for À 43 transfer from 30 to 60 g L 1 salinity (Guffey et al. aquaculture, the brill (Scophthalmus rhombus). This 44 2011). No studies have been performed with flat- species is still under study to better understand its 45 fish species, but it could be speculated that flatfish environmental necessities, but the original efforts 46 present similarities with other teleost species. In have aimed to copy the Soleidae methodologies 47 this sense, gilthead seabream (S. aurata) present a employed in the area, including environmental 48 functional anterior-posterior specialization with salinity conditions for culture. Ruiz-Jarabo et al. 49 regards to the intestinal fluid processing and sub- (unpublished results) had demonstrated that the 50 sequently adaptation to different environmental best growing conditions for the juvenile brill occur 51 salinities (Gregorio et al. 2013). The rectum around a salinity of 12 ppt. These results are in 52 becomes more active at higher salinities and agreement with what it has been described for

© 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 13 Osmoregulation and flatfish culture I Ruiz-Jarabo et al. Aquaculture Research, 2014, 1–20

1 other cultured members of the family Scophthalmi- differences in growth, not only between species 2 dae (viz. S. maximus or turbot), which preferred but also between life stages, point to a necessary 3 iso-osmotic salinities (Imsland et al. 2001). Hereaf- thorough knowledge of the osmoregulatory 4 ter, further studies should take into account the requirements of these animals at each develop- 5 phylogeny of the flatfish species, to the extent that mental stage. This is especially relevant for flatfish, 6 the optimal environmental salinity conditions which pass through metamorphic processes that 7 imposed by their ancestors (those flatfish families are conditions by the environmental salinity. Early 8 which appeared first in the evolution, as Fig. 1 life stages of flatfish usually are able to grow and 9 and Table 1 shown) may have changed. Anyway, develop properly in a wider range of environmen- 10 and returning to the theme of the brill culture, its tal conditions than juveniles or adults. This fact 11 osmoregulatory necessities could be similar to could be an advantage for aquaculturists, as they 12 those described for other members of the Scop- can maintain flatfish larvae within a large range 13 hthalmidae family (iso-osmotic conditions for juve- of salinities without facing osmoregulatory con- 14 nile culture), leading to think that those species strictions. However, special care should be taken 15 may be cultured in the same geographic areas. as juveniles become less tolerant and require more 16 This issue must be taken with extreme caution, as specific salinity conditions while growing. For this 17 there are many other environmental conditions reason, further studies are recommended to fulfill 18 that differ from one species to another. Thereby, the osmotic necessities of flatfish species, especially 19 the turbot needs lower temperatures than the brill at young stages of their life. These future studies 20 for its culture. In this sense, other physicochemical may certainly benefit those carried out with simi- 21 conditions such as temperature or light should be lar species of the same family, but with certain 22 taken into account for culture optimization (Bengt- restrictions as every species present differences 23 son 1999; Madon 2002; Henne & Watanabe against the others. 24 2003; Gustavsson et al. 2010). Focusing on the 25 osmoregulatory capacities of the flatfish species, a Acknowldgements 26 correct environmental salinity may evoke a 27 reduced allostatic load situation, which can lead to I. Ruiz-Jarabo was partially granted by the Conse- 28 a greater contribution of energy to somatic growth jerıa de Innovacion, Ciencia y Empresa de la Junta 29 processes. For the reasons mentioned above, the de Andalucıa as sponsor of the Programa de Becas 30 correct geographical situation of the culture de Movilidad Academica de la AUIP and also fi- 31 becomes extremely important for the optimization nancied by FONDECYT Project 1110235 conceded 32 of the flatfish industry. to L. Vargas-Chacoff. M. Herrera’s post-doc con- 33 tract is supported by the Operational Programme 34 of the European Social Fund 2007–2013 of And- Conclusions 35 alusia. I. Hachero was supported by an INIA post- 36 Present evidences indicate that knowledge on doctoral contract. 37 osmoregulatory processes in flatfish is crucial for 38 the selection of the best environmental salinity for References 39 optimal growth and culture in general. Due to the 40 evolutionary drift from a seawater ancestor experi- Alvial A. & Manrıquez J. (1999) Diversification of flatfish 41 enced by this Order of fish, the evolutionary etiol- culture in Chile. Aquaculture 176,65–73. 42 ogy of flatfish families could provide important Aragao C., Costas B., Vargas-Chacoff L., Ruiz-Jarabo I., 43 information about their osmoregulatory capacities. Dinis M.T., Mancera J.M. & Conceicao L.E. (2010) Changes in plasma amino acid levels in a euryhaline 44 In this sense, the evolution of this Order have fish exposed to different environmental salinities. 45 evolved as it occupied different ecological niches, Amino Acids 38, 311–317. 46 as freshwater, leading to a plethora of different Arai K. (2001) Genetic improvement of aquaculture fin- 47 osmoregulatory strategies to cope with environ- fish species by chromosome manipulation techniques 48 mental salinity. An inadequate environmental in Japan. Aquaculture 197, 205–228. 49 salinity (far from the salinity where highest Arjona F.J., Vargas-Chacoff L., Ruiz-Jarabo I., Martin del 50 growth is achieved) for culture evokes an allostatic Rio M.P. & Mancera J.M. (2007) Osmoregulatory 51 load which results in a deviation of energy from response of Senegalese sole (Solea senegalensis)to 52 somatic growth to homeostasis. The observed changes in environmental salinity. Comparative

14 © 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 Aquaculture Research, 2014, 1–20 Osmoregulation and flatfish culture I Ruiz-Jarabo et al.

