Nutzung Der Game Engine Unity Als Charakter-Animationstool Für Filmproduktion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Motion Enriching Using Humanoide Captured Motions
MASTER THESIS: MOTION ENRICHING USING HUMANOIDE CAPTURED MOTIONS STUDENT: SINAN MUTLU ADVISOR : A NTONIO SUSÌN SÀNCHEZ SEPTEMBER, 8TH 2010 COURSE: MASTER IN COMPUTING LSI DEPERTMANT POLYTECNIC UNIVERSITY OF CATALUNYA 1 Abstract Animated humanoid characters are a delight to watch. Nowadays they are extensively used in simulators. In military applications animated characters are used for training soldiers, in medical they are used for studying to detect the problems in the joints of a patient, moreover they can be used for instructing people for an event(such as weather forecasts or giving a lecture in virtual environment). In addition to these environments computer games and 3D animation movies are taking the benefit of animated characters to be more realistic. For all of these mediums motion capture data has a great impact because of its speed and robustness and the ability to capture various motions. Motion capture method can be reused to blend various motion styles. Furthermore we can generate more motions from a single motion data by processing each joint data individually if a motion is cyclic. If the motion is cyclic it is highly probable that each joint is defined by combinations of different signals. On the other hand, irrespective of method selected, creating animation by hand is a time consuming and costly process for people who are working in the art side. For these reasons we can use the databases which are open to everyone such as Computer Graphics Laboratory of Carnegie Mellon University. Creating a new motion from scratch by hand by using some spatial tools (such as 3DS Max, Maya, Natural Motion Endorphin or Blender) or by reusing motion captured data has some difficulties. -
The University of Chicago Looking at Cartoons
THE UNIVERSITY OF CHICAGO LOOKING AT CARTOONS: THE ART, LABOR, AND TECHNOLOGY OF AMERICAN CEL ANIMATION A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE HUMANITIES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CINEMA AND MEDIA STUDIES BY HANNAH MAITLAND FRANK CHICAGO, ILLINOIS AUGUST 2016 FOR MY FAMILY IN MEMORY OF MY FATHER Apparently he had examined them patiently picture by picture and imagined that they would be screened in the same way, failing at that time to grasp the principle of the cinematograph. —Flann O’Brien CONTENTS LIST OF FIGURES...............................................................................................................................v ABSTRACT.......................................................................................................................................vii ACKNOWLEDGMENTS....................................................................................................................viii INTRODUCTION LOOKING AT LABOR......................................................................................1 CHAPTER 1 ANIMATION AND MONTAGE; or, Photographic Records of Documents...................................................22 CHAPTER 2 A VIEW OF THE WORLD Toward a Photographic Theory of Cel Animation ...................................72 CHAPTER 3 PARS PRO TOTO Character Animation and the Work of the Anonymous Artist................121 CHAPTER 4 THE MULTIPLICATION OF TRACES Xerographic Reproduction and One Hundred and One Dalmatians.......174 -
The Uses of Animation 1
The Uses of Animation 1 1 The Uses of Animation ANIMATION Animation is the process of making the illusion of motion and change by means of the rapid display of a sequence of static images that minimally differ from each other. The illusion—as in motion pictures in general—is thought to rely on the phi phenomenon. Animators are artists who specialize in the creation of animation. Animation can be recorded with either analogue media, a flip book, motion picture film, video tape,digital media, including formats with animated GIF, Flash animation and digital video. To display animation, a digital camera, computer, or projector are used along with new technologies that are produced. Animation creation methods include the traditional animation