1 biochemistry and physiology. Part A, Molecular & integra- flesus L. in a gradient experiment. Journal of Fish Biology 2 tive physiology 148, 413–421. 68, 1411–1420. 3 Arjona F.J., Vargas-Chacoff L., Ruiz-Jarabo I., Goncßalves Brill R., Swimmer Y., Taxboel C., Cousins K. & Lowe T. 4 O., Pascoa^ I., Martın del Rıo M.P. & Mancera J.M. (2001) Gill and intestinal Na+-K+ ATPase activity, 5 (2009) Tertiary stress responses in Senegalese sole (So- and estimated maximal osmoregulatory costs, in three 6 lea senegalensis Kaup, 1858) to osmotic challenge: high energy-demand teleosts: yellowfin tuna (Thunnus albacares Katsuwonus pelamis 7 implications for osmoregulation, energy metabolism ), skipjack tuna ( ), and dol- and growth. Aquaculture 287, 419–426. phin fish (Coryphaena hippurus). Marine Biology 138, 8 Arjona F.J., Chen Y., Flik G., Bindels R.J. & Hoenderop 935–944. 9 J.G. (2013) Tissue-specific expression and in vivo regu- Bromage N., Mazorra C., Bruce M., Brown N.L. & Shields 10 lation of zebrafish orthologues of mammalian genes R. (2000) Halibut culture. In: Encyclopedia of Aquaculture 11 related to symptomatic hypomagnesemia. Pflugers Ar- (ed. by R.R. Stickney), pp. 425–432. Wiley, New York. 12 chiv. European Journal of Physiology 465, 1409–1421. Bromage N., Porter M. & Randall C. (2001) The environ- 13 Audet C. & Tremblay R. (2011) Production of flounder mental regulation of maturation in farmed finfish with 14 (Pleuronectiformes) in eastern north america: biologi- special reference to the role of photoperiod and melato- 15 cal issues. Canadian Journal of Zoology 89, 612–621. nin. Aquaculture 197,63–98. 16 Augley J., Huxham M., Fernandes T.F. & Lyndon A.R. Burke J.S., Tanaka M. & Seikai T. (1995) Influence of 17 (2008) The effect of salinity on growth and weight loss light and salinity on behaviour of larval Japanese Pleuronectes platessa experi- Paralichthys olivaceus 18 of juvenile plaice ( , L): an flounder ( ) and implications for mental test. Journal of Sea Research 60, 292–296. inshore migration. Netherlands Journal of Sea Research 19 Barton B.A. (2002) Stress in fishes: a diversity of 34,59–69. 20 responses with particular reference to changes in cir- Cabral H.N., Vasconcelos R., Vinagre C., Franca S., 21 culating corticosteroids. Integrative and Comparative Fonseca V., Maia A., Reis-Santos P., Lopes M., Ruano 22 Biology 42, 517–525. M., Campos J., Freitas V., Santos P.T. & Costa M.J. 23 Beck M.W., Heck K.L., Able K.W., Childers D.L., Eggle- (2007) Relative importance of estuarine flatfish nurser- 24 ston D.B., Gillanders B.M., Halpern B., Hays C.G., ies along the Portuguese coast. Journal of Sea Research 25 Hoshino K., Minello T.J., Orth R.J., Sheridan P.F. & 57, 209–217. 26 Weinstein M.R. (2001) The identification, conserva- Cerda J. & Manchado M. (2013) Advances in genomics 27 tion, and management of estuarine and marine nurser- for flatfish aquaculture. Genes and Nutrition 8,5–17. – 28 ies for fish and invertebrates. BioScience 51, 633 641. Champalbert G., Marchand J. & Lecampion J. (1994) Solea solea 29 Bengtson D.A. (1999) Aquaculture of summer flounder Rheotaxis in juvenile sole (L) - influence of (Paralichthys dentatus): status of knowledge, current salinity and light conditions. Netherlands Journal of Sea 30 research and future research priorities. Aquaculture Research 32, 309–319. 31 176,39–49. Dantzler W.H. (2003) Regulation of renal proximal and 32 Berg L.S. (1958) System der rezenten und fossilen Fischarti- distal tubule transport: sodium, chloride and organic 33 gen und Fische. VEB Verlag der Wissenschaften, Berlin. anions. Comparative Biochemistry and Physiology Part A 34 Bernatzeder A.K., Cowley P.D. & Hecht T. (2010) Do 136, 453–478. 35 juveniles of the estuarine-dependent dusky kob, Argyr- Devauchelle N., Alexandre J.C., Lecorre N. & Letty Y. 36 osomus japonicus, exhibit optimum growth indices at (1987) Spawning of sole (Solea solea) in captivity. 37 reduced salinities? Estuarine, Coastal and Shelf Science Aquaculture 66, 125–147. 38 90, 111–115. Dinis M.T., Ribeiro L., Soares F. & Sarasquete C. (1999) 39 Beyenbach K.W. (1995) Secretory electrolyte transport A review on the cultivation potential of Solea senegalen- Fish Physiology sis Aquaculture 176 – 40 in renal proximal tubules of fish. In: in Spain and in Portugal. ,27 38. (ed. by CM Wood & TJ Shuttleworth), pp. 85–106. Evans D.H. (2008) Teleost fish osmoregulation: what 41 Academic Press, San Diego, CA. have we learned since August Krogh, Homer Smith, 42 Beyenbach K.W. (2004) Kidneys sans glomeruli. Ameri- and Ancel Keys. American Journal of Physiology: Regula- 43 can Journal of Physiology. Renal Physiology 286, F811– tory, Integrative and Comparative Physiology 295, 44 F827. R704–R713. 45 Beyenbach K.W., Petzel D.H. & Cliff W.H. (1986) Renal Evans D.H., Piermarini P.M. & Potts W.T.W. (1999) 46 proximal tubule of flounder. 1. Physiological-properties. Ionic transport in the fish gill epithelium. Journal of 47 American Journal of Physiology 250, R608–R615. Experimental Zoology 283, 641–652. 48 Boeuf G. & Payan P. (2001) How should salinity influ- Evans D.H., Piermarini P.M. & Choe K.P. (2005) The 49 ence fish growth? Comparative Biochemistry and Physiol- multifunctional fish gill: dominant site of gas – 50 ogy Part C 130, 411 423. exchange, osmoregulation, acid-base regulation, and Physiological Reviews 51 Bos A.R. & Thiel R. (2006) Influence of salinitiy on the excretion of nitrogenous waste. migration of postlarval and juvenile flounder Pleuronectes 85,97–177. 52

© 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 15 Osmoregulation and flatfish culture I Ruiz-Jarabo et al. Aquaculture Research, 2014, 1–20

1 FAO (2012) The state of World Fisheries and Aquaculture, Guffey S., Esbaugh A. & Grosell M. (2011) Regulation of 2 FAO, Rome. apical H(+)-ATPase activity and intestinal HCO(3)(-) 3 Fiol D.F. & Kultz D. (2007) Osmotic stress sensing and secretion in marine fish osmoregulation. American Jour- 4 signaling in fishes. FEBS Journal 274, 5790–5798. nal of Physiology: Regulatory, Integrative and Comparative 5 Flik G., varsamos S., Guerreiro P., Fuentes X., Huising Physiology 301, R1682–R1691.  6 M.O. & Fenwick J.C. (2002) Drinking in (very young) Gustavsson A., Imsland A.K., Gunnarsson S., Arnason J., Exptl Biol Rev 7 fish. In: (ed. by N Hazon & G Flik), pp. Arnason I., Jonsson A.F., Smaradottir H. & Thoraren- 8 31–48. BIOS Scientific Publishers Limited, Oxford, UK. sen H. (2010) Growth and blood chemistry of Atlantic 8 Fonds M. (1979) Laboratory observations on the influ- halibut (Hippoglossus hippoglossus L.) in relation to 9 ence of temperature and salinity on development of salinity and continuous light. Aquaculture International 10 the eggs and growth of the larvae of Solea-Solea 18, 433–445. 11 (Pisces). Marine Ecology Progress Series 1,91–99. Hachero-Cruzado I., Garcıa-Lopez A., Herrera M., Vargas- 12 Friedman M. (2008) The evolutionary origin of flatfish Chacoff L., Martınez-Rodrıguez G., Mancera J.M. & Na- 13 asymmetry. Nature 454, 209–212. vas J.I. (2007) Reproductive performance and seasonal 14 Gaumet F., Boeuf G., Severe A., Le Roux A. & Mayer- plasma sex steroid and metabolite levels in a captive 15 Gostan N. (1995) Effects of salinity on the ionic bal- wild broodstock of brill Scophthalmus rhombus L. Aqua- 16 ance and growth of juvenile turbot. Journal of Fish culture Research 38, 1161–1174. – 17 Biology 47, 865 876. Hachero-Cruzado I., Ortiz-Delgado J.B., Borrega B., Herre- 18 Gavlik S. & Specker J.L. (2004) Metamorphosis in sum- ra M., Navas J.I. & Sarasquete C. (2009) Larval organ- mer flounder: manipulation of rearing salinity to syn- ogenesis of flatfish brill Scophthalmus rhombus L: 19 chronize settling behavior, growth and development. histological and histochemical aspects. Aquaculture 20 Aquaculture 240, 543–559. 286, 138–149. 21 Gibbs A. & Somero G.N. (1990) Na+-K + -adenosine tri- Hachero-Cruzado I., Olmo P., Sanchez B., Herrera M. & 22 phosphatase activities in gills of marine teleost fishes – Domingues P. (2012) Effects of two diets on lipid com- 23 changes with depth, size and locomotory activity level. position and reproductive performance of brill (Scoph- 24 Marine Biology 106, 315–321. thalmus rhombus) eggs. Aquaculture Research 43, 1439– 25 Gibson R.N. (2005) Flatfishes: Biology and Exploitation. 1450. 26 Blackwell Science, Oxford. Hachero-Cruzado I., Fornies A., Herrera M., Mancera 27 Goss G.G., Perry S.F., Fryer J.N. & Laurent P. (1998) Gill J.M. & Martinez-Rodriguez G. (2013) Sperm production 28 morphology and acid-base regulation in freshwater and quality in brill Scophthalmus rhombus L.: relation Comparative Biochemistry and Physiology. Part A, Fish Physiology and 29 fishes. to circulating sex steroid levels. Molecular & Integrative Physiology 119, 107–115. Biochemistry 39, 215–220. 30 Goto R., Mori T., Kawamata K., Matsubara T., Mizuno Hart P.R. & Purser G.J. (1995) Effects of salinity and 31 S., Adachi S. & Yamauchi K. (1999) Effects of temperature on eggs and yolk sac larvae of the green- 32 temperature on gonadal sex determination in barfin back flounder (Rhombosolea tapirina Gunther, 1862). 33 flounder Verasper moseri. Fisheries Science 65, 884–887. Aquaculture 136, 221–230. 34 Goto R., Kayaba T., Adachi S. & Yamauchi K. (2000) Hart P.R., Hutchinson W.G. & Purser G.J. (1996) Effects 35 Effects of temperature on sex determination in marbled of photoperiod, temperature and salinity on hatchery- 36 sole Limanda yokohamae. Fisheries Science 66, 400–402. reared larvae of the greenback flounder (Rhombosolea 37 Gregorio S.F., Carvalho E.S., Encarnacao S., Wilson J.M., tapirina Gunther, 1862). Aquaculture 144, 303–311. 38 Power D.M., Canario A.V. & Fuentes J. (2013) Adapta- Henne J.P. & Watanabe W.O. (2003) Effects of light 39 tion to different salinities exposes functional specializa- intensity and salinity on growth, survival and whole- Sparus aurata Paralich- 40 tion in the intestine of the sea bream ( body osmolality of larval southern Flounder L.). Journal of Experimental Biology 216, 470–479. thys lethostigma. Journal of the World Aquaculture Society 41 Grosell M. (2006) Intestinal anion exchange in marine 34, 450–465. 42 fish osmoregulation. Journal of Experimental Biology Herrera M., Hachero I., Rosano M., Ferrer J.F., Marquez 43 209, 2813–2827. J.M. & Navas J.I. (2008) First results on spawning, lar- 44 Grosell M. & Taylor J.R. (2007) Intestinal anion val rearing and growth of the wedge sole (Dicologoglos- 45 exchange in teleost water balance. Comparative Bio- sa cuneata) in captivity, a candidate species for 46 chemistry and Physiology. Part A, Molecular & Integra- aquaculture. Aquaculture International 16,69–84. 47 tive Physiology 148,14–22. Herrera M., Vargas-Chacoff L., Hachero I., Ruiz-Jarabo I., 48 Grosell M., Genz J., Taylor J.R., Perry S.F. & Gilmour Rodiles A., Navas J.I. & Mancera J.M. (2009a) Osmo- 49 K.M. (2009) The involvement of H + -ATPase and car- regulatory changes in wedge sole (Dicologoglossa cune- 50 bonic anhydrase in intestinal HCO3- secretion in sea- ata Moreau, 1881) after acclimation to different Journal of Experimental Aquaculture Research 40 51 water-acclimated rainbow trout. environmental salinities. , Biology 212, 1940–1948. 762–771. 52

16 © 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 Aquaculture Research, 2014, 1–20 Osmoregulation and flatfish culture I Ruiz-Jarabo et al.

1 Herrera M., Vargas-Chacoff L., Hachero I., Ruiz-Jarabo I., Imsland A.K., Gustavsson A., Gunnarsson S., Foss A., Ar- 2 Rodiles A., Navas J.I. & Mancera J.M. (2009b) Physio- nason J., Amarson I., Jonsson A.F., Smaradottir H. & 3 logical responses of juvenile wedge sole Dicologoglossa Thorarensen H. (2008) Effects of reduced salinities on 4 cuneata (Moreau) to high stocking density. Aquaculture growth, feed conversion efficiency and blood 5 Research 40, 790–797. physiology of juvenile Atlantic halibut (Hippoglossus – 6 Herrera M., Aragao C., Hachero I., Ruiz-Jarabo I., hippoglossus L.). Aquaculture 274, 254 259. 7 Vargas-Chacoff L., Mancera J.M. & Conceicao L. Isorna E., Obregon M., Calvo R.M., Vazquez R., Pendon (2012) Physiological short-term response to sudden C., Falcon J. & Munoz-Cueto J. (2009) Iodothyronine 8 salinity change in the Senegalese sole (Solea senegalen- deiodinases and thyroid hormone receptors regulation 9 sis). Fish Physiology and Biochemistry 38, 1741–1751. during flatfish (Solea senegalensis) metamorphosis. Jour- 10 Herrera M., Ruiz-Jarabo I., Hachero I., Vargas-Chacoff L., nal of Experimental Zoology Part B Molecular and 11 Amo A. & Mancera J.M. (2012) Stocking density Developmental Evolution 312B, 231–246. 12 affects growth and metabolic parameters in the brill Jobling M. & Baardvik B.M. (1994) The influence of 13 (Scophthalmus rhomus). Aquaculture International 20, environmental manipulations on interindividual and 14 1041–1052. intraindividual variation in food acquisition and 15 Hiroi J. & McCormick S.D. (2012) New insights into gill growth-performance of Arctic charr, Salvelinus-Alpinus. 16 ionocyte and ion transporter function in euryhaline Journal of Fish Biology 44, 1069–1087. 17 and diadromous fish. Respiratory Physiology & Neurobi- Kang C.K., Tsai S.C., Lee T.H. & Hwang P.P. (2008) Dif- ology 184 – + + 18 , 257 268. ferential expression of branchial Na /K( )-ATPase of Hiroi J., Kaneko T., Seikai T. & Tanaka M. (1998) two medaka species, Oryzias latipes and Oryzias dance- 19 Developmental sequence of chloride cells in the body na, with different salinity tolerances acclimated to 20 skin and gills of Japanese flounder (Paralichthys olivac- fresh water, brackish water and seawater. Comparative 21 eus) larvae. Zoological Science 15, 455–460. Biochemistry and Physiology. Part A, Molecular & Inte- 22 Hirose S., Kaneko T., Naito N. & Takei Y. (2003) Molecu- grative Physiology 151, 566–575. 23 lar biology of major components of chloride cells. Com- Karas P. & Klingsheim V. (1997) Effects of temperature 24 parative Biochemistry and Physiology B Biochemistry & and salinity on embryonic development of turbot 25 Molecular Biology 136B, 593–620. (Scophthalmus maximus L.) from the North Sea, and 26 Huang L.Y., Schreiber A.M., Soffientino B., Bengtson comparisons with Baltic populations. Helgol€ander 27 D.A. & Specker J.L. (1998) Metamorphosis of summer Meeresuntersuchungen 51, 241–247. 28 flounder (Paralichthys dentatus): thyroid status and the Kelly S.P. & Woo N.Y.S. (1999) The response of sea Journal of Experimen- Journal 29 timing of gastric gland formation. bream following abrupt hyposmotic exposure. tal Zoology 280, 413–420. of Fish Biology 55, 732–750. 30 Hutchinson S. & Hawkins L.E. (1990) The influence of Kelly S.P., Chow I.N. & Woo N.Y. (1999) Haloplasticity 31 salinity on water-balance in O-group flounders,Platich- of black seabream (Mylio macrocephalus): hypersaline to 32 thys-Flesus (L). Journal of Fish Biology 36, 751–764. freshwater acclimation. Journal of Experimental Zoology 33 Hwang P.P., Lee T.H. & Lin L.Y. (2011) Ion regulation 283, 226–241. 34 in fish gills: recent progress in the cellular and Keys A. & Willmer E.N. (1932) “Chloride secreting cells” 35 molecular mechanisms. American Journal of Physiology: in the gills of fishes, with special reference to the com- 36 Regulatory, Integrative and Comparative Physiology 301, mon eel. The Journal of Physiology-London 76, 368– 37 R28–R47. 378. 38 Imsland A.K., Foss A., Gunnarsson S., Berntssen M.H.G., Klaren P.H., Wunderink Y.S., Yufera M., Mancera J.M. & 39 FitzGerald R., Bonga S.W., v. Ham E., Naevdal G. & Flik G. (2008) The thyroid gland and thyroid hor- Solea senegalensis 40 Stefansson S.O. (2001) The interaction of temperature mones in Senegalese sole ( ) during and salinity on growth and food conversion in juvenile early development and metamorphosis. General and 41 turbot (Scophthalmus maximus). Aquaculture 198, 353– Comparative Endocrinology 155, 686–694. 42 367. Krogh A. (1937) Osmotic regulation by active absorption 43 Imsland A.K., Gunnarsson S., Foss A. & Stefansson S.O. of ions in freshwater animals. Skandinavisches Archiv 44 (2003) Gill Na+,K+ -ATPase activity, plasma chloride fur€ Physiologie 77,50–52. 45 and osmolality in juvenile turbot (Scophthalmus maxi- Laiz-Carrion R., Sangiao-Alvarellos S., Guzman J.M., del 46 mus) reared at different temperatures and salinities. Rio M.P., Miguez J.M., Soengas J.L. & Mancera J.M. 47 Aquaculture 218, 671–683. (2002) Energy metabolism in fish tissues related to 48 Imsland A.K., Foss A., Conceicao L.E.C., Dinis M.T., Del- osmoregulation and cortisol action. Fish Physiology and 49 bare D., Schram E., Kamstra A., Rema P. & White P. Biochemistry 27, 179–188. 50 (2004) A review of the culture potential of Solea solea Laiz-Carrion R., Martin Del Rio M.P., Miguez J.M., Man- Reviews in Fish Biology and Fisher- 51 and S. senegalensis. cera J.M. & Soengas J.L. (2003) Influence of cortisol on ies 13, 379–407. osmoregulation and energy metabolism in gilthead 52