creation method and those involving stop motion animation of two and three-dimensional objects, paper cutouts, puppets and clay figures. Images are displayed in a rapid succession, usually 24, 25, 30, or 60 frames per second. THE MOST COMMON USES OF ANIMATION Cartoons The most common use of animation, and perhaps the origin of it, is cartoons. Cartoons appear all the time on television and the cinema and can be used for entertainment, advertising, 2 Aspects of Animation: Steps to Learn Animated Cartoons presentations and many more applications that are only limited by the imagination of the designer. The most important factor about making cartoons on a computer is reusability and flexibility. The system that will actually do the animation needs to be such that all the actions that are going to be performed can be repeated easily, without much fuss from the side of the animator. -
Authoring Motion Cycles
Authoring Motion Cycles Loïc Ciccone Martin Guay ETH Zurich Disney Research Zurich Maurizio Nitti Robert W. Sumner Disney Research Zurich ETH Zurich, Disney Research Zurich Figure 1: Left: To specify a motion cycle, the user acts out several loops of the motion using a variety of capture devices. Middle: A looping motion cycle is automatically extracted from the noisy performance. Right: A custom motion representation tool, called MoCurves, allows controlling and coordinating spatial and temporal transformations from a single viewport. ABSTRACT CCS CONCEPTS Motion cycles play an important role in animation production • Computing methodologies → Animation; Graphics systems and game development. However, creating motion cycles relies and interfaces; on general-purpose animation packages with complex interfaces that require expert training. Our work explores the specic chal- KEYWORDS lenges of motion cycle authoring and provides a system simple Motion cycles, Animation interface, Performance, Motion curves enough for novice animators while maintaining the exibility of control demanded by experts. Due to their cyclic nature, we show ACM Reference format: that performance animation provides a natural interface for mo- Loïc Ciccone, Martin Guay, Maurizio Nitti, and Robert W. Sumner. 2017. tion cycle specication. Our system allows the user to act several Authoring Motion Cycles. In Proceedings of ACM SIGGRAPH / Eurographics loops of motion using a variety of capture devices and automat- Symposium on Computer Animation, Los Angeles, California USA, July 2017 (SCA’17), 9 pages. ically extracts a looping cycle from this potentially noisy input. DOI: 10.475/123_4 Motion cycles for dierent character components can be authored in a layered fashion, or our method supports cycle extraction from higher-dimensional data for capture devices that deliver many de- 1 INTRODUCTION grees of freedom. -
MAULANA ABUL KALAM AZAD UNIVERSITY of TECHNOLOGY, WB Syllabus for B. Sc (H) in Animation, Film Making, Graphics & VFX (CBCS)
MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WB Syllabus for B. Sc (H) in Animation, Film Making, Graphics & VFX (CBCS) COURSE STRUCTURE (In-house) (Effective from Admission Session 2020 -2021) Total Credit: 140 Semester I I. Core 20 Credits SL Type of Paper Name Paper Code Contracts Total Credits Paper Period per Contact week Hours Theory L P 1 Core Introduction To BAFMGV 101 4 40 4 (C1) Basic Animation 2 Core Introduction to BAFMGV 102 4 40 4 (C2) Film Making Practical 1 Core Traditional BAFMGV 191 2 20 2 (CP1) Animation Lab 2 Core Story & Script BAFMGV 192 2 20 2 (CP2) Writing II. Elective Courses B.1 General Elective Theory General a) Python BAFMGV GE 4 40 4 1 Elective Programming 101 (GE1) b) R Programming Practical General a) Python BAFMGV 1 Elective Programming GEP 191 2 20 2 Practical b) R (GEP1) Programming III. Ability Enhancement Courses 1. Ability Enhancement Compulsory Courses (AECC) Theory Ability Communicative BAFMGV AECC 1 Enhance English I 101 2 20 2 ment Compuls ory Courses (AECC1) Semester II I. Core 20 Credits SL Type of Paper Name Paper Code Contracts Total Credits Paper Period per Contact week Hours L P Theory Introduction to BAFMGV 201 1 Core (C3) Graphic Design 4 40 4 & Visual Art Introduction to BAFMGV 202 2 Core (C4) 2D Animation 4 40 4 Practical Digital Design, 1 Core Info graphics & BAFMGV 291 2 20 2 (CP3) Branding (Adobe Photoshop, illustrator, Corel Draw) 2 Core 2D animation lab BAFMGV 292 2 20 2 (CP4) (Flash) II. Elective Courses B.1 General Elective Theory General a) Web Design BAFMGV 1 Elective b)Computer GE201 4 40 4 (GE2) Networks Practical General a) Webpage BAFMGV 1 Elective Design GEP291 2 20 2 Practical (GEP2) b)Networking Lab III. -