© 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 17 Osmoregulation and flatfish culture I Ruiz-Jarabo et al. Aquaculture Research, 2014, 1–20

1 seabream Sparus aurata. Journal of Experimental Zoology Marshall W.S. & Bern H.A. (1979) Teleostean urophysis: 2 298A, 105–118. urotensin II and ion transport across the isolated skin 3 Laiz-Carrion R., Guerreiro P.M., Fuentes J., Canario of a marine teleost. Science 204, 519–521. 4 A.V.M., Martin Del Rio M.P. & Mancera J.M. (2005) Marshall W.S. & Bryson S.E. (1998) Transport mecha- 5 Branchial osmoregulatory response to salinity in the nisms of seawater teleost chloride cells: an inclusive 6 gilthead sea bream, Sparus auratus. Journal of Experi- model of a multifunctional cell. Comparative Biochemis- mental Zoology Part A Comparative Experimental Biology try and Physiology. Part A, Molecular & Integrative 7 303A, 563–576. Physiology 119,97–106. 8 Laiz-Carrion R., Sangiao-Alvarellos S., Guzman J.M., McCormick S.D. (2001) Endocrine control of osmoregula- 9 Martin del Rio M.P., Soengas J.L. & Mancera J.M. tion in teleost fish. American Zoologist 41, 781–794. 10 (2005) Growth performance of gilthead sea bream Spa- McCormick S.D., Regish A., O’Dea M.F. & Shrimpton J.M. 11 rus aurata in different osmotic conditions: implications (2008) Are we missing a mineralocorticoid in teleost 12 for osmoregulation and energy metabolism. Aquacul- fish? Effects of cortisol, deoxycorticosterone and aldo- 13 ture 250, 849–861. sterone on osmoregulation, gill Na+,K+ -ATPase 14 Lanes C.F.C., Okamoto M.H., Bianchini A., Marins L.F. & activity and isoform mRNA levels in Atlantic salmon. 15 Sampaio L.A. (2010) Sperm quality of Brazilian floun- General and Comparative Endocrinology 157,35–40. 16 der Paralichthys orbignyanus throughout the reproduc- McCormick S.D., Farrell A.P. & Brauner C.J. (2013) Fish – 17 tive season. Aquaculture Research 41, e199 e207. physiology. In: Euryhaline Fishes, Vol. 32 (ed. by AP 18 Laverty G. & Skadhauge E. (2012) Adaptation of teleosts Farrell & CJ Brauner), pp 558. Academic Press, Oxford, to very high salinity. Comparative Biochemistry and UK. 19 Physiology. Part A, Molecular & Integrative Physiology McDonald M.D. (2007) The renal contribution to salt 20 163,1–6. and water balance. In: Fish Osmoregulation (ed. by B 21 Liu H.W., Stickney R.R., Dickhoff W.W. & McCaughran Baldiserotto, JM Mancera & BG Kapoor), pp. 309–332. 22 D.A. (1993) Neutral buoyancy salinity of Pacific hali- Sciencie Publishers Enfield (NH) & IBH Publishing, 23 but Hippoglossus stenolepis eggs and larvae. Journal of New Delhi, India. 24 the World Aquaculture Society 24, 486–492. McEwen B.S. & Wingfield J.C. (2003) The concept of allo- 25 Lopez-Bojorquez L., Villalobos P., Garcia-G C., Orozco A. stasis in biology and biomedicine. Hormones and 26 & Valverde-R C. (2007) Functional identification of an Behavior 43,2–15. 27 osmotic response element (ORE) in the promoter region Mommsen T.P., Vijayan M.M. & Moon T.W. (1999) Cor- 28 of the killifish deiodinase 2 gene (FhDio2). Journal of tisol in teleosts: dynamics, mechanisms of action, and Experimental Biology 210 – Reviews in Fish Biology and Fish- 29 , 3126 3132. metabolic regulation. Luckenbach J.A., Godwin J., Daniels H.V. & Borski R.J. eries 9, 211–268. 30 (2003) Gonadal differentiation and effects of tempera- Morgan J.D., Balfry S.K., Vijayan M.H. & Iwama G.K. 31 ture on sex determination in southern flounder (Para- (1996) Physiological responses to hyposaline exposure 32 lichthys lethostigma). Aquaculture 216, 315–327. and handling and confinement stress in juvenile dol- 33 Luckenbach J.A., Murashige R., Daniels H.V., Godwin J. phin (mahimahi: Coryphaena hippurus). Canadian Journal 34 & Borski R.J. (2007) Temperature affects insulin-like of Fisheries and Aquatic Sciences 53, 1736–1740. 35 growth factor I and growth of juvenile southern floun- Moustakas C.T., Watanabe W.O. & Copeland K.A. (2004) 36 der, Paralichthys lethostigma. Comparative Biochemistry Combined effects of photoperiod and salinity on 37 and Physiology. Part A, Molecular & Integrative growth, survival, and osmoregulatory ability of larval 38 Physiology 146,95–104. southern flounder Paralichthys lethostigma. Aquaculture – 39 Luckenbach J.A., Borski R.J., Daniels H.V. & Godwin J. 229, 159 179. 40 (2009) Sex determination in flatfishes: mechanisms Munroe T.A. (2005) Systematic diversity of the Pleuro- and environmental influences. Seminars in Cell & nectiformes. In: Flatfishes: Biology and Exploitation (ed. 41 Developmental Biology 20, 256–263. by R.N. Gibson), pp. 10–41. Blackwell Publishing, 42 Madon A.P. (2002) Ecophysiology of juvenile California Oxford. 43 halibut Paralichthys californicus in relation to body size, Nissling A. & Dahlman G. (2010) Fecundity of flounder, 44 water temperature and salinity. Marine Ecology Pro- Pleuronectes flesus, in the Baltic Sea - Reproductive 45 gress Series 243, 235–249. strategies in two sympatric populations. Journal of Sea 46 Mangorjensen A. (1987) Water-balance in developing Research 64, 190–198. 47 eggs of the cod Gadus-morhua L. Fish Physiology and Nissling A., Westin L. & Hjerne O. (2002) Reproductive 48 Biochemistry 3,17–24. success in relation to salinity for three flatfish species, 49 Marshall W.S. (2002) Na+, Cl-, Ca2+ and Zn2+ trans- dab (Limanda limanda), plaice (Pleuronectes platessa), 50 port by fish gills: retrospective review and prospective and flounder (Pleuronectes flesus), in the brackish water Journal of Experimental Zoology 293 – 51 synthesis. , 264 Baltic sea ICES (International Council for the Explora- 283. tion of the Sea). Journal of Marine Science 59,93–108. 52

18 © 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 Aquaculture Research, 2014, 1–20 Osmoregulation and flatfish culture I Ruiz-Jarabo et al.