Multiple Dynamic Pivots Rig for 3D Biped Character Designed Along Human-Computer Interaction Principles
Multiple Dynamic Pivots Rig for 3D Biped Character Designed along Human-Computer Interaction Principles by Mihaela D. Petriu A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Computer Science in Human-Computer Interaction Carleton University Ottawa, Ontario © 2020, Mihaela D. Petriu Abstract This thesis is addressing the design, implementation and usability testing of a modular extensible animator-centric authoring tool-independent 3D Multiple Dynamic Pivots (MDP) biped character rig. An objective of the thesis is to show that the design of the character rig must be independent of its platform, cater to the needs of the animation workflow based on HCI principles (particularly that of Direct Manipulation) and be modular and extensible in order to build and grow as needed within the production pipeline. In the thesis, the proposed rig design is implemented in Maya, the most widely used and taught commercial 3D animation authoring tool. Another thesis objective is to perform usability testing of the MDP rig with animation students and professionals, in order to gauge the new design’s intuitiveness for those relatively new to the trade and those already steeped in its decades of accumulated technical idiosyncrasies. ii Acknowledgements My deepest gratitude goes to my supervisor Dr. Chris Joslin for his constant guidance and support. I would also like to thank my family for their continuous help and encouragement. Finally, I thank my friend Sandra E. Hobbs for her constructive chaos that shed light on my design's weaknesses. iii Table of Contents Abstract ............................................................................................................................. -
Machinima As Digital Agency and Growing Commercial Incorporation
A Binary Within the Binary: Machinima as Digital Agency and Growing Commercial Incorporation A thesis presented to the faculty of the College of Fine Arts of Ohio University In partial fulfillment of the requirements for the degree Master of Arts Megan R. Brown December 2012 © 2012 Megan R. Brown. All Rights Reserved 2 This thesis titled A Binary Within the Binary: Machinima as Digital Agency and Growing Commercial Incorporation by MEGAN R. BROWN has been approved for the School of Film and the College of Fine Arts by Louis-Georges Schwartz Associate Professor of Film Studies Charles A. McWeeny Dean, College of Fine Arts 3 ABSTRACT BROWN, MEGAN R., M.A., December 2012, Film Studies A Binary Within the Binary: Machinima as Digital Agency and Growing Commercial Incorporation (128 pp.) Director of Thesis: Louis-Georges Schwartz. This thesis traces machinima, films created in real-time from videogame engines, from the exterior toward the interior, focusing on the manner in which the medium functions as a tool for marginalized expression in the face of commercial and corporate inclusion. I contextualize machinima in three distinct contexts: first, machinima as historiography, which allows its minority creators to articulate and distribute their interpretation of national and international events without mass media interference. Second, machinima as a form of fan fiction, in which filmmakers blur the line between consumers and producers, a feature which is slowly being warped as videogame studios begin to incorporate machinima into marketing techniques. Finally, the comparison between psychoanalytic film theory, which explains the psychological motivations behind cinema's appeal, applied to videogames and their resulting machinima, which knowingly disregard established theory and create agency through parody. -
Unsolved Stories Crack and Patch File Download