1 O0Neill B., De Raedemaecker F., McGrath D. & Brophy D. various salinities alters energy metabolism of osmoreg- 2 (2011) An experimental investigation of salinity effects ulatory and nonosmoregulatory organs. American Jour- 3 on growth, development and condition in the Euro- nal of Physiology 285, R897–R907. 4 pean flounder (Platichthys flesus. L.). Journal of Experi- Sangiao-Alvarellos S., Arjona F.J., Martin del Rio M.P., 5 mental Marine Biology and Ecology 410,39–44. Miguez J.M., Mancera J.M. & Soengas J.L. (2005) Time 6 Ottesen O.H. & Babiak I. (2007) Parental effects on course of osmoregulatory and metabolic changes dur- Sparus auratus Journal of 7 fertilization and hatching success and development of ing osmotic acclimation in . Atlantic halibut (Hippoglossus hippoglossus L.) embryos Experimental Biology 208, 4291–4304. 8 and larvae. Theriogenology 68, 1219–1227. Schreiber A.M. (2001) Metamorphosis and early larval 9 Perry S.F. (1998) Relationships between branchial chlo- development of the flatfishes (Pleuronectiformes): an 10 ride cells and gas transfer in freshwater fish. Compara- osmoregulatory perspective. Comparative Biochemistry 11 tive Biochemistry and Physiology. Part A, Molecular & and Physiology. Part B 129, 587–595. 12 Integrative Physiology 119,9–16. Schreiber A.M. & Specker J.L. (1999a) Early larval 13 Randall D.J. & Brauner C. (1998) Interactions between development and metamorphosis in the summer floun- 14 ion and gas transfer in freshwater teleost fish. der: changes in per cent whole-body water content 15 Comparative Biochemistry and Physiology. Part A, Molec- and effects of altered thyroid status. Journal of Fish 16 ular & Integrative Physiology 119,3–8. Biology 55, 148–157. 17 Rawson D.M., Zhang T., Kalicharan D. & Jongebloed Schreiber A.M. & Specker J.L. (1999b) Metamorphosis in Paralichthys dentatus 18 W.L. (2000) Field emission scanning electron micros- the summer flounder, : thyroidal copy and transmission electron microscopy studies of status influences salinity tolerance. Journal of Experi- 19 the chorion, plasma membrane and syncytial layers of mental Zoology 284, 414–424. 20 the gastrula-stage embryo of the zebrafish Brachydanio Schreiber A.M. & Specker J.L. (2000) Metamorphosis in 21 rerio: a consideration of the structural and functional the summer flounder, Paralichthys dentatus: thyroidal 22 relationships with respect to cryoprotectant penetra- status influences gill mitochondria-rich cells. General 23 tion. Aquaculture Research 31, 325–336. and Comparative Endocrinology 117, 238–250. 24 Reid S.G., Bernier N.J. & Perry S.F. (1998) The adrener- Schulz R.W. & Goos H.J.T. (1999) Puberty in male fish: 25 gic stress response in fish: control of catecholamine concepts and recent developments with special 26 storage and release. Comparative Biochemistry and reference to the African catfish (Clarias gariepinus). 27 Physiology. Part C, Pharmacology, Toxicology & Endocri- Aquaculture 177,5–12. – 28 nology 120,1 27. Schwarzhans W. (1999) Piscium Catalogous: Part Otolithi Piscium 9 29 Renfro J.L. (1995) Solute transport by flounder renal . ???????, Munchen. cells in primary culture. In: Fish Physiology (ed. by CM Segner H., Storch V., Reinecke M., Kloas W. & Hanke W. 30 Wood & TJ Shuttleworth), pp. 147–173. Academic (1994) The development of functional digestive and 31 Press, San Diego, CA. metabolic organs in turbot, Scophthalmus-Maximus. 32 Rubio V.C., Sanchez-Vazquez F.J. & Madrid J.A. (2005) Marine Biology 119, 471–486. 33 Effects of salinity on food intake and macronutrient Seidelin M., Madsen S.S., Byrialsen A. & Kristiansen K. 34 selection in European sea bass. Physiology & Behavior (1999) Effects of insulin-like growth factor-I and corti- 35 85, 333–339. sol on Na+,K+ -ATPase expression in osmoregulatory 36 Salas-Leiton E.A.S., Rodriguez-Rua A., Asensio E., Infante tissues of brown trout (Salmo trutta). General and Com- 37 C., Manchado M., Fernandez-Diaz C. & Canavate J.P. parative Endocrinology 113, 331–342. 38 (2012) Effect of salinity on egg hatching, yolk sac Silva A. & Oliva M. (2010) Review of the biology and 39 absorption and larval rearing of Senegalese sole (Solea cultivation of Chilean flounder (Paralichthys adspersus). senegalensis Reviews in Aquaculture 4 – Latin American Journal of Aquatic Research [Electronic 40 Kaup 1858). ,49 58. Resource] 38, 377–386. 41 Sampaio L.A. & Bianchini A. (2002) Salinity effects on Smith H.W., Farinacci N. & Breitweiser A. (1930) The 42 osmoregulation and growth of the euryhaline flounder absorption and excretion of water and salts by mar- 43 Paralichthys orbignyanus. Journal of Experimental Marine ine teleosts. American Journal of Physiology 93, 480– 44 Biology and Ecology 269, 187–196. 505. 45 Sampaio L.A., Freitas L.S., Okamoto M.H., Louzada L.R., Smith T.I.J., Denson M.R., Heyward L.D., Jenkins W.E. & 46 Rodrigues R.V. & Robaldo R.B. (2007) Effects of salin- Carter L.M. (1999) Salinity effects on early life stages 47 ity on Brazilian flounder Paralichthys orbignyanus from of southern flounder Paralichthys lethostigma. Journal of 48 fertilization to juvenile settlement. Aquaculture 262, the World Aquaculture Society 30, 236–244. 49 340–346. Soengas J.L., Sangiao-Alvarellos S., Laiz-Carrion R. & 50 Sangiao-Alvarellos S., Laiz-Carrion R., Guzman J.M., Mancera J.M. (2008) Energy metabolism and osmotic Fish Osmoregulation 51 Martin Del Rio M.P., Miguez J.M., Mancera J.M. & acclimation in teleost fish. In: (ed. Soengas J.L. (2003) Acclimation of S. aurata to by ???? ?????), pp. 277–307. Science Publisher, ???????. 10 52

© 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 19 Osmoregulation and flatfish culture I Ruiz-Jarabo et al. Aquaculture Research, 2014, 1–20

1 Stickney R.R. & Liu H.W. (1999) Maintenance of brood- and recruitment to their nurseries. Journal of Sea 2 stock, spawning, and early larval rearing of Pacific Research 58, 241–254. 3 halibut, Hippoglossus stenolepis. Aquaculture 176,75– Wedemeyer G.A., Barton B.A. & McLeay D.J. (1990) 4 86. Stress and acclimation. In: Methods of Fish Biology (ed. 5 Terceiro M. (2011) The summer flounder chronicles II: by CB Schreck & PB Moyle), pp. 451–489. American 6 new science, new controversy, 2001-2010. Reviews in Fisheries Society, Bethesda, MD. Fish Biology and Fisheries 21 – 7 , 681 712. Weltzien F.A., Andersson E., Andersen O., Shalchian- Tipsmark C.K., Luckenbach J.A., Madsen S.S., Kiilerich P. Tabrizi K. & Norberg B. (2004) The brain-pituitary- 8 & Borski R.J. (2008) Osmoregulation and expression of gonad axis in male teleosts, with special emphasis on 9 ion transport proteins and putative claudins in the gill flatfish (pleuronectiformes). Comparative Biochemistry 10 of Southern Flounder (Paralichthys lethostigma). Com- and Physiology. Part A 137, 447–477. 11 parative Biochemistry and Physiology. Part A 150, 265– Wendelaar Bonga S.E. (1997) The stress response in fish. 12 273. Physiological Reviews 77, 591–625. 13 Tseng Y.C. & Hwang P.P. (2008) Some insights into Whittamore J.M. (2012) Osmoregulation and epithelial 14 energy metabolism for osmoregulation in fish. water transport: lessons from the intestine of marine tel- 15 Comparative Biochemistry and Physiology. Part C 148, eost fish. Journal of Comparative Physiology B 182,1–39. 16 419–429. Wilson J.M., Laurent P., Tufts B.L., Benos D.J., Donowitz 17 Tytler P. & Bell M.V. (1989) A study of diffusional per- M., Vogl A.W. & Randall D.J. (2000) NaCl uptake by 18 meability of water, sodium and chloride in yolk-sac the branchial epithelium in freshwater teleost fish: an larvae of cod (Gadus-Morhua L). Journal of Experimental immunological approach to ion-transport protein local- 19 Biology 147, 125–132. ization. Journal of Experimental Biology 203, 2279– 20 Varsamos S., Nebel C. & Charmantier G. (2005) Ontog- 2296. 21 eny of osmoregulation in postembryonic fish: a review. Wilson J.M., Randall D.J., Donowitz M., Vogl A.W. & Ip 22 Comparative Biochemistry and Physiology. Part A 141, A.K. (2000) Immunolocalization of ion-transport pro- 23 401–429. teins to branchial epithelium mitochondria-rich cells in 24 Vasconcelos R.P., Reis-Santos P., Costa M.J. & Cabral the mudskipper (Periophthalmodon schlosseri). Journal of 25 H.N. (2011) Connectivity between estuaries and mar- Experimental Biology 203, 2297–2310. 26 ine environment: integrating metrics to assess estua- Wilson J.M., Moreira-Silva J., Delgado I.L., Ebanks S.C., 27 rine nursery function. Ecological Indicators 11, 1123– Vijayan M.M., Coimbra J. & Grosell M. (2013) Mecha- 28 1133. nisms of transepithelial ammonia excretion and 29 Wada T., Aritaki M. & Tanaka M. (2004) Effects of low- luminal alkalinization in the gut of an intestinal air- salinity on the growth and development of spotted breathing fish, Misgurnus anguilliacaudatus. Journal of 30 halibut Verasper variegatus in the larva-juvenile trans- Experimental Biology 216, 623–632. 31 formation period with reference to pituitary prolactin Yamamoto E. (1999) Studies on sex-manipulation and 32 and gill chloride cells responses. Journal of Experimental production of cloned populations in hirame, Paralich- 33 Marine Biology and Ecology 308, 113–126. thys olivaceus (Temminck et Schlegel). Aquaculture 34 Wada T., Aritaki M., Yamashita Y. & Tanaka M. (2007) 173, 235–246. 35 Comparison of low-salinity adaptability and morpho- Yan M., Li Z., Xiong B. & Zhu J. (2004) Effects of salinity 36 logical development during the early life history of five on food intake, growth, and survival of pufferfish (Fugu 37 pleuronectid flatfishes, and implications for migration obscurus). Journal of Applied Ichthyology 20, 146–149. 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