Unsolved Stories Crack And Patch File Download Download ->>> http://bit.ly/2NIW60B About This Game Welcome to Unsolved Stories which adorns the open world games with next-generation graphics. Chicago is an exciting and fascinating city with its absolute beauty, history, and great locations. The very first part, prepared for Unsolved Stories presents the whole glory of Chicago to you. New generation, highly detailed, stunning graphics engine will portray the magnificent atmosphere of the city. You can visit the most beautiful parts of the city. From the magnificent waterfront skyscrapers to the mess of the ghetto neighborhood. Freely explore the crowded and spectacular environment of the city besides its deserted and abandoned places. In each added new episode, you will find the story of a character and its gameplay. Unsolved Stories offers you an exciting and fascinating environment of the city in which you can use "First Person" view. Please share your comments and suggestions with us about the game. [email protected] MadHoundGames What is the current state of the Early Access version? Innovations are added in short time intervals. Therefore, the following list applies to 1.0.5.3. You can use the news page to keep up to date. Walking Tour Description In this mode, you can freely navigate through the first person's point of view. You can use it to see the venues developed for the story mode. 1 / 14 Venues are Chicago Region 2, Chicago Region 5 and Nikko Region 8 at the moment. Showcases Descriptions Vehicle Showcase In this mode, you can see our prototype car models in full 3D environment. -
Video Puppetry: a Performative Interface for Cutout Animation
Video Puppetry: A Performative Interface for Cutout Animation Connelly Barnes1 David E. Jacobs2 Jason Sanders2 Dan B Goldman3 Szymon Rusinkiewicz1 Adam Finkelstein1 Maneesh Agrawala2 1Princeton University 2University of California, Berkeley 3Adobe Systems Figure 1: A puppeteer (left) manipulates cutout paper puppets tracked in real time (above) to control an animation (below). Abstract 1 Introduction Creating animated content is difficult. While traditional hand- We present a video-based interface that allows users of all skill drawn or stop-motion animation allows broad expressive freedom, levels to quickly create cutout-style animations by performing the creating such animation requires expertise in composition and tim- character motions. The puppeteer first creates a cast of physical ing, as the animator must laboriously craft a sequence of frames puppets using paper, markers and scissors. He then physically to convey motion. Computer-based animation tools such as Flash, moves these puppets to tell a story. Using an inexpensive overhead Toon Boom and Maya provide sophisticated interfaces that allow camera our system tracks the motions of the puppets and renders precise and flexible control over the motion. Yet, the cost of pro- them on a new background while removing the puppeteer’s hands. viding such control is a complicated interface that is difficult to Our system runs in real-time (at 30 fps) so that the puppeteer and learn. Thus, traditional animation and computer-based animation the audience can immediately see the animation that is created. Our tools are accessible only to experts. system also supports a variety of constraints and effects including Puppetry, in contrast, is a form of dynamic storytelling that per- articulated characters, multi-track animation, scene changes, cam- 1 formers of all ages and skill levels can readily engage in. -
Animation of a High-Definition 2D Fighting Game Character
Tuula Rantala ANIMATION OF A HIGH-DEFINITION 2D FIGHTING GAME CHARACTER Thesis Kajaani University of Applied Sciences School of Business Business Information Technology Spring 2013 OPINNÄYTETYÖ TIIVISTELMÄ Koulutusala Koulutusohjelma Luonnontieteiden ala Tietojenkäsittely Tekijä(t) Tuula Rantala Työn nimi Teräväpiirtoisen 2d-taistelupelihahmon animointi Vaihtoehtoisetvaihtoehtiset ammattiopinnot Ohjaaja(t) Peligrafiikka Nick Sweetman Toimeksiantaja - Aika Sivumäärä ja liitteet Kevät 2013 56 Tämä opinnäytetyö pyrkii erittelemään hyvän pelihahmoanimaation periaatteita ja tarkastelee eri lähestymistapoja 2d-animaation luomiseen. Perinteisen animaation periaatteet, kuten ajoitus ja liikkeen välistys, pätevät