20 © 2014 John Wiley & Sons Ltd, Aquaculture Research, 1–20 Author Query Form

Journal: ARE

Article: 12424

Dear Author, During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers on the query sheet if there is insufficient space on the page proofs. Please write clearly and follow the conventions shown on the attached corrections sheet. If returning the proof by fax do not write too close to the paper’s edge. Please remember that illegible mark-ups may delay publica- tion.

Many thanks for your assistance.

Query reference Query Remarks

1 AUTHOR: Please provide forenames in full form all authors.

2 AUTHOR: Malloy et al. 1991 has not been included in the Reference List, please supply full publication details.

3 AUTHOR: Yamashita et al. 2001 has not been included in the Reference List, please supply full publication details.

4 AUTHOR: Sampaio et al. 2002 has not been included in the Reference List, please supply full publication details.

5 AUTHOR: Munro et al. 1994 has not been included in the Reference List, please supply full publication details.

6 AUTHOR: Gutt et al. 1985 has not been included in the Reference List, please supply full publication details.

7 AUTHOR: Hickman et al. 2002 has not been included in the Reference List, please supply full publication details.

8 AUTHOR: Please provide book title in full form.

9 AUTHOR: Please provide the publisher name for reference Schwarzhans (1999).

10 AUTHOR: Please provide the editor name(s), publisher location for reference Soengas et al. (2008). 11 AUTHOR: Figure 1 has been saved at a low resolution of 226 dpi. Please resupply at 600 dpi. Check required artwork specifications at http://authorservices.wiley.com/bauthor/illus- tration.asp

12 AUTHOR: Figure 3 has been saved at a low resolution of 209 dpi. Please resupply at 600 dpi. Check required artwork specifications at http://authorservices.wiley.com/bauthor/illus- tration.asp

13 AUTHOR: Figure 4 has been saved at a low resolution of 215 dpi. Please resupply at 600 dpi. Check required artwork specifications at http://authorservices.wiley.com/bauthor/illus- tration.asp PRODUCTOS

ARTÍCULOS Para trabajos en Prensa/ Aceptados/Enviados adjunte copia de carta de aceptación o de recepción.

Nº : 1 Autor (a)(es/as) : Sa, R.; Gavilán, M.; Rioseco, M.J.; Llancabure, A.; Vargas-Chacoff, L., Augsburger, A.; Bas, F. Nombre Completo de la Revista : Aquaculture Título (Idioma original) : Dietary protein requirement of Patagonian blennie (Eleginops maclovinus, Cuvier 1830) juveniles Indexación : ISI ISSN : 0044-8486 Año : Vol. : Nº : Páginas : Estado de la publicación a la fecha : En Prensa Otras Fuentes de financiamiento, si las hay : Project FONDECYT 11080168 and Project FONDECYT 1110235

Envía documento en papel : no Archivo(s) Asociado(s) al artículo : Sa...Vargas-Chacoff_2014_Aquaculture_Proof!!!.pdf http://sial.fondecyt.cl/index.php/investigador/f4_articulos/descarga/13197782/1110235/2013/48657/1/

Nº : 2 Autor (a)(es/as) : Vargas-Chacoff, L.; F. Moneva, R. Oyarzún, D. Martínez, J.L.P. Muñóz, C. Bertrán and J.M. Mancera Nombre Completo de la Revista : Polar Biology Título (Idioma original) : Environmental salinity-modified osmoregulatory response in the sub-Antarctic notothenioid fish Eleginops maclovinus Indexación : ISI ISSN : 1432-2056 Año : Vol. : Nº : Páginas : Estado de la publicación a la fecha : En Prensa Otras Fuentes de financiamiento, si las hay :

Envía documento en papel : no Archivo(s) Asociado(s) al artículo : Vargas-Chacoff_et_al_2014_Polar_Biology_Robalo.pdf http://sial.fondecyt.cl/index.php/investigador/f4_articulos/descarga/13197782/1110235/2013/50448/1/ Nº : 3 Autor (a)(es/as) : Vargas-Chacoff, L., E. Ortíz, R. Oyarzún, D. Martínez, E. Saavedra, R. Sá, V. Olavarría, A. Yáñez, C. Bertrán, J.M. Mancera Nombre Completo de la Revista : Fish Physiology and Biochemistry Título (Idioma original) : Stocking density and Piscirickettsia salmonis infection affect the skeletal muscle intermediate metabolism in Eleginops maclovinus Indexación : ISI ISSN : 1573-5168 Año : Vol. : Nº : Páginas : Estado de la publicación a la fecha : Enviada Otras Fuentes de financiamiento, si las hay :

Envía documento en papel : no Archivo(s) Asociado(s) al artículo : FISH-S-14-00092.pdf http://sial.fondecyt.cl/index.php/investigador/f4_articulos/descarga/13197782/1110235/2013/50449/1/

Carta_del_Editor.pdf http://sial.fondecyt.cl/index.php/investigador/f4_articulos/descarga/13197782/1110235/2013/50449/2/

OTRAS PUBLICACIONES / PRODUCTOS

Sin información ingresada.

CONGRESOS

Nº : 1 Autor (a)(es/as) : Fierro, P.; Bertrán, C., Dyer, B., Vargas-Chacoff L Título (Idioma original) : Alimentación del Odontesthes brevianalis (Osteichthyes: Atherinidae) Nombre del Congreso : VIII Congreso de la Sociedad Chilena de Limnología País : CHILE Ciudad : Valdivia Fecha Inicio : 24/10/2011 Fecha Término : 28/10/2011 Nombre Publicación : Libro de resumenes del VIII Congreso de la Sociedad Chilena de Limnología Año : Vol. : Nº : Páginas : Envía documento en papel : no Archivo Asociado : Doc1.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74899/1/ Doc2.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74899/2/

Doc3.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74899/3/

Nº : 2 Autor (a)(es/as) : Vargas-Chacoff, L., Oyarzun, R., Moneva, F., Mancera, JM., Bertrán, C., Saavedra, E. Título (Idioma original) : OSMOREGULATORY SYSTEM IN CHILEAN SEA BASS ELEGINOPS MACLOVINUS ACCLIMATED TO DIFFERENT ENVIRONMENTAL SALINITIES Nombre del Congreso : Tenth International Congress on the Biology of Fishes to be held in Madison, Wisconsin USA País : ESTADOS UNIDOS DE AMERICA Ciudad : WISCONSIN Fecha Inicio : 15/07/2012 Fecha Término : 19/07/2012 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : VARGAS-CHACOFF_PORTADA.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74900/1/

VARGAS-CHACOFF_ABSTRACT.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74900/2/

VARGAS-CHACOFF.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74900/3/

Nº : 3 Autor (a)(es/as) : Vargas-Chacoff, L., Oyarzun, R., Moneva, F., Mancera, JM., Bertrán, C., Saavedra, E. Título (Idioma original) : Estado de la acuicultura en Chile: el robalo Eleginops maclovinus como una posible opción de diversificación acuícola Nombre del Congreso : V FORO IBEROAMERICANO DE RECURSOS MARINOS Y ACUICULTURA "V FIRMA" País : ESPANA Ciudad : Cádiz Fecha Inicio : 26/11/2012 Fecha Término : 29/11/2012 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : VARGAS-CHACOFF_PORTADA_(1).pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74901/1/

VARGAS-CHACOFF_CERTIFICATE2.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74901/2/

VARGAS-CHACOFF_ABSTRACT_(1).pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74901/3/

Nº : 4 Autor (a)(es/as) : E. Saavedra1*, R. Oyarzún1, F. Moneva1, Carlos Bertrán1, Juan Miguel Mancera2, L. Vargas-Chacoff1. Título (Idioma original) : BAJAS SALINIDADES INDUCEN CAMBIOS EN METABOLITOS PLASMÁTICOS Y ACTIVIDADES ENZIMÁTICAS EN EL ROBALO (Eleginops maclovinus) Nombre del Congreso : XXXII Congreso de Ciencias del Mar País : CHILE Ciudad : Punta Arenas Fecha Inicio : 22/10/2012 Fecha Término : 25/10/2012 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : resume_P._Andrade_y_E._Saavedra.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74902/1/ portada_libro_resumenes_congreso_ciencias_del_mar.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74902/2/

Nº : 5 Autor (a)(es/as) : P. Andrade1, R. Oyarzún2, C. Bertrán2, J. M. Mancera3 y L. Vargas-Chacoff2. Título (Idioma original) : RESPUESTA METABÓLICA DE TEJIDOS OSMORREGULADORES EN Eleginops maclovinus ACLIMATADO A DIFERENTES SALINIDADES Nombre del Congreso : XXXII Congreso de Ciencias del Mar País : CHILE Ciudad : Punta Arenas Fecha Inicio : 22/10/2012 Fecha Término : 25/10/2012 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : portada_libro_resumenes_congreso_ciencias_del_mar1.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74903/1/ resume_P._Andrade_y_E._Saavedra1.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74903/2/

Nº : 6 Autor (a)(es/as) : Cornejo-Acevedo M.F.1, Fierro P.1,2, Bertrán C.1 & Vargas-Chacoff L1 Título (Idioma original) : CONTENIDO ESTOMACAL DE CHILENSIS (VALENCIENNES, 1833), CHEILODACTYLUS VARIEGATUS (VALENCIENNES, 1833) Y APLODACTYLUS PUNCTATUS (VALENCIENNES, 1831) DEL LITORAL COSTERO VALDIVIANO, XIV REGION Nombre del Congreso : XXXII Congreso de Ciencias del Mar País : CHILE Ciudad : Punta Arenas Fecha Inicio : 22/10/2012 Fecha Término : 25/10/2012 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : portada_libro_resumenes_congreso_ciencias_del_mar2.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74904/1/

FERNANDA_CORNEJO.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74904/2/

Nº : 7 Autor (a)(es/as) : F. Moneva1*, R. Oyarzún1, E. Saavedra1, Carlos Bertrán1, Juan Miguel Mancera2, L. Vargas-Chacoff11. Título (Idioma original) : OSMORREGULACIÓN DEL ROBALO Eleginops maclovinus ACLIMATADO A BAJAS SALINIDADES AMBIENTALES Nombre del Congreso : XXXII Congreso de Ciencias del Mar País : CHILE Ciudad : Punta Arenas Fecha Inicio : 22/10/2012 Fecha Término : 25/10/2012 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : portada_libro_resumenes_congreso_ciencias_del_mar3.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74905/1/ resumen_F._Moneva.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74905/2/

Nº : 8 Autor (a)(es/as) : P. Fierro1,2, C. Bertrán2, B. Dyer3 y L. Vargas-Chacoff2. Título (Idioma original) : OFERTA ALIMENTARIA Y DIETA ESTACIONAL DE Austromenidia regia laticlavia (PISCES: ATHERINIDAE) EN UN ESTUARIO DEL SUR DE CHILE Nombre del Congreso : XXXII Congreso de Ciencias del Mar País : CHILE Ciudad : Punta Arenas Fecha Inicio : 22/10/2012 Fecha Término : 25/10/2012 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : portada_libro_resumenes_congreso_ciencias_del_mar4.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74906/1/

Pablo_Fierro_et_al_2012.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74906/2/

Nº : 9 Autor (a)(es/as) : R. Oyarzún 1*, C. Gárces1, R. Assef1, C. Bertrán1, J. M. Mancera2, L. Vargas-Chacoff Título (Idioma original) : EFECTO DE LA ALTA DENSIDAD SOBRE Nombre del Congreso : XXXII Congreso de Ciencias del Mar País : CHILE Ciudad : Punta Arenas Fecha Inicio : 22/10/2012 Fecha Término : 25/10/2012 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : portada_libro_resumenes_congreso_ciencias_del_mar5.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74907/1/ resumen_R._Oyarzun.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74907/2/

Nº : 10 Autor (a)(es/as) : Llancabure, A.2; Oyarzún, R.3, Vargas-Chacoff, L.3; Augsburger, A.4; Muñoz, H.A.4; Sa, R.1,* Título (Idioma original) : EFECTO DEL TIPO Y NIVEL DE PROTEINA DIETARIA EN PARAMETROS FISIOLOGICOS DE JUVENILES DE ROBALO (Eleginops maclovinus) Nombre del Congreso : IV Congreso Nacional de Acuicultura. País : CHILE Ciudad : Puerto Montt Fecha Inicio : 16/01/2013 Fecha Término : 18/01/2013 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : VARGAS-CHACOFF_PORTADA_(4).pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74908/1/

VARGAS-CHACOFF_ROBALO_RUI.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74908/2/

Nº : 11 Autor (a)(es/as) : E. Saavedra, L. Vargas-Chacoff, R. Oyarzun, F. Moneva, Carlos Bertrán, Juan Miguel Mancera Título (Idioma original) : CRECIMIENTO DE Eleginops maclovinus RELACIONADO A CAMBIOS EN LA SALINIDAD AMBIENTAL Nombre del Congreso : IV Congreso Nacional de Acuicultura. País : CHILE Ciudad : Puerto Montt Fecha Inicio : 16/01/2013 Fecha Término : 18/01/2013 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : VARGAS-CHACOFF_PORTADA_(4)1.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74909/1/

VARGAS-CHACOFF_ROBALO_EVE_FINAL.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74909/2/

Nº : 12 Autor (a)(es/as) : I. Ruiz-Jarabo, M. Herrera, I. Hachero, L. Vargas-Chacoff, J.M. Mancera y F.J. Arjona. Título (Idioma original) : SALINIDAD AMBIENTAL Y EFECTOS SOBRE EL CULTIVO DE PECES PLANOS Nombre del Congreso : IV Congreso Nacional de Acuicultura. País : CHILE Ciudad : Puerto Montt Fecha Inicio : 16/01/2013 Fecha Término : 18/01/2013 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : VARGAS-CHACOFF_PORTADA_(4)2.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74910/1/

VARGAS-CHACOFF_LENGUADOS_FINAL.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74910/2/

Nº : 13 Autor (a)(es/as) : L. Vargas-Chacoff, R. Oyarzun, E. Saavedra, F. Moneva, Carlos Bertrán, Juan Miguel Mancera Título (Idioma original) : Parámetros plasmáticos y osmoreguladores en Eleginops maclovinus aclimatados a tres salinidades ambientales diferentes Nombre del Congreso : IV Congreso Nacional de Acuicultura. País : CHILE Ciudad : Puerto Montt Fecha Inicio : 16/01/2013 Fecha Término : 18/01/2013 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : si Archivo Asociado : VARGAS-CHACOFF_PORTADA_(4)3.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74911/1/