pelianimaa- tiossa samalla tavalla kuin elokuva-animaatiossakin. Pelien tekniset rajoitukset ja interaktiivisuus asettavat kuiten- kin lisähaasteita animaatioiden toteuttamiseen tavalla, joka sekä tukee pelimekaniikkaa että on visuaalisesti kiin- nostava. Vetoava hahmoanimaatio on erityisen tärkeää taistelupeligenressä. Varhaiset taistelupelit 1990–luvun alusta käyt- tivät matalaresoluutioista bittikarttagrafiikkaa ja niissä oli alhainen määrä animaatiokehyksiä, mutta nykyään pelien standardit grafiikan ja animaation suhteen ovat korkealla. Viime vuosina monet pelinkehittäjät ovat siirtyneet käyttämään 2d-grafiikan sijasta 3d-grafiikkaa, koska 3d-animaation tuottaminen on monella tavalla joustavampaa. Perinteiselle 2d-grafiikalle on kuitenkin edelleen kysyntää, sillä käsin piirretyn animaation ainutlaatuista ulkoasua ei voi täysin korvata -
Attorney/Correspondence Information
Trademark Trial and Appeal Board Electronic Filing System. http://estta.uspto.gov ESTTA Tracking number: ESTTA888551 Filing date: 04/09/2018 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE TRADEMARK TRIAL AND APPEAL BOARD Notice of Opposition Notice is hereby given that the following party opposes registration of the indicated application. Opposer Information Name Valve Corporation Granted to Date 04/08/2018 of previous ex- tension Address 10400 NE 4th Street, Suite 1400 Bellevue, WA 98004 UNITED STATES Attorney informa- David J. Byer tion K&L Gates LLP One Lincoln Street Boston, MA 02111 UNITED STATES Email: [email protected], [email protected], [email protected], [email protected] Applicant Information Application No 87446265 Publication date 10/10/2017 Opposition Filing 04/09/2018 Opposition Peri- 04/08/2018 Date od Ends Applicant Source Films, LLC #1323 668 N Coast Highway Laguna Beach, CA 92651 UNITED STATES Goods/Services Affected by Opposition Class 041. First Use: 2017/04/10 First Use In Commerce: 2017/04/10 All goods and services in the class are opposed, namely: Entertainment services, namely, storytelling; Multimedia entertainment softwareproduction services; Production and distribution of television shows and movies Grounds for Opposition Priority and likelihood of confusion Trademark Act Section 2(d) Marks Cited by Opposer as Basis for Opposition U.S. Registration 3160103 Application Date 07/29/2004 No. Registration Date 10/17/2006 Foreign Priority NONE Date Word Mark SOURCE Design Mark Description of NONE Mark Goods/Services Class 009. First use: First Use: 2004/11/16 First Use In Commerce: 2004/11/16 computer software used to create three dimensional graphical environments, in- cluding capabilities for animation, artificial intelligence, sound, simulation andnetworking U.S. -
The Art of Animation
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Computer Science Division CS 294-7 The Art Of Animation Professor Brian A. Barsky and Laurence Arcadias Fall 2002 Overview Class time and place The class is on Mondays, from 3 pm to 6 pm, in 380 Soda Hall. The first class is August 26 and the last class is December 2. There will be no class on Sept. 2 (Labor Day) nor on Nov.11 (Veterans Day). Computer lab The computer lab is located in 111 Cory. It is open from 7:30 am to 6:30 pm and is accessible by cardkey outside those hours. This multimedia instructional lab comprises: six Apple PowerMac G4 computers (each with 1.5 GB RAM, SuperDrive, 867 MHz CPU, NVIDIA GeForce2 MX graphics card, 80 GB hard drive, and a 250-MB ZIP drive, running MacOSX 10.1) eight Windows 2000 computers (each with Pentium III 931 MHz CPU and 256 MB RAM) Instructors Prof. Brian A. Barsky Office: 785 Soda Hall Phone: (510) 642-9838 E-mail: [email protected] Office hours: Monday 1 pm to 3 pm Laurence Arcadias Office: 329 Soda Hall Phone: (510) 642-9827; 643-4207 E-mail: E-mail: [email protected] Office hours: Monday 1 pm to 3 pm Course Summary This hands-on animation course is intended for students with a computer science background who would like to improve their sense of observation, timing, and motion through the real art of animation to create strong believable animation pieces. A good understanding of motion is an important foundation for using computers and technology to their full potential for the creation of animation.