VARGAS-CHACOFF_ROBALO_FINAL.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74911/2/

Nº : 14 Autor (a)(es/as) : Paredes, R.; Oyarzún, R.; Bertrán, C.; Mancera, J.M.; Vargas-Chacoff, L. Título (Idioma original) : RESPUESTA TERCIARIA AL ESTRÉS DEL ROBALO EN ALTAS DENSIDADES Nombre del Congreso : XXXIII Congreso de Ciencias del Mar País : CHILE Ciudad : Antofagasta Fecha Inicio : 27/05/2013 Fecha Término : 30/05/2013 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : no Archivo Asociado : resumenes_rony_y_ricardo_ciencias_del_mar_antofagasta_2013.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74916/1/

Certificado_Rony_Paredes.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74916/2/ portada_congreso_ciencias_del_mar_antofagasta_2013.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74916/3/

Nº : 15 Autor (a)(es/as) : Oyarzún, R.; Saavedra, E.; Moneva, F.; Bertrán, C.; Ruiz-Jarabo, I.; Mancera, J.M.; Vargas-Chacoff, L. Título (Idioma original) : METABÓLISMO DE LA GLUCOSA HEPÁTICA EN JUVENILES DE Eleginops maclovinus EXPUESTOS A DIFERENTES SALINIDADES. Nombre del Congreso : XXXIII Congreso de Ciencias del Mar País : CHILE Ciudad : Antofagasta Fecha Inicio : 27/05/2013 Fecha Término : 30/05/2013 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : no Archivo Asociado : Certificado_Ricardo_Oyarzun.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74917/1/ resumenes_rony_y_ricardo_ciencias_del_mar_antofagasta_20131.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74917/2/

Nº : 16 Autor (a)(es/as) : Vargas-Chacoff, L.; Oyarzún, R.; Saavedra, E.; Moneva, F.; Bertrán, C.; Ruiz-Jarabo, I.; Mancera, J.M. Título (Idioma original) : RESPUESTA DEL METABOLISMO INTERMEDIARIO EN JUVENILES DE Eleginops maclovinus EN DIFERENTES CONDICIONES OSMÓTICAS Nombre del Congreso : XXXIII Congreso de Ciencias del Mar País : CHILE Ciudad : Antofagasta Fecha Inicio : 27/05/2013 Fecha Término : 30/05/2013 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : no Archivo Asociado : Certificado_Luis_Vargas.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74918/1/ resumen_Profe_ciencias_del_mar_antofagasta_2013.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74918/2/

Nº : 17 Autor (a)(es/as) : Oyarzún, R.; Vargas-Chacoff, L.; Saavedra, E.; Moneva, F.; Bertrán, C.; Mancera, J.M. Título (Idioma original) : Hyposmotic environments affected negatively intermediary metabolism in juvenile Chilean sea bass Eleginops maclovinus acclimated Nombre del Congreso : Aquaculture Conference País : ESPANA Ciudad : Gran Canarias Fecha Inicio : 03/11/2013 Fecha Término : 07/11/2013 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : no Archivo Asociado : abstract_Ricardo_Oyarzún.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74920/1/ certificado_congreso_ricardo_oyarzun.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74920/2/ inscripcion_Ricardo_Oyarzun_(1).pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74920/3/

Nº : 18 Autor (a)(es/as) : Vargas-Chacoff, L.; Martínez, D.; Oyarzún, R.; Olavarría, V.; Yáñez, A.; Bertrán, C.; Ruiz-Jarabo, I.; Mancera, J.M. Título (Idioma original) : Stocking density activated secondary stress response and decreased immunological response in the Chilean sea bass Eleginops maclovinus Nombre del Congreso : Aquaculture Conference País : ESPANA Ciudad : Gran Canarias Fecha Inicio : 03/11/2013 Fecha Término : 07/11/2013 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : no Archivo Asociado : abstract_Luis_Vargas.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74921/1/ certificado_congreso_Luis_Vargas.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74921/2/ inscripcion_Luis_Vargas.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/13197782/1110235/2013/74921/3/ TESIS/MEMORIAS

Nº : 1 Título de Tesis : Respuesta osmorregulatoria de E. maclovinus a cambios en la salinidad ambienal Nombre y Apellidos del(de la) Alumno(a) : Fernando Moneva Nombre y Apellidos del(de la) Tutor(a) : Luis Vargas Chacoff Título Grado : Pregrado Institución : Universidad Austral de Chile País : CHILE Ciudad : Valdivia Estado de Tesis : Terminada Fecha Inicio : 01/12/2011 Fecha Término : 05/03/2013 Envía documento en papel : no Archivo Asociado : Fernando_Moneva.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/39531/1/ Universidad_Austral_de_Chile_resumen.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/39531/2/ CERTIFICADO_FERNANDO_MONEVA.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/39531/3/

Nº : 2 Título de Tesis : Crecimiento de Eleginops maclovinus relacionados a cambios en la salinidad ambiental Nombre y Apellidos del(de la) Alumno(a) : Evelyn Saavedra Delgado Nombre y Apellidos del(de la) Tutor(a) : Luis Vargas Chacoff Título Grado : Pregrado Institución : Universidad Austral de Chile País : CHILE Ciudad : Valdivia Estado de Tesis : Terminada Fecha Inicio : 01/02/2012 Fecha Término : 16/10/2013 Envía documento en papel : no Archivo Asociado : RESUMEN_FONDECYT_EVELYN.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/39532/1/ Proyecto_de_Tesis_final_ya_presentado_en_Escuela.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/39532/2/ CERTIFICADO_EVELYN_SAAVEDRA.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/39532/3/

Nº : 3 Título de Tesis : EFECTO DE LA ALTA DENSIDAD DE CULTIVO SOBRE LA RESPUESTA SECUNDARIA AL ESTRÉS EN Eleginops maclovinus Nombre y Apellidos del(de la) Alumno(a) : DANIXA PAMELA MARTÍNEZ GONZÁLEZ Nombre y Apellidos del(de la) Tutor(a) : Luis Vargas Chacoff Título Grado : Pregrado Institución : Universidad Austral de Chile País : CHILE Ciudad : Valdivia Estado de Tesis : Terminada Fecha Inicio : 03/09/2012 Fecha Término : 06/11/2013 Envía documento en papel : no Archivo Asociado : RESUMEN_FONDECYT_DANIXA.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/39535/1/

CERTIFICADO_DANIXA_PAMELA.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/39535/3/

Nº : 4 Título de Tesis : Efecto de la alta densidad sobre el crecimiento de juveniles de Eleginops maclovinus Nombre y Apellidos del(de la) Alumno(a) : RONY ESTEBAN PAREDES CONTRERAS Nombre y Apellidos del(de la) Tutor(a) : Luis Vargas Chacoff Título Grado : Pregrado Institución : Universidad Austral de Chile País : CHILE Ciudad : Valdivia Estado de Tesis : En Ejecución Fecha Inicio : 01/04/2013 Fecha Término : Envía documento en papel : no Archivo Asociado : CERTIFICADO_RONY_PAREDES.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/41417/1/ RESUMEN_FONDECYT_RONY.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/41417/2/

Nº : 5 Título de Tesis : EVALUACIÓN DE LA RESPUESTA INMUNE, METABÓLICA Y OSMORREGULADORA DE PÉPTIDOS DE PROLACTINA EN TRUCHA ARCOÍRIS (Oncorhynchus mykiss) Nombre y Apellidos del(de la) Alumno(a) : LIDIA ANDREA TORRES MORENO Nombre y Apellidos del(de la) Tutor(a) : Luis Vargas Chacoff Título Grado : Pregrado Institución : Universidad Austral de Chile País : CHILE Ciudad : Valdivia Estado de Tesis : En Ejecución Fecha Inicio : 02/09/2013 Fecha Término : Envía documento en papel : no Archivo Asociado : CERTIFICADO_ANDREA_TORRES.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/41418/1/ RESUMEN_FONDECYT_ANDREA_TORRES.pdf http://sial.fondecyt.cl/index.php/investigador/f4_tesis_memorias/descarga/13197782/1110235/2013/41418/2/